共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycine residues can introduce flexibility in proteins, give rise to turns and breaks in secondary structure and are key components of some nucleotide binding motifs. In the P2X receptor extracellular ATP binding domain, 11 glycine residues are completely conserved and an additional five are conserved in at least five of the seven family members. We have mutated individual conserved glycine residues and determined their effect on the ATP sensitivity and time-course of P2X1 receptors expressed in Xenopus oocytes. In the majority of cases, replacement by alanine had no or a less than 3-fold effect on ATP sensitivity and time-course of responses. G71A resulted in a 6-fold decrease in ATP potency and ATP (10 mM) failed to evoke functional responses from G96A, G250A and G301A mutant receptors. However, proline or cysteine could substitute for glycine at positions 96 and 301, giving receptors that were essentially normal. At glycine 250 substitution by serine gave functional responses to ATP with no effect on ATP sensitivity but a reduction in peak amplitude; in contrast, functional responses were not recorded when glycine 250 was replaced by the amino acids alanine, cysteine, aspartate, phenylalanine, isoleucine, lysine, proline or asparagine. These results suggest that glycine 250 plays an important role in determining the function of P2X receptors. 相似文献
2.
Two histidines are known to be essential for zinc potentiation of rat P2X 2 receptors, but the chemistry of zinc coordination would suggest that other residues also participate in this zinc-binding site. There is also a second lower affinity zinc-binding site in P2X 2 receptors whose constituents are unknown. To assess whether the extracellular acidic residues of the P2X 2 receptor contribute to zinc potentiation or inhibition, site-directed mutagenesis was used to produce alanine substitutions at each extracellular glutamate or aspartate. Two electrode voltage clamp recordings from Xenopus oocytes indicated that 7 of the 34 mutants (D82A, E85A, E91A, E115A, D136A, D209A, and D281A) were deficient in zinc potentiation and one mutant (E84A) was deficient in zinc inhibition. Additional tests on cysteine mutants at these eight positions indicated that D136 is the only residue that is a strong candidate to be at the potentiating zinc-binding site, and that E84 is unlikely to be at the inhibitory zinc-binding site. 相似文献
3.
Proline residues can play a major role in the secondary structure of proteins. In the extracellular ATP binding loop of P2X receptors there are four totally conserved proline residues (P2X1 receptor numbering; P93, P166, P228 and P272) and three less conserved residues P196 (six of seven isoforms), P174 and P225 (five of seven isoforms). We have mutated individual conserved proline residues in the human P2X1 receptor and determined their properties. Mutants were expressed in Xenopus oocytes and characterized using a two-electrode voltage clamp. Mutants P166A, P174A, P196A, P225A and P228A had no effect on ATP potency compared with wild-type and P93A had a fourfold decrease in ATP potency. The P272A, P272D and P272K receptor mutants were expressed at the cell surface; however, these mutants were non-functional. In contrast, P272I, P272G and P272F produced functional channels, with either no effect or a 2.5- or 6.5-fold increase in ATP potency, respectively. At P272F receptors the apparent affinity of the ATP analogue antagonist 2',3'-O-(2,4,6-trinitrophenyl)-ATP was increased by 12.5-fold. These results suggest that individual proline residues are not essential for normal P2X receptor function and that the receptor conformation around P272 contributes to ATP binding at the receptor. 相似文献
4.
The intracellular amino and carboxy termini of P2X receptors have been shown to contribute to the regulation of ATP evoked currents. In this study we produced, and expressed in Xenopus oocytes, individual alanine point mutants of positively charged amino acids (eight lysine, seven arginine and one histidine) in the intracellular domains of the human P2X1 receptor. The majority of these mutations had no effect on the amplitude, time-course or rectification of ATP evoked currents. In contrast the mutant K367A was expressed at normal levels at the cell surface however ATP evoked currents were reduced by >99% and desensitised more rapidly demonstrating a role of K367 in channel regulation. This is similar to that previously described for T18A mutant channels. Co-expression of T18A and K367A mutant P2X1 receptors produced larger ATP evoked responses than either mutant alone and suggests that these amino and carboxy terminal regions interact to regulate channel function. 相似文献
5.
Excitatory ATP responses in rat cultured thoracolumbar sympathetic neurones are mediated by somatic P2X(2) receptors. The present study investigated a possible role of axonal P2X(2) as well as P2X(7) receptors on the same preparation. Confocal laser scanning microscopy demonstrated P2X(2) and P2X(7) immunoreactivity along the axons as well as P2X(7) immunoreactivity surrounding the cell nuclei. P2X(7) mRNA expression was detected in individual neurones using a single-cell RT-PCR approach. Adenosine triphosphate (ATP) caused a significant increase in axonal Ca(2+) concentration which was dependent on external Ca(2+) but insensitive to depletion of the cellular Ca(2+) pools by cyclopiazonic acid. Pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS; 30 micro m) virtually abolished the ATP response, whereas brilliant blue G (0.1 micro m), a selective P2X(7) receptor antagonist, had no effect. Dibenzoyl-ATP (BzATP; 100 micro m) induced a much smaller increase in axonal [Ca(2+)] concentration than ATP at equimolar concentrations. The response to BzATP was distinctly reduced by PPADS but not by brilliant blue G. The overall pharmacological profile of the axonal P2X receptors resembled closely that of the somatic P2X(2) receptors. In conclusion, the present data suggest the occurrence of axonal excitatory P2X(2) receptors in thoracolumbar sympathetic neurones. However, the functional significance of axonal and (peri)-nuclear P2X(7) receptors has still to be proven. 相似文献
6.
The human (h) P2X(3) receptor and its mutants deficient in one out of four N-glycosylation sites were expressed in HEK293 cells. Concentration-response curves were generated by whole-cell recordings of alpha,beta-methylene ATP (alpha,beta-meATP)-induced currents. A gradual change of external pH from the alkaline 8.0 to the acidic 5.0 successively decreased the maximum current amplitude (E(max)) without affecting the EC(50) value. The replacement of Asn-139 and -170 by Asp (N139D, N170D) abolished the pH sensitivity of the wild-type (WT) hP2X(3) receptor. In the case of N194D, the E(max) was again the highest at the alkaline pH value with no change from 7.4 to 6.5, whereas in the case of N290D, there was an inverse pH sensitivity, with an increase of E(max) in the acidic range. However, this effect appeared to be due to enhanced protonation by the insertion of Asp into the receptor, because replacement of Asn by the neutral Thr resulted in a comparable potency of alpha,beta-meATP at any of the pH values investigated. In accordance with the reported finding that His-206 is involved in the modulation of WT P2X(3) receptors by protons, we showed that the normal change of E(max) by an acidic, but not alkaline pH was abolished after substitution of this His by Ala. However, the double mutant H206A + N290D did not react to acidification or alkalinization with any change in E(max). In conclusion, only fully N-glycosylated P2X(3) receptors recognize external pH with a modified sensitivity towards alpha,beta-meATP. 相似文献
7.
Neuroinflammation limits tissue damage in response to pathogens or injury and promotes repair. There are two stages of inflammation, initiation and resolution. P2X receptors are gaining attention in relation to immunology and inflammation. The P2X7 receptor in particular appears to be an essential immunomodulatory receptor, although P2X1 and P2X4 receptors also appear to be involved. ATP released from damaged or infected cells causes inflammation by release of inflammatory cytokines via P2X7 receptors and acts as a danger signal by occupying upregulated P2X receptors on immune cells to increase immune responses. The purinergic involvement in inflammation is being explored for the development of novel therapeutic strategies. 相似文献
8.
At the majority of mutants in the region Glu181-Val200 incorporating a conserved AsnPheThrΦΦxLys motif cysteine substitution had no effect on sensitivity to ATP, partial agonists, or methanethiosulfonate (MTS) compounds. For the F185C mutant the efficacy of partial agonists was reduced by ∼ 90% but there was no effect on ATP potency or the actions of MTS reagents. At T186C, F188C and K190C mutants ATP potency and partial agonists responses were reduced. The ATP sensitivity of the K190C mutant was rescued towards WT levels by positively charged (2-aminoethyl)methanethiosulfonate hydrobromide and reduced by negatively charged sodium (2-sulfonatoethyl) methanethiosulfonate. Both MTS reagents decreased ATP potency at the T186C mutant, and abolished responses at the F195C mutant. 32P-2-azido ATP binding to the mutants T186C and K190C was sensitive to MTS reagents consistent with an effect on binding, however binding at F195C was unaffected indicating an effect on gating. The accessibility of the introduced cysteines was probed with (2-aminoethyl)methanethiosulfonate hydrobromide-biotin, this showed that the region Thr186-Ser192 is likely to form a beta sheet and that accessibility is blocked by ATP. Taken together these results suggest that Thr186, Phe188 and Lys190 are involved in ATP binding to the receptor and Phe185 and Phe195 contribute to agonist evoked conformational changes. 相似文献
9.
P2X receptors are cation selective ion channels gated by the binding of extracellular ATP. Seven subtypes have been identified and they have widespread and overlapping distributions throughout the body. They form homo- and heterotrimeric complexes that differ in their functional properties and subcellular localization. They form part of larger signalling complexes, interacting with unrelated ion channels and other membrane and cytosolic proteins. Up- or down-regulation of their expression is associated with several disease states. This review aims to summarize recent work on the assembly and trafficking of this family of receptors. 相似文献
10.
Activation and desensitization kinetics of the rat P2X1 receptor at nanomolar ATP concentrations were studied in Xenopus oocytes using two-electrode voltage-clamp recording. The solution exchange system used allowed complete and reproducible solution exchange in <0.5 s. Sustained exposure to 1-100 nM ATP led to a profound desensitization of P2X1 receptors. At steady-state, desensitization could be described by the Hill equation with a K1/2 value of 3.2 +/- 0.1 nM. Also, the ATP dependence of peak currents could be described by a Hill equation with an EC50 value of 0.7 microM. Accordingly, ATP dose-effect relationships of activation and desensitization practically do not overlap. Recovery from desensitization could be described by a monoexponential function with the time-constant tau = 11.6 +/-1.0 min. Current transients at 10-100 nM ATP, which elicited 0.1-8.5% of the maximum response, were compatible with a linear three-state model, C-O-D (closed-open-desensitized), with an ATP concentration-dependent activation rate and an ATP concentration-independent (constant) desensitization rate. In the range of 18-300 nM ATP, the total areas under the elicited current transients were equal, suggesting that P2X1 receptor desensitization occurs exclusively via the open conformation. Hence, our results are compatible with a model, according to which P2X1 receptor activation and desensitization follow the same reaction pathway, i.e., without significant C to D transition. We assume that the K1/2 of 3.2 nM for receptor desensitization reflects the nanomolar ATP affinity of the receptor found by others in agonist binding experiments. The high EC50 value of 0.7 microM for receptor activation is a consequence of fast desensitization combined with nonsteady-state conditions during recording of peak currents, which are the basis of the dose-response curve. Our results imply that nanomolar extracellular ATP concentrations can obscure P2X1 receptor responses by driving a significant fraction of the receptor pool into a long-lasting refractory closed state. 相似文献
11.
Diabetic neuropathic pain (DNP) is highly common in diabetes patients. P2X receptors play critical roles in pain sensitization. We previously showed that elevated P2X3 expression in dorsal root ganglion (DRG) contributes to DNP. However, the role of other P2X receptors in DNP is unclear. Here, we established the DNP model using a single high-dose streptozotocin (STZ) injection and investigated the expression of P2X genes in the DRG. Our data revealed elevated P2X2, P2X4, and P2X7 mRNA levels in DRG of DNP rats. The protein levels of P2X4 and P2X7 in DNP rats increased, but the P2X2 did not change significantly. To study the role of P2X4 and P2X7 in diabetes-induced hyperalgesia, we treated the DNP rats with TNP-ATP (2’,3’-O-(2,4,6-trinitrophenyl)-adenosine 5’-triphosphate), a nonspecific P2X1–7 antagonist, and found that TNP-ATP alleviated thermal hyperalgesia in DNP rats. 2 Hz electroacupuncture is analgesic against DNP and could downregulate P2X4 and P2X7 expression in DRG. Our findings indicate that P2X4 and P2X7 in L4–L6 DRGs contribute to diabetes-induced hyperalgesia, and that EA reduces thermal hyperalgesia and the expression of P2X4 and P2X7. 相似文献
12.
ATP-stimulated P2X1 and ADP-stimulated P2Y1 receptors play important roles in platelet activation. An increase in intracellular Ca2+ represents a key signalling event coupled to both of these receptors, mediated via direct gating of Ca2+-permeable channels in the case of P2X1 and phospholipase-C-dependent Ca2+ mobilisation for P2Y1. We show that disruption of cholesterol-rich membrane lipid rafts reduces P2X1 receptor-mediated calcium increases by approximately 80%, while P2Y1 receptor-dependent Ca2+ release is unaffected. In contrast to artery, vas deferens, bladder smooth muscle, and recombinant expression in cell lines, where P2X1 receptors show almost exclusive association with lipid rafts, only approximately 20% of platelet P2X1 receptors are co-expressed with the lipid raft marker flotillin-2. We conclude that lipid rafts play a significant role in the regulation of P2X1 but not P2Y1 receptors in human platelets and that a reserve of non-functional P2X1 receptors may exist. 相似文献
14.
Adenosine triphosphate (ATP) is an ancient and fundamentally important biological molecule involved in both intracellular
and extracellular activities. P2X ionotropic and P2Y metabotropic receptors have been cloned and characterised in mammals.
ATP plays a central physiological role as a transmitter molecule in processes including the sensation of pain, taste, breathing
and inflammation via the activation of P2X receptors. P2X receptors are structurally distinct from glutamate and Cys-loop/nicotinic
receptors and form the third major class of ligand-gated ion channel. Yet, despite the importance of P2X receptors, both as
physiological mediators and therapeutic targets, the evolutionary origins and phylogenicity of ATP signalling via P2X receptors
remain unclear. 相似文献
15.
GABAergic terminals from rat midbrain characterized by immunolocalization of glutamic acid decarboxylase and/or the vesicular inhibitory amino acid transporter respond to ATP or P(1),P(5)-di(adenosine-5') pentaphosphate (Ap(5)A) with an increase in the intrasynaptosomal calcium concentration measured by a microfluorimetric technique in single synaptic terminals. The ATP response is mediated through the activation of P2X receptors with an abundant presence of P2X(3) subunits. Ap(5)A, however, exerts its effects by acting through a different receptor termed the dinucleotide receptor. Both receptors, once activated in the presence of extrasynaptosomal calcium, induce a concentration-dependent GABA release from synaptosomal populations with EC(50) values of 16 and 20 microM for ATP and Ap(5)A, respectively. Specific inhibition of GABA release is obtained with pyridoxal phosphate-6-azophenyl-2',4'-disulphonic acid (80 microM) on the ATP effect and with P(1),P(5)-di(inosine-5') pentaphosphate (100 nM) on the dinucleotide receptor. 相似文献
16.
The potentiation of P2X 1 receptor currents by phorbol ester (PMA) treatment and stimulation of mGluR1α receptors was sensitive to inhibition of novel forms of protein kinase C. Potentiation was also reduced by co-expression of an amino terminal P2X 1 receptor minigene. Cysteine point mutants of residues Tyr 16-Gly 30 were expressed in Xenopus oocytes. Peak current amplitudes to ATP for Y16C, T18C and R20C mutants were reduced, however this did not result from a decrease in surface expression of the channels. The majority of the mutants showed changes in the time-course of desensitization of ATP evoked currents indicating the important role of this region in regulation of channel properties. PMA and mGluR1α potentiation was abolished for the mutants Y16C, T18C, R20C, K27C and G30C. Minigenes incorporating either Y16C, K27C, V29C or G30C still inhibited PMA responses. However D17C, T18C or R20C mutant minigenes were no longer effective suggesting that these residues are important for interaction with regulatory factors. These results demonstrate that the conserved YXTXK/R sequence and a region with a conserved glycine residue close to the first transmembrane segment contribute to PMA and GPCR regulation of P2X 1 receptors. 相似文献
17.
P2X 3 and P2X 2+3 receptors are present on sensory neurons, where they contribute not only to transient nociceptive responses, but also to
hypersensitivity underlying pathological pain states elicited by nerve injuries. Increased signalling through P2X 3 and P2X 2+3 receptors may arise from an increased routing to the plasma membrane and/or gain of function of pre-existing receptors. An
obvious effector mechanism for functional modulation is protein kinase C (PKC)-mediated phosphorylation, since all P2X family
members share a conserved consensus sequence for PKC, TXR/K, within the intracellularly located N-terminal domain. Contradictory
reports have been published regarding the exact role of this motif. In the present study, we confirm that site-directed elimination
of the potential phosphor-acceptor threonine or the basic residue in the P+2 position of the TXR/K sequence accelerates desensitization
of P2X 2 receptors and abolishes P2X 3 receptor function. Moreover, the PKC activator phorbol 12-myristate 13-acetate increased P2X 3 (but not P2X 2) receptor-mediated currents. Biochemically, however, we were unable to demonstrate by various experimental approaches a direct
phosphorylation of wild-type P2X 2 and P2X 3 receptors expressed in both Xenopus laevis oocytes and HEK293 cells. In conclusion, our data support the view that the TXR/K motif plays an important role in P2X function
and that phorbol 12-myristate 13-acetate is capable of modulating some P2X receptor subtypes. The underlying mechanism, however,
is unlikely to involve direct PKC-mediated P2X receptor phosphorylation. 相似文献
18.
Purinergic Signalling - P2X3 monomeric receptors (P2X3Rs) and P2X2/3 heteromeric receptors (P2X2/3Rs) in primary sensory neurons and microglial P2X4 monomeric receptors (P2X4Rs) in the spinal... 相似文献
19.
The development of tumors is a complex pathological process involving multiple factors, multiple steps, and multiple genes. Their prevention and treatment have always been a difficult problem at present. A large number of studies have proved that the tumor microenvironment plays an important role in the progression of tumors. The tumor microenvironment is the place where tumor cells depend for survival, and it plays an important role in regulating the growth, proliferation, apoptosis, migration, and invasion of tumor cells. P2X purinergic receptors, which depend on the ATP ion channel, can be activated by ATP in the tumor microenvironment, and by mediating tumor cells and related cells (such as immune cells) in the tumor microenvironment. They play an important regulatory role on the effects of the skeleton, membrane fluidity, and intracellular molecular metabolism of tumor cells. Therefore, here, we outlined the biological characteristics of P2X purinergic receptors, described the effect of tumor microenvironment on tumor progression, and discussed the effect of ATP on tumor. Moreover, we explored the role of P2X purinergic receptors in the development of tumors and anti-tumor therapy. These data indicate that P2X purinergic receptors may be used as another potential pharmacological target for tumor prevention and treatment. 相似文献
20.
Extracellular purines are important signaling molecules involved in numerous physiological and pathological processes via the activation of P2 receptors. Information about the spatial and temporal P2 receptor (P2R) expression and its regulation remains crucial for the understanding of the role of P2Rs in health and disease. To identify cells carrying P2X2Rs in situ, we have generated BAC transgenic mice that express the P2X2R subunits as fluorescent fusion protein (P2X2-TagRFP). In addition, we generated a BAC P2Y 1R TagRFP reporter mouse expressing a TagRFP reporter for the P2RY1 gene expression. We demonstrate expression of the P2X2R in a subset of DRG neurons, the brain stem, the hippocampus, as well as on Purkinje neurons of the cerebellum. However, the weak fluorescence intensity in our P2X2R-TagRFP mouse precluded tracking of living cells. Our P2Y 1R reporter mice confirmed the widespread expression of the P2RY1 gene in the CNS and indicate for the first time P2RY1 gene expression in mouse Purkinje cells, which so far has only been described in rats and humans. Our P2R transgenic models have advanced the understanding of purinergic transmission, but BAC transgenic models appeared not always to be straightforward and permanent reliable. We noticed a loss of fluorescence intensity, which depended on the number of progeny generations. These problems are discussed and may help to provide more successful animal models, even if in future more versatile and adaptable nuclease-mediated genome-editing techniques will be the methods of choice. Supplementary InformationThe online version contains supplementary material available at 10.1007/s11302-021-09792-9. 相似文献
|