首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Aspartate or glutamate stimulated the rate of light-dependent malate decarboxylation by isolated Zea mays bundle sheath chloroplasts. Stimulation involved a decrease in the apparent Km (malate) and an increased maximum velocity of decarboxylation. In the presence of glutamate other dicarboxylates (succinate, fumarate) competitively inhibited malate decarboxylation by intact chloroplasts with respect to malate with an apparent Ki of about 6 millimolar. For comparison the Ki for inhibition of nicotinamide adenine dinucleotide phosphate-malic enzyme from freshly lysed chloroplasts by these dicarboxylates was 15 millimolar. A range of compounds structurally related to aspartate stimulated malate decarboxylation by intact chloroplasts. Ka values for stimulation at 5 millimolar malate were 1.7, 5, and 10 millimolar for l-glutamate, l-aspartate, and β-methyl-dl-aspartate, respectively. Certain compounds, notably cysteic acid, which stimulated malate decarboxylation by intact chloroplasts inhibited malate decarboxylation by nicotinamide adenine dinucleotide phosphate-malic enzyme obtained from lysed chloroplasts and assayed under comparable conditions. It was concluded that aspartate, glutamate, and related compounds affect the transport of malate into the intact chloroplasts and that malate translocation does not take place on the general dicarboxylate translocator previously reported for higher plant chloroplasts.  相似文献   

2.
A method has been developed for rapidly preparing bundle sheath cell strands from Urochloa panicoides, a phosphoenolpyruvate (PEP) carboxykinase-type C4 plant. These cells catalyzed both HCO3(-)- and oxaloacetate-dependent oxygen evolution; oxaloacetate-dependent oxygen evolution was stimulated by ATP. For this activity oxaloacetate could be replaced by aspartate plus 2-oxoglutarate. Both oxaloacetate- and aspartate plus 2-oxoglutarate-dependent oxygen evolution were accompanied by PEP production and both were inhibited by 3-mercaptopicolinic acid, an inhibitor of PEP carboxykinase. The ATP requirement for oxaloacetate- and aspartate plus 2-oxoglutarate-dependent oxygen evolution could be replaced by ADP plus malate. The increased oxygen evolution observed when malate plus ADP was added with oxaloacetate was accompanied by pyruvate production. These results are consistent with oxaloacetate being decarboxylated via PEP carboxykinase. We suggest that the ATP required for oxaloacetate decarboxylation via PEP carboxykinase may be derived by phosphorylation coupled to malate oxidation in mitochondria. These bundle sheath cells apparently contain diffusion paths for the rapid transfer of compounds as large as adenine nucleotides.  相似文献   

3.
The mechanism of C4 acid decarboxylation was studied in bundle sheath cell strands from Urochloa panicoides, a phosphoenolpyruvate carboxykinase (PCK)-type C4 plant. Added malate was decarboxylated to give pyruvate and this activity was often increased by adding ADP. Added oxaloacetate or aspartate plus 2-oxoglutarate (which produce oxaloacetate via aspartate aminotransferase) gave little metabolic decarboxylation alone but with added ATP there was a rapid production of PEP. For this activity ADP could replace ATP but only when added in combination with malate. In addition, the inclusion of aspartate plus 2-oxoglutarate with malate plus ADP often increased the rate of pyruvate production from malate by more than twofold. Experiments with respiratory chain inhibitors showed that the malate-dependent stimulation of oxaloacetate decarboxylation (PEP production) was probably due to ATP generated during the oxidation of malate in mitochondria. We could provide no evidence that photophosphorylation could serve as an alternative source of ATP for the PEP carboxykinase reaction. We concluded that both PEP carboxykinase and mitochondrial NAD-malic enzyme contribute to C4 acid decarboxylation in these cells, with the required ATP being derived from oxidation-linked phosphorylation in mitochondria.  相似文献   

4.
One group of C4, species utilize a NAD-malic enzyme to decarboxylate C4 acids. This enzyme, together with a major isoenzyme of aspartate aminotransferase and a NAD-malate dehydrogenase, is localized in the mitochondria of the bundle sheath cells and the following pathway for C4, acid decarboxylation has been proposed: aspartate → oxaloacetate → malate → CO2 + pyruvate. The present study reports that mitochondria isolated from the bundle sheath cells of one of these species, Atriplex spongiosa, are capable of decarboxylating C4, acids at rates between 5 and 8 μmol/min/mg chlorophyll. For maximum decarboxylating activities, these particles required aspartate, 2-oxoglutarate and phosphate as well as malate; in the absence of any one of these compounds, activity was reduced to 0.3–0.8 μmol/min/mg chlorophyll. Rates for C4 acid decarboxylation were much greater than the respiratory activities of these particles, including the capacity to form citrate or to oxidize malate, succinate, pyruvate or 2-oxoglutarate (0.03–0.6 μmol/min/mg chlorophyll). A comparison of mitochondria prepared from leaves of various C4, and C3, species showed that only the mitochondria from the bundle sheath cells of plants with high NAD-malic enzyme have capacities for rapid C4 acid decarboxylation. The effects of a variety of experimental conditions on C4 acid decarboxylating activities are also reported. The role of these mitochondria in C4 photosynthesis is discussed.  相似文献   

5.
Bundle sheath chloroplasts have been isolated from Zea mays leaves by a procedure involving enzymic digestion of mechanically prepared strands of bundle sheath cells followed by gentle breakage and filtration. The resulting crude chloroplast preparation was enriched by Percoll density layer centrifugation to yield intact chloroplasts (about 20 micrograms chlorophyll per 10-gram leaf tissue) with high metabolic activities. Based on activities of marker enzymes in the chloroplast and bundle sheath cell extracts, the chloroplasts were essentially free of contamination by other organelles and cytoplasmic material, and were generally about 70% intact. Chlorophyll a/b ratios were high (about 10). With appropriate substrates these chloroplasts displayed high rates of malate decarboxylation, measured as pyruvate formation, and CO2 assimilation (maximum rates approximately 5 and 3 micromoles per minute per milligram chlorophyll, respectively). These activities were light dependent, linear for at least 20 minutes at 30°C, and displayed highest rates at pH 8.0. High metabolic rates were dependent on addition of an exogenous source of carbon to the photosynthetic carbon reduction cycle (3-phosphoglycerate or dihydroxyacetone phosphate) and a nucleotide (ATP, ADP, or AMP), as well as aspartate. Generally, neither malate decarboxylation nor CO2 assimilation occurred substantially in the absence of the other activity indicating a close relationship between these processes. Presumably, NADPH required for the photosynthetic carbon reduction cycle is largely supplied during the decarboxylation of malate by NADP-malic enzyme. The results are discussed in relation to the role of bundle sheath chloroplasts in C4 photosynthesis by species of the NADP-malic enzyme type.  相似文献   

6.
Conditions for optimal CO2 fixation and malate decarboxylation by isolated bundle sheath chloroplasts from Zea mays were examined. The relative rates of these processes varied according to the photosynthetic carbon reduction cycle intermediate provided. Highest rates of malate decarboxylation, measured as pyruvate formation, were seen in the presence of 3-phosphoglycerate, while carbon fixation was highest in the presence of dihydroxyacetone phosphate; only low rates were measured with added ribose-5-phosphate. Chloroplasts exhibited a distinct phosphate requirement and this was optimal at a level of 2 millimolar inorganic phosphate in the presence of 2.5 millimolar 3-phosphoglycerate, dihydroxyacetone phosphate, or ribose-5-phosphate. Malate decarboxylation and CO2 fixation were stimulated by additions of AMP, ADP, or ATP with half-maximal stimulation occurring at external adenylate concentrations of about 0.15 millimolar. High concentrations (>1 millimolar) of AMP were inhibitory. Aspartate included in the incubation medium stimulated malate decarboxylation and CO2 assimilation. In the presence of aspartate, the apparent Michaelis constant (malate) for malate decarboxylation to pyruvate by chloroplasts decreased from 6 to 0.67 millimolar while the calculated Vmax for this process increased from 1.3 to 3.3 micromoles per milligram chlorophyll. Aspartate itself was not metabolized. It was concluded that the processes mediating the transport of phosphate, 3-phosphoglycerate, and dihydroxyacetone phosphate transport on the one hand, and also of malate might differ from those previously described for chloroplasts from C3 plants.  相似文献   

7.
Both malate and aspartate were decarboxylated at the 4-carbonposition by isolated bundle sheath strands of C4 plants butto different extents depending upon the species. In Digitariasanguinalis, an NADP-malic enzyme (NADP-ME) species, 100 µMoxalic acid blocked malate decarboxylation through NADP-ME withoutaffecting aspartate decarboxylation which apparently occursthrough NAD-ME. In several phosphoenolpyruvate carboxykinase(PEP-CK) type C4 species, 200 µM 3-mercaptopicolinic acid(3-MPA), an inhibitor of PEP-CK, specifically inhibited themalate decarboxylation and partially inhibited aspartate decarboxylation.The aspartate decarboxylation insensitive to 3-MPA may occurthrough NAD-ME. Neither inhibitor prevented C4 acid decarboxylationin bundle sheath cells of NAD-ME species. The inhibitors thusserved to differentiate between the decarboxylation of C4 acidsin PEP-CK and NADP-ME type C4 species through their major decarboxylasefrom that of their less active decarboxylation through NAD-ME. 1 Present address: Department of Biochemistry and Microbiology,Rutgers University, New Brunswick, NJ 08903, U. S. A. (Received January 28, 1977; )  相似文献   

8.
Ray TB  Black CC 《Plant physiology》1977,60(2):193-196
3-Mercaptopicolinic acid (3-MPA), an inhibitor of phosphoenolpyruvate carboxykinase, was employed to study the role of organic acid decarboxylation during C(4) photosynthesis. Treatment of detached Panicum maximum leaves with 5 mm 3-MPA inhibited photosynthesis 70 to 75%. Oxygen was found to have no effect on the degree of inhibition. The postillumination (14)CO(2) burst associated with P. maximum photosynthesis was almost abolished by 5 mm 3-MPA. The turnover rates of malate and aspartate during C(4) photosynthesis were severely reduced as well as the rates of formation of C(3) cycle intermediates in P. maximum leaves treated with 3-MPA. These results are interpreted as direct evidence for the fixation of CO(2), arising from the decarboxylation of oxaloacetate, by the C(3) cycle in bundle sheath cells of P. maximum leaves.  相似文献   

9.
The rate of respiratory CO2 evolution from the leaves of Zea mays, Panicum miliaceum, and Panicum maximum, representing NADP-ME, NAD-ME, and PEP-CK types of C4 plants, respectively, was increased by approximately two to four times after a period of photosynthesis. This light-enhanced dark respiration (LEDR) was a function of net photosynthetic rate specific to plant species, and was depressed by 1% O2. When malate, aspartate, oxaloacetate or glycine solution at 50 mM concentration was introduced into the leaves instead of water, the rate of LEDR was enhanced, far less in Z. mays (by 10-25%) than in P. miliaceum (by 25-35%) or P. maximum (by 40-75%). The enhancement of LEDR under glycine was relatively stable over a period of 1 h, whereas the remaining metabolites caused its decrease following a transient increase. The metabolites reduced the net photosynthesis rate in the two Panicum species, but not in Z. mays, where this process was stimulated by glycine. The bundle sheath cells from P. miliaceum exhibited a higher rate of LEDR than those of Z. mays and P. maximum. Glycine had no effect on the respiration rate of the cells, but malate increased in cells of Z. mays and P. miliaceum by about 50% and 30%, respectively. With the exception of aspartate, which stimulated both the O2 evolution and O2 uptake in P. maximum, the remaining metabolites reduced photosynthetic O2 evolution from bundle sheath cells in Panicun species. The net O2 exchange in illuminated cells of Z. mays did not respond to CO2 or metabolites. Leaf mesophyll protoplasts of Z. mays and P. miliaceum, and bundle sheath protoplasts of Z. mays, which are unable to fix CO2 photosynthetically, also produced LEDR, but the mesophyll protoplasts, compared with bundle sheath protoplasts, required twice the time of illumination to obtain the maximal rate. The results suggest that the substrates for LEDR in C4 plants are generated during a period of illumination not only via the Calvin cycle reactions, but also by the conversion of endogenous compounds present in leaf cells. The stimulation of LEDR under glycine is discussed in relation to its direct or indirect effect on mitochondrial respiration.  相似文献   

10.
Oxygen inhibition of leaf slice photosynthesis in Panicum milioides increased from 20% to 30% at 21% O2 in the presence of maleate, a phosphoenolpyruvate carboxylase inhibitor. The increased O2 sensitivity was completely reversed by the addition of malate and aspartate, the stable products of the phosphoenolpyruvate carboxylase reaction. The C4 acids, malate and aspartate, also reduced O2 inhibition of photosynthesis by isolated bundle sheath strands, but not mesophyll protoplasts. Similarly, only bundle sheath strands exhibited an active C4 acid-dependent O2 evolution. Compartmentation of C4 cycle enzymes, with pyruvate, Pi dikinase in the mesophyll and NAD-malic enzyme in the bundle sheath, was demonstrated. It is concluded that reduced photorespiration in P. milioides is due to a limited potential for C4 photosynthesis permitting an increase in pCO2 at the site of bundle sheath ribulosebisphosphate carboxylase.  相似文献   

11.
Shieh YJ  Ku MS  Black CC 《Plant physiology》1982,69(4):776-780
Mesophyll cells and bundle sheath strands isolated from leaves of the C(4) plant Digitaria sanguinalis (L.) Scop. are capable of utilizing aspartate as a Hill oxidant. The resulting O(2) evolution upon illumination depends on the presence of 2-oxoglutarate, is inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea, and is stimulated by methylamine. The rate of aspartate-dependent O(2) evolution with mesophyll cells was similar to those with phosphoenolpyruvate + CO(2) or with oxalacetate. Amino-oxyacetate, an inhibitor of aspartate aminotransferase, inhibited the aspartate-dependent O(2) evolution. Aspartate aminotransferase and NADP(+) -malate dehydrogenase are located in the mesophyll chloroplasts. These data suggest that aspartate is converted to oxalacetate via aspartate aminotransferase in the chloroplasts of mesophyll cells and that oxalacetate is subsequently reduced to malate, which is coupled to the photochemical evolution of O(2). This suggestion is further verified by the inhibition of phosphoenolpyruvate-dependent (14)CO(2) fixation by aspartate + 2-oxoglutarate, which presumably acts as oxalacetate and competes with phosphoenolpyruvate + CO(2) for NADPH. dl-Glyceraldehyde inhibited aspartate-dependent O(2) evolution in the bundle sheath strands but not in the mesophyll cells. The data indicate that aspartate may be converted to malate in both mesophyll and bundle sheath cells. In NADP(+) -malic enzyme species, aspartate may exist as a C(4)-dicarboxylic acid reservoir which can contribute to the C(4) cycle through its conversion to malate.  相似文献   

12.
In C4 grasses belonging to the NADP-malic enzyme-type subgroup, malate is considered to be the predominant C4 acid metabolized during C4 photosynthesis, and the bundle sheath cell chloroplasts contain very little photosystem-II (PSII) activity. The present studies showed that Flaveria bidentis (L.), an NADP-malic enzyme-type C4 dicotyledon, had substantial PSII activity in bundle sheath cells and that malate and aspartate apparently contributed about equally to the transfer of CO2 to bundle sheath cells. Preparations of bundle sheath cells and chloroplasts isolated from these cells evolved O2 at rates between 1.5 and 2 mol · min–1 · mg–1 chlorophyll (Chl) in the light in response to adding either 3-phosphoglycerate plus HCO 3 or aspartate plus 2-oxoglutarate. Rates of more than 2 mol O2 · min–1 · mg–1 Chl were recorded for cells provided with both sets of these substrates. With bundle sheath cell preparations the maximum rates of light-dependent CO2 fixation and malate decarboxylation to pyruvate recorded were about 1.7 mol · min–1 · mg–1 Chl. Compared with NADP-malic enzyme-type grass species, F. bidentis bundle sheath cells contained much higher activities of NADP-malate dehydrogenase and of aspartate and alanine aminotransferases. Time-course and pulse-chase studies following the kinetics of radiolabelling of the C-4 carboxyl of C4 acids from 14CO2 indicated that the photosynthetically active pool of malate was about twice the size of the aspartate pool. However, there was strong evidence for a rapid flux of carbon through both these pools. Possible routes of aspartate metabolism and the relationship between this metabolism and PSII activity in bundle sheath cells are considered.Abbreviations DHAP dihydroxyacetone phosphate - NADP-ME(-type) NADP-malic enzyme (type) - NADP-MDH NADP-malate dehydrogenase - OAA oxaloacetic acid - 2-OG 2-oxoglutarate - PEP phosphoenolpyruvate - PGA 3-phosphoglycerate - Pi orthophosphate - Ru5P ribulose 5-phosphate  相似文献   

13.
Bundle sheath cells were enzymatically isolated from representatives of three groups of C4 plants: Zea mays (NADP malic enzyme type), Panicum miliaceum (NAD malic enzyme type), and Panicum maximum (phosphoenolpyruvate (PEP) carboxykinase type). Cellular organelles from bundle sheath homogenates were partially resolved by differential centrifugation and on isopycnic sucrose density gradients in order to study compartmentation of photosynthetic enzymes. A 48-h-dark pretreatment of the leaves allowed the isolation of relatively intact chloroplasts. Enzymes that decarboxylate C4 acids and furnish CO2 to the Calvin cycle are localized as follows: NADP malic enzyme, chloroplastic in Z. mays; NAD malic enzyme, mitochondrial in all three species; PEP carboxykinase, chloroplastic in P. maximum. The activity of NAD malic enzyme in the three species was in the order of P. miliaceum > P. maximum > Z. mays. There were high levels of aspartate and alanine aminotransferases in bundle sheath extracts of P. miliaceum and P. maximum and substantial activity in Z. mays. In all three species, aspartate aminotransferase was mitochondrial whereas alanine aminotransferase was cytoplasmic. Based on the activity and localization of certain enzymes, the concept for aspartate and malate as transport metabolites from mesophyll to bundle sheath cells in C4 species of the three C4 groups is discussed.  相似文献   

14.
Mitochondrial NAD-malic enzyme isolated from bundle sheath cells of different C4 species was activated 5- to 15-fold by fructose 1,6-phosphate. With 2.5 mm malate, fructose 1,6-phosphate was optimally active between 30 and 100 μm and activation was similar to that previously reported for CoA and acetyl-CoA. 3-Phosphoglycerate and isocitrate were less effective activators and other metabolites including fructose 6-phosphate and glyceraldehyde 3-phosphate were without effect. Depending on the source of the enzyme, the response to increasing fructose 1,6-phosphate was either sigmoidal, with activation resulting from an increase in the affinity of the enzyme for malate, or hyperbolic, in which case the activator increased maximum velocity. Bicarbonate inhibited NAD-malic enzyme activity, acting competitively with respect to both malate and the activators fructose 1,6-phosphate and CoA. The enzyme was also inhibited in a similar competitive manner by higher concentrations of chloride and nitrate ions. Decarboxylation of C4 acids by isolated mitochondria was inhibited by bicarbonate and nitrate ions, and, as with isolated NAD-malic enzyme, inhibition was competitive with respect to malate. The rate of C4 acid decarboxylation by freshly prepared mitochondria was not increased by adding fructose 1,6-phosphate or CoA. However, decarboxylating activity declined after incubating mitochondria at 30 °C without C4 acids, and this loss of activity was largely prevented by fructose 1,6-phosphate. Mitochondria were found to decarboxylate oxaloacetate as rapidly as aspartate.  相似文献   

15.
Photosynthetic activities of bundle sheath cell strands isolated from several C4 pathway species were examined. These included species that decarboxylate C4 acids via either NADP-malic enzyme (Zea mays, NADP-malic enzyme-type), NAD-malic enzyme (Atriplex spongiosa and Panicum miliaceum, NAD-malic enzyme-type) or phosphoenolpyruvate carboxykinase (Chloris gayana and Panicum maximum, phosphoenolpyruvate carboxykinase-type). Preparations from each of these species fixed 14CO2 at rates ranging between 1.2 and 3.5 μmol min?1 mg?1 of chlorophyll, with more than 90% of the 14C being assimilated into Calvin cycle intermediates. With added HCO3? the rate of light-dependent O2 evolution ranged between 2 and 4 μmol min?1 mg?1 of chlorophyll for cells from NAD-malic enzyme-type and phosphoenolpyruvate carboxykinase-type species but with Z. mays cells there was no O2 evolution detectable. Most of the 14CO2 fixed by Z. mays cells provided with H14CO3? plus ribose 5-phosphate accumulated in the C-1 of 3-phosphoglycerate. However, 3-phosphoglycerate reduction was increased several fold when malate was also provided. Cells from all species rapidly decarboxylated C4 acids under appropriate conditions, and the CO2 released from the C-4 carboxyl was reassimilated via the Calvin cycle. Malate decarboxylation by Z. mays cells was dependent upon light and an endogenous or exogenous source of 3-phosphoglycerate. Bundle sheath cells of NAD-malic enzyme-type species rapidly decarboxylated [14C]malate when aspartate and 2-oxoglutarate were also provided, and [14C]aspartate was decarboxylated at similar rates when 2-oxoglutarate was added. Cells from phosphoenolpyruvate carboxykinase-type species decarboxylated [14C]aspartate when 2-oxoglutarate was added and they also catalyzed a slower decarboxylation of malate. Cells from NAD-malic enzyme-type and phosphoenolpyruvate carboxykinase-type species evolved O2 in the light when C4 acids were added. These results are discussed in relation to proposed mechanisms for photosynthetic metabolism in the bundle sheath cells of species utilizing C4 pathway photosynthesis.  相似文献   

16.
A mechanical isolation procedure was developed to study the respiratory properties of mitochondria from the mesophyll and bundle sheath tissue of Panicum miliaceum, a NAD-malic enzyme C4 plant. A mesophyll fraction and a bundle sheath fraction were obtained from young leaves by differential mechanical treatment. The purity of both fractions was about 80%, based on analysis of the cross-contamination of ribulose bisphosphate carboxylase activity and phosphoenolpyruvate carboxylase activity.

Mitochondria were isolated from the two fractions by differential centrifugation and Percoll density gradient centrifugation. The enrichment of mitochondria relative to chloroplast material was about 75-fold in both preparations.

Both types of mitochondria oxidized NADH and succinate with respiratory control. Malate oxidation in mesophyll mitochondria was sensitive to KCN and showed good respiratory control. In bundle sheath mitochondria, malate oxidation was largely insensitive to KCN and showed no respiratory control. The oxidation was strongly inhibited by salicylhydroxamic acid, showing that the alternative oxidase was involved. The bundle sheath mitochondria of this type of C4 species contribute to C4 photosynthesis through decarboxylation of malate. Malate oxidation linked to an uncoupled, alternative pathway may allow decarboxylation to proceed without the restraints which might occur via coupled electron flow through the cytochrome chain.

  相似文献   

17.
Mitochondria from bundle sheath cells of the phosphoenolpyruvate carboxykinase-type C4 species Urochloa panicoides were shown to have metabolic properties consistent with a role in C4 photosynthesis predicted from earlier studies. The rate of O2 uptake in response to added malate plus ADP was at least five times the activity observed with NADH, glycine, or succinate. With malate plus ADP the O2 uptake rate averaged about 150 nmol O2 min-1 mg-1 protein, equivalent to about 0.6 mumol min-1 mg-1 of extracted chlorophyll. About half of this activity was apparently phosphorylation-linked with ADP/O2 ratios of about 4. Studies with electron transport inhibitors suggested that about 65% of this malate oxidation is cytochrome oxidase-terminated with a minor component mediated via the alternative oxidase. These mitochondria supported rapid rates of pyruvate production from malate and this activity was also stimulated by ADP but blocked by inhibitors of electron transport. Adding oxaloacetate increased pyruvate production but inhibited O2 uptake. The results were consistent with the notion that in this subgroup of C4 species mitochondrial-located NAD malic enzyme contributes substantially to total C4 acid decarboxylation. This enzyme is apparently also the primary source of NADH necessary to generate the ATP required for phosphoenolpyruvate carboxykinase-mediated oxaloacetate decarboxylation.  相似文献   

18.
For one group of C4 species we have proposed that the C4 acid decarboxylation phase of C4 photosynthesis proceeds via a NAD ‘malic’ enzyme located in bundle sheath mitochondria. The present studies with Atriplex spongiosa demonstrate the capacity of isolated mitochondria and bundle sheath cell strands to decarboxylate malate at rates commensurate with an integral role in photosynthesis. With bundle sheath cells, rates of H14CO3? fixation into Calvin cycle intermediates and evolution of O2 when HCO3? was added, were above 2 μmoles/min/mg chlorophyll. Similar rates of O2 evolution resulted from the addition of C4 acids, and the C-4 carboxyl of malate was rapidly assimilated into photosynthetic intermediates and products.  相似文献   

19.
A procedure was developed to obtain intact and purified mitochondria from mesophyll and bundle sheath tissues of Zea mays L. cv. I.N.R.A. 180, an NADP+-malic enzyme type C4 plant. There was little cross-contamination between the two mitochondrial fractions.
Both types of mitochondria oxidized NADH, succinate and malate with respiratory control. In mesophyll mitochondria malate oxidation was highly sensitive to KCN (85–90% inhibition of first state 3) and showed good respiratory control. In bundle sheath mitochondria malate oxidation was less sensitive to cyanide (75-80% inhibition) and showed poor respiratory control. Malate and NADH appeared to be the best substrates for respiratory activity. Mesophyil mitochondria could not oxidize glycine, whereas bundle sheath mitochondria could.
The results indicate that mesophyll and bundle sheath mitochondria of Zea mays are differentiated, not only with respect to the decarboxylation of malate but also with respect to the decarboxylation phase of photorespiration.  相似文献   

20.
The formation of adaptive response to salt stress in mesophyll and bundle sheath cells of maize (Zea mays L.) leaves was studied at the level of operation of enzyme systems that participate in oxidation of malate. Functioning of four malate dehydrogenases (MDH), the components of this system, was studied and found to maintain malate and pyruvate pools, which are required for operation of the Hatch-Slack cycle and actively used for neutralization of salt treatment. The increase in activity of NAD-MDH was related to salt-induced synthesis of the additional isoform of MDH in mesophyll cells. Such changes in the isozyme pattern were not found in bundle sheath cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号