首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transforming growth factor-beta (TGF-beta) receptor type III is a low abundance cell surface component that binds TGF-beta 1 and TGF-beta 2 with high affinity and specificity, and is present in many mammalian and avian cell types. Type III TGF-beta receptors affinity-labeled with 125I-TGF-beta migrate in sodium dodecyl sulfate-polyacrylamide electrophoresis gels as diffuse species of 250-350 kDa. Here we show that type III receptors deglycosylated by the action of trifluoromethanesulfonic acid yield affinity-labeled receptor cores of 110-130 kDa. This marked decrease in molecular weight is also achieved by combined treatment of type III receptors with heparitinase and chondroitinase ABC. Digestion of receptor-linked glycosaminoglycans by treatment of intact cell monolayers with heparitinase and chondroitinase does not prevent TGF-beta binding to the type III receptor core polypeptide and does not release the receptor polypeptide from the membrane. The type III TGF-beta receptor binds tightly to DEAE-Sephacel and coelutes with cellular proteoglycans at a characteristically high salt concentration. Thus, the type III TGF-beta receptor has the properties of a membrane proteoglycan that carries heparan and chondroitin sulfate glycosaminoglycan chains. The binding site for TGF-beta appears to reside in the 100-120-kDa core polypeptide of this receptor. The type III receptor is highly sensitive to cleavage by trypsin. Trypsin action releases the glycosaminoglycan-containing domain of the receptor leaving a 60-kDa membrane-associated domain that contains the cross-linked ligand. A model for the domain structure of the TGF-beta receptor type III is proposed based on these results.  相似文献   

2.
Primary cultures of mouse keratinocytes maintain a basal cell phenotype in 0.05 mM Ca2+ medium, while culture in 1.4 mM Ca2+ results in terminal differentiation and inhibition of DNA synthesis. Induction of differentiation by Ca2+ results in a 10- to 20-fold increase in the expression of transforming growth factor-beta 2 (TGF-beta 2) mRNA and peptide, but a decrease in the expression of TGF-beta 1. In contrast, binding and cross-linking analyses show that the number of available surface 80 kilodalton (kDa) and 65 kDa TGF-beta receptor types decrease during differentiation. However, a mild acid wash significantly increases the number of available receptor sites on the differentiated keratinocytes, indicating that the TGF-beta receptors are unavailable for binding due to masking by endogenous ligand. A significant level of TGF-beta 2 secretion and receptor binding occur before the decrease in DNA synthesis, suggesting that the inhibition of DNA synthesis associated with differentiation of keratinocytes is mediated through the production and autocrine action of TGF-beta 2.  相似文献   

3.
Transforming growth factor-beta (TGF-beta) is a bifunctional, density-dependent regulator of vascular smooth muscle cell (SMC) proliferation in vitro (at sparse densities SMC are growth-inhibited by the peptide, whereas at confluent densities TGF-beta potentiates their growth). We have used affinity labeling and ligand binding techniques to characterize cell surface receptors for TGF-beta under sparse and confluent culture conditions. Confluent SMC, whose growth are promoted by TGF-beta, exhibited a single class of high affinity TGF-beta binding sites (Kd = 6 pM, 3,000 sites/cell). In contrast, sparse SMC (whose growth are inhibited by TGF-beta) expressed two distinct classes of high affinity binding sites with binding constants of 6 pM (3,000 sites/cell) and 88 pM (11,000 sites/cell). By affinity labeling using 125I-TGF-beta and disuccinimidyl suberate cross-linking, confluent cells were found to express a major Mr = 280,000 TGF-beta receptor as well as trace amounts of low molecular weight (Mr = 85,000 and 65,000) receptor subtypes. All three of these receptors were determined, by ligand competition, to show similar affinity for TGF-beta. The predominant receptor subtypes expressed by sparse SMC exhibited apparent Mr = 75,000 and 65,000. In ligand competition experiments, the Mr = 75,000 receptor subtype (never present in confluent cultures) exhibited lower relative affinity for TGF-beta than did the Mr = 65,000 form. The ability of TGF-beta to inhibit SMC proliferation, therefore, correlates with the expression of a unique TGF-beta-binding protein on the SMC surface. The data suggest that TGF-beta may exert opposite biological effects on the same cell type via an interaction with distinct, selectively expressed receptor subtypes.  相似文献   

4.
Type beta transforming growth factors (TGF) are disulfide-linked homo- and heterodimers of two related polypeptide chains, beta 1 and beta 2. The homodimers TGF-beta 1 and TGF-beta 2 are widely distributed, but the heterodimer TGF-beta 1.2 has been found only in porcine platelets (Cheifetz, S., Weatherbee, J.A., Tsang, M.L.-S., Anderson, J.K., Mole, J.E., Lucas, R., and Massagué, J. (1987) Cell 48, 409-415). Here we characterize the receptor binding and biological properties of TGF-beta 1.2 and compare them with those of TGF-beta 1 and TGF-beta 2. Three types of cell surface receptors previously identified by affinity labeling with 125I-TGF-beta 1 are available for binding to TGF-beta 1.2. These three types of receptors are detected as 65-kDa (type I), 85-95-kDa (type II), and 250-350-kDa (type III) affinity-labeled receptor complexes on electrophoresis gels. They co-exist in many cell types, have high affinity for TGF-beta 1, and varying degrees of affinity for TGF-beta 2. Of the 11 cell lines screened in the present study none showed evidence for additional receptor types that would bind TGF-beta 2 but not TGF-beta 1. In receptor competition studies, TGF-beta 1, TGF-beta 1.2, and TGF-beta 2 competed for binding to type I and type II receptors with a relative order of potencies of 16:5:1 and 12:3:1, respectively, whereas all three forms of TGF-beta were equipotent as ligands for the type III receptors. The three forms of TGF-beta were equally potent at stimulating the biosynthesis of extracellular sulfated proteoglycan in BRL-3A rat liver epithelial cells, a response that presumably involves the type III receptor present in these cells. In contrast, the ability of the three ligands to inhibit the growth of B6SUt-A multipotential hematopoietic progenitor cells which display only type I receptors decreased in the order TGF-beta 1, TGF-beta 1.2, and TGF-beta 2 with a relative potency of 100:30:1. The results indicate that the presence of one beta 1 chain in TGF-beta 1.2 increases (with respect to TGF-beta 2) the biological potency and binding affinity toward receptor types I and II, but the presence of a second beta 1 chain in the dimer is required for full potency.  相似文献   

5.
Transforming growth factor-beta (TGF-beta) is a key modulator of epidermal development and homeostasis, and has been shown to potently regulate keratinocyte migration and function during wound repair. There are three cloned TGF-beta receptors termed type I, type II, and type III that are found on most cell types. The types I and II are the signaling receptors, while the type III is believed to facilitate TGF-beta binding to the types I and II receptors. Recently, we reported that in addition to these receptors, human keratinocytes express a 150 kDa TGF-beta 1 binding protein (r150) which forms a heteromeric complex with the TGF-beta signaling receptors. This accessory receptor was described as glycosyl phosphatidylinositol-specific anchored based on its sensitivity to phosphatidylinositol phospholipase C (PIPLC). In the present study, we demonstrate that the GPI-anchor is contained in r150 itself and not on a tightly associated protein and that it binds TGF-beta 1 with an affinity similar to those of the types I and II TGF-beta signaling receptors. Furthermore, the PIPLC released (soluble) form of this protein is capable of binding TGF-beta 1 independently from the signaling receptors. In addition, we provide evidence that r150 is released from the cell surface by an endogenous phospholipase C. Our observation that r150 interacts with the TGF-beta signaling receptors, together with the finding that the soluble r150 binds TGF-beta 1 suggest that r150 in either its membrane anchored or soluble form may potentiate or antagonize TGF-beta signaling. Elucidating the mechanism by which r150 functions as an accessory molecule in TGF-beta signaling may be critical to understanding the molecular mechanisms underlying the regulation of TGF-beta action in keratinocytes.  相似文献   

6.
Mature TGF-beta isoforms, which are covalent dimers, signal by binding to three types of cell surface receptors, the type I, II and III TGF-beta receptors. A complex composed of the TGF-beta ligand and the type I and II receptors is required for signaling. The type II receptor is responsible for recruiting TGF-beta into the heteromeric ligand/type I receptor/type II receptor complex. The purpose of this study was to test for the extent that avidity contributes to receptor affinity. Using a surface plasmon resonance (SPR)-based biosensor (the BIACORE), we captured the extracellular domain of the type II receptor (TbetaRIIED) at the biosensor surface in an oriented and stable manner by using a de novo designed coiled-coil (E/K coil) heterodimerizing system. We characterized the kinetics of binding of three TGF-beta isoforms to this immobilized TbetaRIIED. The results demonstrate that the stoichiometry of TGF-beta binding to TbetaRIIED was one dimeric ligand to two receptors. All three TGF-beta isoforms had rapid and similar association rates, but different dissociation rates, which resulted in the equilibrium dissociation constants being approximately 5pM for the TGF-beta1 and -beta3 isoforms, and 5nM for the TGF-beta2 isoform. Since these apparent affinities are at least four orders of magnitude higher than those determined when TGF-beta was immobilized, and are close to those determined for TbetaRII at the cell surface, we suggest that avidity contributes significantly to high affinity receptor binding both at the biosensor and cell surfaces. Finally, we demonstrated that the coiled-coil immobilization approach does not require the purification of the captured protein, making it an attractive tool for the rapid study of any protein-protein interaction.  相似文献   

7.
Autocrine ligands have been demonstrated to regulate cell proliferation, cell adhesion, and cell migration in a number of different systems and are believed to be one of the underlying causes of malignant cell transformation. Binding of these ligands to their cellular receptors can be compromised by diffusive transport of ligand away from the secreting cell. Exogenous addition of antibodies or solution receptors capable of competing with cellular receptors for these autocrine ligands has been proposed as a means of inhibiting autocrine-stimulated cell behavioral responses. Such "decoys" complicate cellular binding by offering alternative binding targets, which may also be capable of aiding or abating transport of the ligand away from the cell surface. We present a mathematical model incorporating autocrine ligand production and the presence of competing cellular and solution receptors. We elucidate effects of key system parameters including ligand diffusion rate, binding rate constants, cell density, and secretion rate on the ability of solution receptors to inhibit cellular receptor binding. Both plated and suspension cell systems are considered. An approximate analytical expression relating the key parameters to the critical concentration of solution "decoys" required for inhibition is derived and compared to the numerical calculations. We find that in order to achieve essentially complete inhibition of surface receptor binding, the concentration of decoys may need to be as much as four to eight orders of magnitude greater than the equilibrium disociation constant for ligand binding to surface receptors.  相似文献   

8.
Transforming growth factor-beta (TGF-beta) exerts profound inhibitory effects on a number of cell types, including normal B- and T-lymphocytes. In contrast, we have found a number of lymphoid tumor cell lines to be insensitive to the antiproliferative effects of TGF-beta 1 or TGF-beta 2. Binding and cross-linking with radioiodinated TGF-beta 1 demonstrated either low or absent expression of all three TGF-beta receptor species on three B-cell tumor lines, but T-cell and non-T, non-B tumors expressed large numbers of receptors. Treatment of the B-cell lines with phorbol 12-myristate 13-acetate (PMA) induced the expression of TGF-beta receptors and inhibited proliferation in all three lines in a dose- and time-dependent manner. The cell lines constitutively produced TGF-beta mRNA and released small amounts of latent TGF-beta; however, PMA induced the release of active TGF-beta. A neutralizing antibody to TGF-beta was able to reverse the PMA-induced growth inhibition of the malignant lymphoma cell line, RL, and addition of exogenous TGF-beta reversed the effect of the neutralizing antibody. Thus, TGF-beta can inhibit human lymphoma cell growth in vitro through an autocrine mechanism. Some lymphoma cells appear to have escaped from TGF-beta negative regulation by failing to express functional TGF-beta receptors and/or by failing to secrete active TGF-beta receptors and/or by failing to acts to inhibit lymphoma cell growth is by inducing the expression of TGF-beta receptors and the secretion of active TGF-beta, thereby reestablishing an autocrine growth-inhibitory loop.  相似文献   

9.
Transforming growth factor-betas (TGF-beta) are multifunctional proteins capable of either stimulating or inhibiting mitosis, depending on the cell type. These diverse cellular responses are caused by stimulating a single receptor complex composed of type I and type II receptors. Using a chimeric receptor model where the granulocyte/monocyte colony-stimulating factor receptor ligand binding domains are fused to the transmembrane and cytoplasmic signaling domains of the TGF-beta type I and II receptors, we wished to describe the role(s) of specific amino acid residues in regulating ligand-mediated endocytosis and signaling in fibroblasts and epithelial cells. Specific point mutations were introduced at Y182, T200, and Y249 of the type I receptor and K277 and P525 of the type II receptor. Mutation of either Y182 or Y249, residues within two putative consensus tyrosine-based internalization motifs, had no effect on endocytosis or signaling. This is in contrast to mutation of T200 to valine, which resulted in ablation of signaling in both cell types, while only abolishing receptor down-regulation in fibroblasts. Moreover, in the absence of ligand, both fibroblasts and epithelial cells constitutively internalize and recycle the TGF-beta receptor complex back to the plasma membrane. The data indicate fundamental differences between mesenchymal and epithelial cells in endocytic sorting and suggest that ligand binding diverts heteromeric receptors from the default recycling pool to a pathway mediating receptor down-regulation and signaling.  相似文献   

10.
Transforming growth factor-type beta (TGF-beta) has been identified as a constituent of bone matrix (Seyedin, S. M., A. Y. Thompson, H. Bentz, D. M. Rosen, J. M. McPherson, A. Conti, N. R. Siegel, G. R. Gallupi, and K. A. Piez, 1986, J. Biol. Chem. 261:5693-5695). We used both developing bone and bone-forming cells in vitro to demonstrate the cellular origin of this peptide. TGF-beta mRNA was detected by Northern analysis in both developing bone tissue and fetal bovine bone-forming cells using human cDNA probes. TGF-beta was shown to be synthesized and secreted by metabolically labeled bone cell cultures by immunoprecipitation from the medium. Further, TGF-beta activity was demonstrated in conditioned media from these cultures by competitive radioreceptor and growth promotion assays. Fetal bovine bone cells (FBBC) were found to have relatively few TGF-beta receptors (5,800/cell) with an extremely low Kd of 2.2 pM (high binding affinity). In contrast to its inhibitory effects on the growth of many cell types including osteosarcoma cell lines, TGF-beta stimulated the growth of subconfluent cultures of FBBC; it had little effect on the production of collagen by these cells. We conclude that bone-forming cells are a source for the TGF-beta that is found in bone, and that these cells may be modulated by this factor in an autocrine fashion.  相似文献   

11.
The vascular cell responses to the type 1, 2, and 3 isoforms of transforming growth factor-beta (TGF-beta 1, TGF-beta 2, TGF-beta 3) were studied using bovine aortic endothelial (BAECs) and smooth muscle cells (BASMC3) as well as rat epididymal fat pad microvascular endothelia (RFCs). Three distinct bioassays indicated that TGF-beta elicits results that do not differ significantly from those of the TGF-beta 1 isoform in all three cell populations. These assays are: inhibition of proliferation, cell migration, and neovascularization. By contrast the cellular responses to TGF-beta 1 and TGF-beta 3 differed from those to TGF-beta 2. Three distinct receptor assays revealed the presence of type I and type II TGF-beta 1 cell surface binding proteins on BAECs, BASMCs, and RFCs. Experimentation to decipher cell surface binding by the different isoforms revealed that iodinated TGF-beta 1 bound to the surface of all three vascular cell types can be competed off in similar fashion by either TGF-beta 1 or TGF-beta 3; however, competition with TGF-beta 2 produced unique binding profiles dependent on the cell type examined. The ratios of type I to type II TGF-beta receptors in these three vascular cell types vary from 1:1 in BAECs to 1.5:1 in RFCs to 3:1 in BASMCs and can be correlated with the differences noted in cellular responses to TGF-beta 1 and TGF-beta 2 in proliferation, migration, and in vitro angiogenic assays.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The status of insulin-receptor interactions in a variety of insulin-resistant states is reviewed. Utilizing large adipocytes from adult rats and small fat cells from young rats, we have conducted a series of in vitro experiments in an attempt to determine the cellular alteration(s) responsible for the insulin resistance associated with obesity. Stimulation of glucose oxidation by insulin is reduced in large cells. Studies using a mimicker of insulin action, spermine, as well as measurements of 125I-insulin binding to large and small cells indicate that receptor number and affinity are not responsible for hormone resistance. Furthermore, when rapid and direct measurements of sugar uptake were made, insulin stimulation was virtually identical in both cell types. These findings indicate that large adipocytes have an efficient insulin-responsive D-glucose transport system and suggest that the apparent hormone resistance may be due to alterations in intracellular glucose metabolism. It has been proposed that altered insulin-receptor interaction underlies the insulin resistance of human obesity. We have investigated this particular aspect of insulin action by 125I-insulin binding studies. Similar numbers of insulin receptors per cell and affinity for insulin were observed in adipocytes obtained from normal weight subjects and morbidly obese patients. Thus, the initial step in insulin action is unaltered in human obesity.  相似文献   

13.
Gonadotropin releasing hormone analogues (GnRHa) are often used to regress endometriosis implants and prevent premature luteinizing hormone surges in women undergoing controlled ovarian stimulation. In addition to GnRH central action, the expression of GnRH and receptors in the endometrium implies an autocrine/paracrine role for GnRH and an additional site of action for GnRHa. To further examine the direct action of GnRH (Leuprolide acetate) in the endometrium, we determined the effect of GnRH on endometrial stromal (ESC) and endometrial surface epithelial (HES) cells expression and activation of Smads (Smad3, -4 and -7), intracellular signals activated by transforming growth factor beta (TGF-beta), a key cytokine expressed in the endometrium. The results show that GnRH (0.1 microM) increased the expression of inhibitory Smad7 mRNA in HES with a limited effect on ESC, while moderately increasing the common Smad4 and Smad7 protein levels in these cells (P < 0.05). GnRH in a dose- (0.01 to 10 microM) and time- (5 to 30 min) dependent manner decreased the rate of Smad3 activation (phospho-Smad3, pSmad3), and altered Smad3 cellular distribution in both cell types. Pretreatment with Antide (GnRH antagonist) resulted in further suppression of Smad3 induced by GnRH, with Antide inhibition of pSmad3 in ESC. Furthermore, co-treatment of the cells with GnRH + TGF-beta, or pretreatment with TGF-beta type II receptor antisense to block TGF-beta autocrine/paracrine action, in part inhibited TGF-beta activated Smad3. In conclusion, the results indicate that GnRH acts directly on the endometrial cells altering the expression and activation of Smads, a mechanism that could lead to interruption of TGF-beta receptor signaling mediated through this pathway in the endometrium.  相似文献   

14.
Abstract

Primary human T lymphocytes that have been mitogen activated in chemically defined medium express cell surface insulin receptors. The receptor is identical to other mammalian insulin receptors in binding properties, including: pH dependency, ligand affinity, hormone specificity, and cooperative interactions. Scatchard plots are curvilinear and a ligand-induced increase in dissociation, the property normally associated with “negative cooperativity”, is kinetically demonstrable. In vitro insulin treatment of the receptor-negative, resting T lymphocyte slightly enhances the degree of insulin binding which emerges following cellular activation. Insulin treatment of receptor-positive lymphoblasts results in insulin receptor “down-regulation”. These findings indicate that T lymphoblast insulin receptor concentrations are not significantly influenced by insulin before their emergence but are dramatically regulated by insulin following their appearance at the cell surface.  相似文献   

15.
Exposure of confluent NRK cells to transforming growth factor-beta (TGF-beta) results in distinct alterations in subpopulations of plasma membrane epidermal growth factor (EGF) receptors. The low affinity sites increase in number, whereas the high affinity sites undergo a transient decrease in affinity followed by a prolonged increase in number. Cycloheximide inhibits both of these effects. Functional assays measuring EGF-stimulated thymidine incorporation in the presence of TGF-beta show that the resulting long-term stimulation of EGF receptor binding is associated with an increased sensitivity to EGF. Similarly, the initial, transient decrease in EGF binding is associated with a temporary inhibition of EGF-stimulated thymidine incorporation. The results describe a bifunctional effect of TGF-beta at the biochemical level consistent with the action of this peptide on NRK cell growth.  相似文献   

16.
The binding of three radiolabeled isoforms of platelet-derived growth factor (PDGF), 125I-PDGF-AA, 125I-PDGF-AB, and 125I-PDGF-BB, is differentially affected by exposure of quiescent 3T3 cells to transforming growth factor-beta (TGF-beta). By 24 h after exposure to TGF-beta, binding of 125I-PDGF-AA and 125I-PDGF-AB is almost completely lost, whereas binding of 125I-PDGF-BB is reduced by only 40%. The loss of PDGF-binding sites caused by TGF-beta is time- and concentration-dependent and reflects a change in the pattern of expression of receptor subunits; the number of alpha-subunits decreases, and the number of beta-subunits increases. The loss of binding sites for PDGF-AA is accompanied by a decreased mitogenic response to PDGF-AA but not to PDGF-AB or PDGF-BB. These results suggest that TGF-beta may differentially regulate the expression of PDGF-binding sites and the mitogenic responsiveness toward the three PDGF isoforms. TGF-beta did not stimulate synthesis of PDGF A-chain mRNA or PDGF-AA protein, and PDGF-AA receptors could not be restored by the presence of suramin, suggesting that the loss of binding sites may result from direct effects on receptor expression rather than autocrine down-regulation by PDGF-AA.  相似文献   

17.
Reciprocal competition binding assays have previously demonstrated that 20 of 24 human rhinovirus serotypes tested compete for a single cellular receptor. These studies suggested that the vast majority of rhinovirus serotypes utilize a single cellular receptor. With HeLa cells as an immunogen, a mouse monoclonal antibody was isolated which had the precise specificity predicted by the competition binding study. The receptor antibody was shown to protect HeLa cells from infection by 78 of 88 human rhinovirus serotypes assayed. In addition, the receptor antibody protects HeLa cells from infection by three coxsackievirus A serotypes. The receptor antibody was unable to protect cells from infection by a wide range of other RNA and DNA viruses. Using the receptor antibody and human rhinovirus type 15, we determined that the cellular receptor utilized by the vast number of human rhinovirus serotypes is present only on cells of human origin, with the exception of chimpanzee-derived cells. The receptor antibody has a strong affinity for the cellular receptor as evidenced by its rapid binding kinetics and ability to displace previously bound human rhinovirus virions from receptors. No viral variants were identified which could bypass the receptor blockage.  相似文献   

18.
NRK fibroblasts exposed to transforming growth factor-beta (TGF-beta) show increased binding of radiolabeled epidermal growth factor (EGF) relative to untreated cells. The binding of another growth factor, rat insulin-like growth factor-II, is unaffected. The increase in EGF binding induced by TGF-beta is not due to inhibition of EGF processing nor to an alteration in the affinity of plasma membrane EGF receptors. However, treatment of the cells with TGF-beta does cause a rapid increase in the number of plasma membrane receptors for EGF. TGF-beta has little effect on the rate of overall protein synthesis, but the increase it induces in EGF binding can be completely inhibited by cycloheximide and tunicamycin. Thus a selective synthetic mechanism underlies TGF-beta action. Cells incubated with TGF-beta also show altered down regulation of their EGF receptors in response to the ligand; concentrations of EGF that can induce strong biological responses no longer decrease the plasma membrane receptor level below the basal state. These results agree well with the known specificity and synergism of the interaction between TGF-beta and EGF. Moreover, they describe a mechanism of growth control in which bioactive peptides act coordinately through a regulatory effect on the number of cell-surface receptors.  相似文献   

19.
The effects of transforming growth factor beta (TGF-beta) on epidermal growth factor (EGF) receptor content and EGF action were studied in cultured granulosa cells from immature diethylstilbestrol-implanted rats. During follicle-stimulating hormone (FSH)-induced differentiation in vitro, EGF receptors increased by 20-fold as measured by the binding of 125I-EGF to the intact cells. Addition of TGF-beta during the 48-h culture period amplified the stimulatory effects of FSH on EGF receptors up to 2-fold, with ED50 and maximal concentrations of 2.5 and 8 pM, respectively. Also TGF-beta alone in amounts from 1.6 to 16 pM increased EGF receptor content 4-fold. The stimulatory effects of TGF-beta were due to increased numbers of EGF receptors/cell, since the growth factor had no effect on the Kd (3-5 X 10(-11) M) of the high-affinity EGF binding site. TGF-beta action was observed within 20 h of granulosa cell culture and was maximal by 48 h of a 96-h culture. The stimulatory actions of TGF-beta in gonadotropin-induced cells were exerted through the cAMP effector system of the granulosa cell, since the growth factor also amplified the induction of EGF receptors by cholera toxin, forskolin, and 8-bromo-cAMP. The augmentation of EGF receptors by TGF-beta resulted in a parallel 2-fold increase in the inhibitory effects of EGF on FSH-induced cAMP production and luteinizing hormone receptor expression during granulosa cell development. TGF-beta did not increase granulosa cell numbers during culture although it elevated [3H]thymidine incorporation into DNA by 2-fold over that of FSH-treated cells. These results indicate that TGF-beta regulates the effects of both FSH and EGF during granulosa cell differentiation and provides evidence that ovarian function may be controlled by the combined actions of gonadotropins and multiple growth factors.  相似文献   

20.
This study was designed to address three specific questions in human B cells. First, to determine whether transforming growth factor-beta (TGF-beta)2 has similar biologic effects on B cell function as does TGF-beta 1. Second, to test the hypothesis that TGF-beta 1 is an autocrine growth and differentiation inhibitor. Finally, because multiple receptor species for TGF-beta have been identified on other cell types, to determine by chemical cross-linking and competitive binding studies the nature of the TGF-beta 1 R present on normal and transformed B cells. Exogenous TGF-beta 2 was found to be functionally similar to TGF-beta 1 in its inhibition of factor dependent normal B cell proliferation and Ig secretion. When an antibody, specific for the active form of TGF-beta 1, was added in conjunction with IL-2 to previously stimulated B cell cultures, there was a 14.4 +/- 4.2% increase in B cell proliferation, a 22 +/- 6% increase in IgG production, and a 33 +/- 8.6% increase in IgM production when compared to control cultures. Chemical cross-linking of 125I-TGF-beta 1 to normal B cell membranes identified two major cross-linked species of 65 and 90 kDa. A fivefold excess of unlabeled TGF-beta 1 competitively inhibited the detection of both of these bands while a 50-fold excess of unlabeled TGF-beta 2 did not inhibit the 90-kDa band and only partially inhibited (60%) of the 65-kDa band. Chemical cross-linking of 125I-TGF-beta 1 to transformed B cell membranes identified only a single band of 60 kDa. Scatchard plot analysis of 125I-TGF-beta 1 binding to normal B cells that was competitively inhibited with increasing concentrations of unlabeled TGF-beta 1 revealed both high and low affinity binding sites whereas analysis of 125I-TGF-beta 1 binding in the presence of increasing concentrations of unlabeled TGF-beta 2 revealed only low affinity sites. These findings demonstrate that TGF-beta 2 is as effective as TGF-beta 1 in inhibiting human B cell function, that small amounts of active TGF-beta 1 are present endogenously in in vitro cultures which partially inhibit B cell function, that two major TGF-beta 1 R cross-linked complexes of 65 and 90 kDa are present on normal B cells, and that transformation of B cells may be accompanied by changes in the TGF-beta 1 R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号