首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Regulation of protein function through oxidative modification has emerged as an important molecular mechanism modulating various biological processes. Here, we report a proteomic study of redox-sensitive proteins in Arabidopsis cells subjected to H(2)O(2) treatment. Four gel-based approaches were employed, leading to the identification of four partially overlapping sets of proteins whose thiols underwent oxidative modification in the H(2)O(2)-treated cells. Using a method based on differential labeling of thiols followed by immunoprecipitation and Western blotting, five of the six selected putative redox-sensitive proteins were confirmed to undergo oxidative modification following the oxidant treatment in Arabidopsis leaves. Another method, which is based on differential labeling of thiols coupled with protein electrophoretic mobility shift assay, was adopted to reveal that one of the H(2)O(2)-sensitive proteins, a homologue of cytokine-induced apoptosis inhibitor 1 (AtCIAPIN1), also underwent oxidative modification in Arabidopsis leaves after treatments with salicylic acid or the peptide elicitor flg22, two inducers of defense signaling. The redox-sensitive proteins identified from the proteomic study are involved in various biological processes such as metabolism, the antioxidant system, protein biosynthesis and processing, and cytoskeleton organization. The identification of novel redox-sensitive proteins will be helpful toward understanding of cellular components or pathways previously unknown to be redox-regulated.  相似文献   

3.
To understand and eventually predict the effects of changing redox conditions and oxidant levels on the physiology of an organism, it is essential to gain knowledge about its redoxome: the proteins whose activities are controlled by the oxidation status of their cysteine thiols. Here, we applied the quantitative redox proteomic method OxICAT to Saccharomyces cerevisiae and determined the in vivo thiol oxidation status of almost 300 different yeast proteins distributed among various cellular compartments. We found that a substantial number of cytosolic and mitochondrial proteins are partially oxidized during exponential growth. Our results suggest that prevailing redox conditions constantly control central cellular pathways by fine-tuning oxidation status and hence activity of these proteins. Treatment with sublethal H(2)O(2) concentrations caused a subset of 41 proteins to undergo substantial thiol modifications, thereby affecting a variety of different cellular pathways, many of which are directly or indirectly involved in increasing oxidative stress resistance. Classification of the identified protein thiols according to their steady-state oxidation levels and sensitivity to peroxide treatment revealed that redox sensitivity of protein thiols does not predict peroxide sensitivity. Our studies provide experimental evidence that the ability of protein thiols to react to changing peroxide levels is likely governed by both thermodynamic and kinetic parameters, making predicting thiol modifications challenging and de novo identification of peroxide sensitive protein thiols indispensable.  相似文献   

4.
An approach is described for the simultaneous identification and quantitation of oxidant-sensitive cysteine thiols in a complex protein mixture using a thiol-specific, acid-cleavable isotope-coded affinity tag (ICAT) reagent (Applied Biosystems, USA). The approach is based on the fact that only free cysteine thiols are susceptible to labeling by the iodoacetamide-based ICAT, and that mass spectrometry can be used to quantitate the relative labeling of free thiols. Applying this approach, we have identified cysteine thiols of proteins in a rabbit heart membrane fraction that are sensitive to a high concentration of hydrogen peroxide. Previously known and some novel proteins with oxidant-sensitive cysteines were identified. Of the many protein thiols labeled by the ICAT, only relatively few were oxidized more than 50% despite the high concentration of oxidant used, indicating that oxidant-sensitive thiols are relatively rare, and denoting their specificity and potential functional relevance.  相似文献   

5.
We have observed that hydrogen peroxide (H2O2), the dismutated product of superoxide, is a coronary metabolic dilator and couples myocardial oxygen consumption to coronary blood flow. Because the chemical activity of H2O2 favors its role as an oxidant, and thiol groups are susceptible to oxidation, we hypothesized that coronary metabolic dilation occurs via a redox mechanism involving thiol oxidation. To test this hypothesis, we studied the mechanisms of dilation of isolated coronary arterioles to metabolites released by metabolically active (paced at 400 min) isolated cardiac myocytes and directly compared these responses with authentic H2O2. Studies were performed under control conditions and using interventions designed to reduce oxidized thiols [0.1 microM dithiothreitol (DTT) and 10 mM N-acetyl-L-cysteine (NAC)]. Aliquots of the conditioned buffer from paced myocytes produced vasodilation of isolated arterioles (peak response, 71% +/- 6% of maximal dilation), whereas H2O2 produced complete dilation (92% +/- 7%). Dilation to either the conditioned buffer or to H2O2 was significantly reduced by the administration of either NAC or DTT. The location of the thiols oxidized by the conditioned buffer or of H2O2 was determined by the administration of the fluorochromes monochlorobimane (20 microM) or monobromotrimethylammoniobimane (20 microM), which covalently label the reduced total or extracellular-reduced thiols, respectively. H2O2 or the conditioned buffer predominantly oxidized intracellular thiols since the fluorescent signal from monochlorobimane was reduced more than that of monobromotrimethylammoniobimane. To determine whether one of the intracellular targets of thiol oxidation that leads to dilation is the redox-sensitive kinase p38 mitogen-activated protein (MAP) kinase, we evaluated dilation following the administration of the p38 inhibitor SB-203580 (10 microM). The inhibition of p38 attenuated dilation to either H2O2 or to the conditioned buffer from stimulated myocytes by a similar degree, but SB-203580 did not attenuate dilation to nitroprusside. Western blot analysis for the activated form of p38 (phospho-p38) in the isolated aortae revealed robust activation of this enzyme by H2O2. Taken together, our results show that an active component of cardiac metabolic dilation, like that of H2O2, produces dilation by the oxidation of thiols, which are predominantly intracellular and dependent activation on the p38 MAP kinase. Thus coronary metabolic dilation appears to be mediated by redox-dependent signals.  相似文献   

6.
Protein thiol oxidation subserves important biological functions and constitutes a sequel of reactive oxygen species toxicity. We developed two distinct thiol-labeling approaches to identify oxidized cytoplasmic protein thiols in Saccharomyces cerevisiae. Inone approach, we used N-(6-(biotinamido)hexyl)-3'-(2'-pyridyldithio)-propionamide to purify oxidized protein thiols, and in the other, we used N-[(14)C]ethylmaleimide to quantify this oxidation. Both approaches showed a large number of the same proteins with oxidized thiols ( approximately 200), 64 of which were identified by mass spectrometry. We show that, irrespective of its mechanism, protein thiol oxidation is dependent upon molecular O(2). We also show that H(2)O(2) does not cause de novo protein thiol oxidation, but rather increases the oxidation state of a select group of proteins. Furthermore, our study reveals contrasted differences in the oxidized proteome of cells upon inactivation of the thioredoxin or GSH pathway suggestive of very distinct thiol redox control functions, assigning an exclusive role for thioredoxin in H(2)O(2) metabolism and the presumed thiol redox buffer function for GSH. Taken together, these results suggest the high selectivity of cytoplasmic protein thiol oxidation.  相似文献   

7.
Cysteine thiol modifications are increasingly recognized to occur under both physiological and pathophysiological conditions, making their accurate detection, identification and quantification of growing importance. However, saturation labeling of thiols with fluorescent dyes results in poor protein recuperation and therefore requires the use of large quantities of starting material. This is especially important in sequential dye-labeling steps when applied for an identification of cysteine modifications. First, we studied the effects of different detergents during labeling procedure, i.e. Tween 20, Triton X-100 and CHAPS, on protein yield and composition. Tween 20 and Triton X-100 resulted in yields of around 50% labeled proteins compared to only 10% with PBS alone and a most diversified 2-DE protein pattern. Secondly, Tween 20 was used for serial protein labeling with maleimid fluorophores, first to conjugate to accessible thiols and after a reduction to label with another fluorophore previously masked di-sulphide and/or oxidized proteins in frontal cortex autopsy tissue of a subject with mild Alzheimer's disease. Two-DE DIGE revealed a complex protein pattern of readily labeled thiols and di-sulphide and/or oxidized proteins. Seventeen proteins were identified by MALDI-TOF and by peptide fingerprints. Several proteins were oxidized and involved in Alzheimer's disease. However methionine oxidation was prevalent. Infrared DIGE may provide an additional tool for an identification of oxidation susceptible proteins.  相似文献   

8.
9.
There is strong evidence for the involvement of reactive oxygen species in ischemia/reperfusion injury. Although oxidation of individual thiol proteins has been reported, more extensive redox proteomics of hearts subjected to ischemia/reperfusion has not been performed. We have carried out an exploratory study using mass spectrometry with isotope-coded affinity tags (ICAT) aimed at identifying reversible oxidative changes to protein thiols in Langendorff perfused isolated mouse hearts subjected to 20 min ischemia with or without aerobic reperfusion for 5 or 30 min. Reduced thiols were blocked by adding N-ethylmaleimide during protein extraction, then reversibly oxidized thiols in extracts of control perfused and treated hearts were reduced and labeled with the light and heavy ICAT reagents, respectively. Protein extracts were mixed in equal amounts and relative proportions of the isotope-labeled peaks were used to quantify oxidative changes between the control and the treated groups. Approximately 300 peptides with ICAT signatures were reliably identified in each sample, with 181 peptides from 118 proteins common to all treatments. A proportion showed elevated ICAT ratios, consistent with reversible thiol oxidation. This was most evident after early reperfusion, with apparent reversal after longer reperfusion. In comparison, there was gradual accumulation of protein carbonyls and loss of GSH with longer reperfusion. Many of the thiol changes were in mitochondrial proteins, including components of electron transport complexes and enzymes involved in lipid metabolism. The results are consistent with mitochondria being a major site of oxidant generation during early cardiac reperfusion and mitochondrial thiol proteins being targets for oxidation.  相似文献   

10.
PHGPx and spermatogenesis   总被引:2,自引:0,他引:2  
PHGPx of rat sperm mitochondrial capsule is cross-linked and inactive. The enzyme is in part released in an active form by mercaptoethanol. Treatment with H(2)O(2) of reduced and solubilised capsule proteins, in the absence of any added reductant, results in: i) H(2)O(2) consumption which depends on the presence of both, PHGPx activity and protein thiols; ii) protein thiol oxidation with a stoichiometry of 2 equivalents of thiol per mole of hydroperoxide and, iii) PHGPx inactivation and cross-linking. SDS-PAGE analysis of monobromobimane-labeled proteins, following incubation with H(2)O(2), shows that the oxidation takes place in specific bands in the area of 20~kDa. It is concluded that the protein thiol peroxidase activity of PHGPx is responsible for cross-linking proteins in the mammalian sperm capsule and accounts for the selenium dependency of spermatogenesis.  相似文献   

11.
? Ozone (O?) causes significant agricultural losses, with soybean (Glycine max) being highly sensitive to this oxidant. Here we assess the effect of elevated seasonal O? exposure on the total and redox proteomes of soybean. ? To understand the molecular responses to O? exposure, soybean grown at the Soybean Free Air Concentration Enrichment facility under ambient (37 ppb), moderate (58 ppb), and high (116 ppb) O? concentrations was examined by redox-sensitive thiol labeling, mass spectrometry, and targeted enzyme assays. ? Proteomic analysis of soybean leaf tissue exposed to high O? concentrations reveals widespread changes. In the high-O? treatment leaf, 35 proteins increased up to fivefold in abundance, 22 proteins showed up to fivefold higher oxidation, and 22 proteins increased in both abundance and oxidation. These changes occurred in carbon metabolism, photosynthesis, amino acid synthesis, flavonoid and isoprenoid biosynthesis, signaling and homeostasis, and antioxidant pathways. ? This study shows that seasonal O? exposure in soybean alters the abundance and oxidation state of redox-sensitive multiple proteins and that these changes reflect a combination of damage effects and adaptive responses that influence a wide range of metabolic processes, which in some cases may help mitigate oxidative stress.  相似文献   

12.
Reactive oxygen species (ROS) are released at the mitochondrial inner membrane by the electron transport chain (ETC). Increasing evidence suggests that mitochondrial H2O2 acts as a signaling molecule and participates in the (feedback) regulation of mitochondrial activity and turnover. It seems likely that key mitochondrial components contain redox-sensitive thiols that help to adapt protein function to changes in electron flow. However, the identity of most redox-regulated mitochondrial proteins remains to be defined. Thioredoxin 2 (Trx2) is the major protein-thiol-reducing oxidoreductase in the mitochondrial matrix. We used in situ mechanism-based kinetic trapping to identify disulfide-exchange interactions of Trx2 within functional mitochondria of intact cells. Mass spectrometry successfully identified known and suspected Trx2 target proteins and, in addition, revealed a set of new candidate target proteins. Our results suggest that the mitochondrial protein biosynthesis machinery is a major target of ETC-derived ROS. In particular, we identified mitochondrial methionyl-tRNA synthetase (mtMetRS) as one of the most prominent Trx2 target proteins. We show that an increase in ETC-derived oxidants leads to an increase in mtMetRS oxidation in intact cells. In conclusion, we find that in situ kinetic trapping provides starting points for future functional studies of intramitochondrial redox regulation.  相似文献   

13.
The physiological activity of a significant subset of cell proteins is modified by the redox state of regulatory thiols. The cellular redox homeostasis depends on the balance between oxidation of thiols through oxygen and reactive oxygen species and reduction by thiol-disulfide transfer reactions. Novel and improved methodology has been designed during recent years to address the level of thiol/disulfide regulation on a genome-wide scale. The approaches are either based on gel electrophoresis or on chromatographic techniques coupled to high end mass spectrometry. The review addresses diagonal 2D-SDS-PAGE, targeted identification of specific redox-interactions, affinity chromatography with thioredoxins and glutaredoxins, gel-based and non-gel based labelling techniques with fluorophores (such as Cy3, Cy5, ICy), radioisotopes, or with isotope-coded affinity tags (ICAT), differential gel electrophoresis (DIGE) and combined fractional diagonal chromatography (COFRADIC). The extended methodological repertoire promises fast and new insight into the intricate regulation network of the redox proteome of animals, bacteria, and plants.  相似文献   

14.
Protein thiol modifications visualized in vivo   总被引:5,自引:2,他引:3       下载免费PDF全文
Thiol-disulfide interconversions play a crucial role in the chemistry of biological systems. They participate in the major systems that control the cellular redox potential and prevent oxidative damage. In addition, thiol-disulfide exchange reactions serve as molecular switches in a growing number of redox-regulated proteins. We developed a differential thiol-trapping technique combined with two-dimensional gel analysis, which in combination with genetic studies, allowed us to obtain a snapshot of the in vivo thiol status of cellular proteins. We determined the redox potential of protein thiols in vivo, identified and dissected the in vivo substrate proteins of the major cellular thiol-disulfide oxidoreductases, and discovered proteins that undergo thiol modifications during oxidative stress. Under normal growth conditions most cytosolic proteins had reduced cysteines, confirming existing dogmas. Among the few partly oxidized cytosolic proteins that we detected were proteins that are known to form disulfide bond intermediates transiently during their catalytic cycle (e.g., dihydrolipoyl transacetylase and lipoamide dehydrogenase). Most proteins with highly oxidized thiols were periplasmic proteins and were found to be in vivo substrates of the disulfide-bond-forming protein DsbA. We discovered a substantial number of redox-sensitive cytoplasmic proteins, whose thiol groups were significantly oxidized in strains lacking thioredoxin A. These included detoxifying enzymes as well as many metabolic enzymes with active-site cysteines that were not known to be substrates for thioredoxin. H2O2-induced oxidative stress resulted in the specific oxidation of thiols of proteins involved in detoxification of H2O2 and of enzymes of cofactor and amino acid biosynthesis pathways such as thiolperoxidase, GTP-cyclohydrolase I, and the cobalamin-independent methionine synthase MetE. Remarkably, a number of these proteins were previously or are now shown to be redox regulated.  相似文献   

15.
During the peri-implantation period, molecular signaling between embryo and endometrium (layer of tissue lining the uterus lumen) is supposed to be crucial for the maintenance of pregnancy. To investigate embryo-induced alterations in the proteome of bovine endometrium in the preattachment period (day 18), we used monozygotic cattle twins (generated by embryo splitting) as a model eliminating genetic variability as a source for proteome differences. One of the twins was pregnant after the transfer of two in vitro produced blastocysts, while the corresponding twin received a sham-transfer and served as a nonpregnant control. The two-dimensional fluorescence difference gel electrophoresis (2-D DIGE) analysis of the endometrium samples of three twin pairs (pregnant/nonpregnant) revealed four proteins with significantly higher abundance (p < 10(-9)) in each sample derived from the pregnant animals: Rho GDP dissociation inhibitor beta; 20 alpha-hydroxysteroid dehydrogenase (20 alpha-HSD); soluble NADP(+)-dependent isocitrate dehydrogenase 1; and acyl-CoA-binding protein. To verify the accuracy of the 2-D DIGE quantification, the abundances of 20 alpha-HSD were quantified by a targeted cleavable isotope-coded affinity tag (ICAT) approach. The mass spectrometry-based ICAT quantification matched perfectly the results obtained by 2-D DIGE quantification, demonstrating the accuracy of our data. These results demonstrate that our model (monozygotic twins) in combination with the appropriate analytical tools is particularly suitable for the detection of the proteins involved in the embryo-maternal interactions.  相似文献   

16.
Various types of cancer occur in peroxidase-rich target tissues of animals exposed to aryl alcohols and amines. Unlike biotransformation by cytochrome P450 enzymes, peroxidases activate most substrates by one-electron oxidation via radical intermediates. This work analyzed the peroxidase-dependent formation of phenoxyl radicals in HL-60 cells and its contribution to cytotoxicity and genotoxicity. The results showed that myeloperoxidase-catalyzed redox cycling of phenol in HL-60 cells led to intracellular formation of glutathionyl radicals detected as GS-DMPO nitrone. Formation of thiyl radicals was accompanied by rapid oxidation of glutathione and protein-thiols. Analysis of protein sulfhydryls by SDS-PAGE revealed a significant oxidation of protein SH-groups in HL-60 cells incubated in the presence of phenol/H2O2 that was inhibited by cyanide and azide. Additionally, cyanide- and azide-sensitive generation of EPR-detectable ascorbate radicals was observed during incubation of HL-60 cell homogenates in the presence of ascorbate and H2O2. Oxidation of thiols required addition of H2O2 and was inhibited by pretreatment of cells with the inhibitor of heme synthesis, succinylacetone. Radical-driven oxidation of thiols was accompanied by a trend toward increased content of 8-oxo-7,8-dihydro-2'-deoxyguanosine in the DNA of HL-60 cells. Membrane phospholipids were also sensitive to radical-driven oxidation as evidenced by a sensitive fluorescence HPLC-assay based on metabolic labeling of phospholipids with oxidation-sensitive cis-parinaric acid. Phenol enhanced H2O2-dependent oxidation of all classes of phospholipids including cardiolipin, but did not oxidize parinaric acid-labeled lipids without addition of H2O2. Induction of a significant hypodiploid cell population, an indication of apoptosis, was detected after exposure to H2O2 and was slightly but consistently and significantly higher after exposure to H2O2/phenol. The clonogenicity of HL-60 cells decreased to the same extent after exposure to H2O2 or H2O2/phenol. Treatment of HL-60 cells with either H2O2 or H2O2/phenol at concentrations adequate for lipid peroxidation did not cause a detectable increase in chromosomal breaks. Detection of thiyl radicals as well as rapid oxidation of thiols and phospholipids in viable HL-60 cells provide strong evidence for redox cycling of phenol in this bone marrow-derived cell line.  相似文献   

17.
We describe fluorescence-based 2-D gel electrophoresis methods for visualization of low abundant, cancer relevant tyrosine phosphorylated (pTyr) proteins. The methods investigated were fluorescent Western blotting and two-dimensional difference gel electrophoresis (2-D DIGE) for detection of non-enriched and immunoaffinity enriched pTyr protein patterns. The same anti-phosphotyrosine specific antibody, 4G10, was used for both approaches. The results from fluorescent Western blotting of total proteins and from enriched CyDye DIGE pre-labeled pTyr proteins showed similar down regulation of phosphorylation upon treating of cells from a cancer model system (K562 chronic myeloid leukemia cells) with imatinib. This treatment introduced a known perturbation of phosphorylation that enabled testing of these new approaches to analyze variations in tyrosine phosphorylation levels. Enrichment of pTyr proteins was found highly advantageous for the outcome. Out of a simplified 2-D DIGE experiment of immunoaffinity enriched control and treated pTyr proteins, differential analysis as well as protein identification by mass spectrometry (MS) was possible.  相似文献   

18.
Oxidative stress in biological membranes can regulate various aspects of apoptosis, including phosphatidylserine (PS) externalization. It is not known, however, if the targets for these effects are lipids or proteins. Nitric oxide (NO), a bifunctional modulator of apoptosis, has both antioxidant and prooxidant potential. We report here that the NO donor PAPANONOate completely protected all phospholipids, including PS, from oxidation in HL-60 cells treated with 2,2'-azobis(2,4-dimethylisovaleronitrile) (AMVN), presumably via the ability of NO to react with lipid-derived peroxyl radicals and terminate the propagation of lipid peroxidation. PAPANONOate, however, had no effect on PS externalization or other markers of apoptosis following AMVN. Therefore, PS oxidation is not required for PS externalization during AMVN-induced apoptosis. PS externalization was accompanied by inhibition of aminophospholipid translocase (APT). NO potentiated AMVN inhibition of APT. Treatment with PAPANONOate alone produced modest (20%) inhibition of APT without PS externalization. NO did not reverse AMVN-induced oxidation of glutathione and protein thiols. We speculate that APT was sensitive to AMVN and/or NO via modification of protein thiols critical for functional activity. Therefore, the lipoprotective effects of NO were insufficient to prevent PS externalization and apoptosis following oxidative stress. Other targets such as protein thiols may be important redox-sensitive regulators of apoptosis initiation and execution. Thus, in the absence of significant peroxynitrite formation, NO's antioxidant effects are restricted to protection of lipids, while modification of protein substrates continues to occur.  相似文献   

19.
Oxidative stress can result in the reversible oxidation of protein thiols. Because the activity of numerous proteins is sensitive to thiol oxidation, this has the potential to affect many cellular functions. We describe a highly sensitive, quantitative labeling technique that measures global and specific protein thiol oxidative state in skeletal muscle tissue. The technique involves labeling the reduced and oxidized protein thiols with different fluorescent dyes. The resulting sample is assayed using a 96-well plate fluorimeter, or individual protein bands are separated using SDS-PAGE. We show that artifactual oxidation during sample preparation and analysis has the potential to confound results, and techniques to prevent this are described. We tested the technique by analyzing the muscles of mdx and c57 mice and found that the muscles of mdx mice were significantly (p<0.05) more oxidized (13.1±1.5% oxidized thiols) than those of c57 mice (8.9±0.7% oxidized thiols). This technique provides an effective means to measure the extent to which oxidative stress affects the oxidation of protein thiols in biological tissues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号