首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Five, highly flocculeng strains of Saccharomyces cerevisiae, isolated from wine, were immobilized in calcium alginate beads to optimize primary must fermentation. Three cell-recycle batch fermentations (CRBF) of grape musts were performed with the biocatalyst and the results compared with those obtained with free cells. During the CRBF process, the entrapped strains showed some variability in the formation of secondary products of fermentation, particularly acetic acid and acetaldehyde. Recycling beads of immobilized flocculent cells is a good approach in the development and application of the CRBF system in the wine industry.  相似文献   

2.
Summary The growing demand for high quality products and the immense export potential that cacha?a represents, demonstrated especially during the past few years, have clearly indicated the necessity of establishing well-defined standards of quality, as well as effective means of controlling the process of production of this beverage. The objective of this study was the selection of S. cerevisiae yeast strains and the investigation of their influence on the kinetic parameters of fermentation. Ninety strains of S. cerevisiae isolated from distilleries of the state of Minas Gerais were evaluated with respect to the following parameters: flocculation capacity, production of H2S and kinetic parameters of fermentation. The UFMGA 905 strain was used as a reference because it presented desirable characteristics for the production of cacha?a. Five strains presented high specific sedimentation velocities (SSV), indicating a high flocculation capacity, and two did not produce H2S. The strains presented significant statistical differences for fermentation parameters: yield of ethanol; efficiency of substrate conversion to ethanol; ratio of substrate conversion to ethanol (Y p/s), to cells (Y x/s), to organic acids (Y ac/s), and to glycerol (Y g/s); and productivity. In general, the strains presented a good fermentative potential, with ethanol yields varying from 74.7 to 82.1% and an efficiency of 76.1–84.4%. All strains presented high productivities (4.6–6.6 g l−1 h−1), indicating that this parameter can be used in the selection of strains for the production of cacha?a.  相似文献   

3.
A flocculent Saccharomyces cerevisiae strain with the ability to express both the LAC4 (coding for β-galactosidase) and LAC12 (coding for lactose permease) genes of Kluyveromyces marxianus was constructed. This recombinant strain is not only able to grow on lactose, but it can also ferment this substrate. To our knowledge this is the first time that a recombinant S. cervisiae has been found to ferment lactose in a way comparable to that of the existing lactose-fermenting yeast strains. Moreover, the flocculating capacity of the strain used in this work gives the process several advantages. On the one hand, it allows for operation in a continuous mode at high cell concentration, thus increasing the system's overall productivity; on the other hand, the biomass concentration in the effluent is reduced, thus decreasing product separation/purification costs. Received: 2 October 1998 / Received revision: 15 January 1999 / Accepted: 17 January 1999  相似文献   

4.
Interaction between nonflocculent and flocculent cells of Saccharomyces cerevisiae was studied. Adhesion experiments were done using three types of nonflocculent cells and a flocculent one. Two types of nonflocculent cells were obtained from the flocculent strain by changing environmental growth conditions. The integration of nonflocculent cells in the flocs was observed by two different methods: measurement of the sedimentation capacity of mixtures and microscopic observation of stained nonflocculent cells blended with flocculent cells. It was possible to verify that cell-cell interaction corresponds to a true stable binding and not to a simple entrapment inside the floc matrix.  相似文献   

5.
During cultivation of a flocculent yeast, Saccharomyces cerevisiae 1001, two cell fractions, flocs and free cells, appeared in the medium. Free cells contained cells with a normal ability to flocculate, less flocculent cells and not-flocculent cells. When the non-flocculent cells and not-flocculent cells. When the non-flocculent cell fraction from the postexponential phase of growth was collected and used as an inoculum, the culture showed synchronous growth. The floc forming ability of the yeast cells from this culture increased gradually with the number of divisions.  相似文献   

6.
Ethanol production from xylose is important for the utilization of lignocellulosic biomass as raw materials. Recently, we reported the development of an industrial xylose-fermenting Saccharomyces cerevisiae strain, MA-R4, which was engineered by chromosomal integration to express the genes encoding xylose reductase and xylitol dehydrogenase from Pichia stipitis along with S. cerevisiae xylulokinase gene constitutively using the alcohol-fermenting flocculent yeast strain, IR-2. IR-2 has the highest xylulose-fermenting ability of the industrial diploid strains, making it a useful host strain for genetically engineering xylose-utilizing S. cerevisiae. To optimize the activities of xylose metabolizing enzymes in the metabolic engineering of IR-2 for further improvement of ethanol production from xylose, we constructed a set of recombinant isogenic strains harboring different combinations of genetic modifications present in MA-R4, and investigated the effect of constitutive expression of xylulokinase and of different levels of xylulokinase and xylose reductase activity on xylose fermentation. This strain comparison showed that constitutive expression of xylulokinase increased ethanol production from xylose at the expense of xylitol excretion, and that high activity of xylose reductase resulted in an increased rate of xylose consumption and an increased glycerol yield. Moreover, strain MA-R6, which has moderate xylulokinase activity, grew slightly better but accumulated more xylitol than strain MA-R4. These results suggest that fine-tuning of introduced enzyme activity in S. cerevisiae is important for improving xylose fermentation to ethanol.  相似文献   

7.
Centromeric DNA from chromosome VI in Saccharomyces cerevisiae strains   总被引:29,自引:5,他引:29       下载免费PDF全文
The functional sequence from the centromere in chromosome VI ( CEN6 ) of Saccharomyces cerevisiae was narrowed down to a stretch of 500 bp by a Bal31 deletion approach. The DNA sequence in this region shows three long stretches, 40 bp, 96 bp, and 63 bp of 85% and more AT pairs and a pyrimidine purine bias in the individual single strands. We assume that the CEN6 functional sequences encompass these AT-rich stretches because this part shows striking similarities to sequence elements common to CEN3 and CEN11 DNA. A strain comparison revealed that CEN6 DNA sequences are confined to the Saccharomyces genus and probably only to the S. cerevisiae species. CEN6 is not highly conserved within S. cerevisiae strains because EcoRI and HindIII restriction site variants are found with high frequency.  相似文献   

8.
In anoxic chemostat cultures of Saccharomyces cerevisiae ATCC 4126 and CBS 8066 grown in a medium containing yeast extract, a sharp increase in the steady-state residual glucose concentration occurred at relatively low dilution rates, contrary to the expected Monod kinetics. However, supplementation with vitamins and amino acids facilitated efficient glucose uptake. This enhanced requirement for growth factors under anoxic conditions and at high growth rates could explain the exceptionally high apparent k s values for S. cerevisiae reported in the literature.  相似文献   

9.
The development of microorganims that efficiently ferment lactose has a high biotechnological interest, particularly for cheese whey bioremediation processes with simultaneous bio-ethanol production. The lactose fermentation performance of a recombinant Saccharomyces cerevisiae flocculent strain was evaluated. The yeast consumed rapidly and completely lactose concentrations up to 150 g l−1 in either well- or micro-aerated batch fermentations. The maximum ethanol titre was 8% (v/v) and the highest ethanol productivity was 1.5–2 g l−1 h−1, in micro-aerated fermentations. The results presented here emphasise that this strain is an interesting alternative for the production of ethanol from lactose-based feedstocks.  相似文献   

10.
The budding yeast Saccharomyces cerevisiae has been an excellent genetic and biochemical model for our understanding of homologous recombination. Central to the process of homologous recombination are the products of the RAD52 epistasis group of genes, whose functions we now know include the nucleolytic processing of DNA double-stand breaks, the ability to conduct a DNA homology search, and the capacity to promote the exchange of genetic information between homologous regions on recombining chromosomes. It is also clear that the basic functions of the RAD52 group of genes have been highly conserved among eukaryotes. Disruption of this important process causes genomic instability, which can result in a number of unsavory consequences, including tumorigenesis and cell death.  相似文献   

11.
Duplication processes in Saccharomyces cerevisiae haploid strains   总被引:2,自引:0,他引:2       下载免费PDF全文
Duplication is thought to be one of the main processes providing a substrate on which the effects of evolution are visible. The mechanisms underlying this chromosomal rearrangement were investigated here in the yeast Saccharomyces cerevisiae. Spontaneous revertants containing a duplication event were selected and analyzed. In addition to the single gene duplication described in a previous study, we demonstrated here that direct tandem duplicated regions ranging from 5 to 90 kb in size can also occur spontaneously. To further investigate the mechanisms in the duplication events, we examined whether homologous recombination contributes to these processes. The results obtained show that the mechanisms involved in segmental duplication are RAD52-independent, contrary to those involved in single gene duplication. Moreover, this study shows that the duplication of a given gene can occur in S.cerevisiae haploid strains via at least two ways: single gene or segmental duplication.  相似文献   

12.
AIMS: The identification, differentiation and characterization of indigenous Saccharomyces sensu stricto strains isolated from Croatian vineyards and the evaluation of their oenological potential. METHODS AND RESULTS: A total of 47 Saccharomyces sensu stricto strains were isolated from Chardonnay grapes and identified by physiological and molecular genetic methods. By using the standard physiological and biochemical tests, six isolates were identified as Saccharomyces cerevisiae and 41 as Saccharomyces paradoxus. However, PCR-RFLP analyses of the internal transcribed spacer (ITS1) region of the 18S ribosomal DNA identified 12 of the isolates as S.cerevisiae and 35 as S. paradoxus. Fermentation trials in a grape juice medium showed that these isolates ferment vigorously at 18 degrees C and display tolerance to high levels of ethanol. None of these isolates appeared to produce either hydrogen sulphide or killer toxins. CONCLUSION: Saccharomyces paradoxus, possessing potentially important oenological characteristics, occurs in much higher numbers than S. cerevisiae in the indigenous population of Saccharomyces sensu stricto strains in Croatian vineyards. SIGNIFICANCE AND IMPACT OF THE STUDY: This study forms an essential step towards the preservation and exploitation of the hidden oenological potential of the untapped wealth of yeast biodiversity in the Croatian grape-growing regions. The results obtained demonstrate the value of using molecular genetic methods, such as PCR-RFLP analyses, in conjunction with the traditional taxonomic methods based on phenotypic characteristics in such ecotaxonomic surveys. The results also shed some light on the ecology and oenological potential of S.paradoxus, which is considered to be the natural parent species of the domesticated species of the Saccharomyces sensu stricto group.  相似文献   

13.
Urea transport-defective strains of Saccharomyces cerevisiae.   总被引:7,自引:7,他引:0  
R Sumrada  M Gorski    T Cooper 《Journal of bacteriology》1976,125(3):1048-1056
Experiments characterizing the urea active transport system in Saccharomyces cerevisiae indicate that (i) formamide and acetamide are strong competitive inhibitors of urea accumulation, (ii) uptake is maximal at pH 3.3 and is 80% inhibited at pH 6.0, and (iii) adenosine 5'-triphosphate generated by glycolysis in conjunction with formation of an ion gradient is likely the driving force behind urea transport. Mutant strains were isolated that are unable to accumulate urea at external concentrations of 0.25 mM. These strains also exhibit a depressed growth rate on 10 mM urea, indicating existence of a relationship between the active transport and facilitated diffusion modes of urea uptake.  相似文献   

14.
Recombination in ultraviolet-sensitive strains of Saccharomyces cerevisiae   总被引:9,自引:0,他引:9  
R Snow 《Mutation research》1968,6(3):409-418
  相似文献   

15.
16.
In this study, we tested the potential of Fourier-transform infrared absorption spectroscopy to screen, on the one hand, Saccharomyces cerevisiae and non-S. cerevisiae strains and, on the other hand, to discriminate between S. cerevisiae and Saccharomyces bayanus strains. Principal components analysis (PCA), used to compare 20 S. cerevisiae and 21 non-Saccharomyces strains, showed only 2 misclassifications. The PCA model was then used to classify spectra from 14 Samos strains. All 14 Samos strains clustered together with the S. cerevisiae group. This result was confirmed by a routinely used electrophoretic pattern obtained by pulsed-field gel electrophoresis. The method was then tested to compare S. cerevisiae and S. bayanus strains. Our results indicate that identification at the strain level is possible. This first result shows that yeast classification and S. bayanus identification can be feasible in a single measurement.  相似文献   

17.
A study of 26 killer-resistant wine strains of Saccharomyces cerevisiae, isolated during spontaneous fermentations in three vineyards in NW Spain, was carried out employing several methods that included a spheroplast-killing assay and analysis of chromosomal DNA patterns by pulse-field agarose electrophoresis. The results showed that 92% of the strains were derivatives of K2 killer toxin producing wine strains isolated from the same fermentations, and that they could be grouped into four different karyotypes. The remaining strains were killer-resistant at cell-wall level and were not related to the others, as was demonstrated by the absence of L and M ds-RNAs and by their different karyotypes.  相似文献   

18.
One hundred and fifteen Saccharomyces cerevisiae strains from Aglianico del Vulture, a red wine produced in Southern Italy, were characterized for the production of some secondary compounds involved in the aroma and taste of alcoholic beverages. The strains exhibited a uniform behaviour in the production levels of n-propanol, active amyl alcohol and ethyl acetate, whereas isobutanol, isoamyl alcohol and acetaldehyde were formed with a wide variability. Only five strains produced wines close to the reference Aglianico del Vulture wine for the traits considered. Of these, two strains were selected, underwent to tetrad analysis and the single spore cultures were tested in grape must fermentation. The progeny of one strain showed a significant metabolic variability, confirming the necessity to test starter cultures for the segregation of traits of technological interest. Our findings suggest the selection of specific strains for specific fermentations as a function of the vine variety characteristics in order to take the major advantage from the combination grape must/S. cerevisiae strain.  相似文献   

19.
Since some amino acids, polyols and sugars in cells are thought to be osmoprotectants, we expected that several amino acids might also contribute to enhancing freeze tolerance in yeast cells. In fact, proline and charged amino acids such as glutamate, arginine and lysine showed a marked cryoprotective activity nearly equivalent to that of glycerol or trehalose, both known as major cryoprotectants for Saccharomyces cerevisiae. To investigate the cryoprotective effect of proline on the freezing stress of yeast, we isolated proline-analogue-resistant mutants derived from a proline-non-utilizing strain of S. cerevisiae. When cultured in liquid minimal medium, many mutants showed a prominent increase, two- to approximately tenfold, in cell viability compared to the parent after freezing in the medium at −20 °C for 1 week. Some of the freeze-tolerant mutants were found to accumulate a higher amount of proline, as well as of glutamate and arginine which are involved in proline metabolism. It was also observed that proline-non-utilizer and the freeze-tolerant mutants were able to grow against osmotic stress. These results suggest that the increased flux in the meta-bolic pathway of specific amino acids such as proline is effective for breeding novel freeze-tolerant yeasts. Received: 6 November 1996 / Accepted: 7 December 1996  相似文献   

20.
AIMS: Kloeckera apiculata and Saccharomyces cerevisiae yeast species are dominant, respectively, at the early and at the following stages of wine fermentation. In the present study, PCR fingerprinting and NTS region amplification and restriction were applied as techniques for monitoring yeast population performing Aglianico of Vulture grape must fermentation. METHODS AND RESULTS: Thirty S. cerevisiae and 30 K. apiculata strains were typed by PCR fingerprinting with (GAC)5 and (GTG)5 primers and by complete NTS region amplification followed by restriction with HaeIII and MspI enzymes. S. cerevisiae strains generated two patterns with (GAC)5 primer, while (GTG)5 primer yielded a higher genetic polymorphism. Conversely, in K. apiculata Aglianico wine strains (GAC)5 and (GTG)5 primers generated the same profile for all strains. Restriction analysis of the amplified NTS region gave the same profile for all strains within the same species, except for one strain of S. cerevisiae. CONCLUSIONS: The PCR fingerprinting technique was useful in discriminating at strain level S. cerevisiae, particularly with the primer (GTG)5. RFLP patterns generated from the NTS region of the two species can be more easily compared than the patterns resulting from PCR fingerprinting, thus RFLP is more suitable for the rapid monitoring of the species involved in different stages of fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: The molecular techniques used allow discrimination of S. cerevisiae at strain level and monitoring of the ratio of S. cerevisiae/K. apiculata during the fermentation process. Thus, their application can assure technological adjustments in a suitable time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号