首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells containing pathogenic mutations in mitochondrial DNA (mtDNA) generally also contain the wild-type mtDNA, a condition called heteroplasmy. The amount of mutant mtDNA in a cell, called the heteroplasmy level, is an important factor in determining the amount of mitochondrial dysfunction and therefore the disease severity. mtDNA is inherited maternally, and there are large random shifts in heteroplasmy level between mother and offspring. Understanding the distribution in heteroplasmy levels across a group of offspring is an important step in understanding the inheritance of diseases caused by mtDNA mutations. Previously, our understanding of the heteroplasmy distribution has been limited to just the mean and variance of the distribution. Here we give equations, adapted from the work of Kimura on random genetic drift, for the full mtDNA heteroplasmy distribution. We describe how to use the Kimura distribution in mitochondrial genetics, and we test the Kimura distribution against human, mouse, and Drosophila data sets.  相似文献   

2.
线粒体 DNA(mitochondrial DNA,mtDNA)是线粒体内最重要的遗传物质。mtDNA 突变普 遍存在,突变型 mtDNA 与野生型 mtDNA 共存的现象被称为 mtDNA 异质性。mtDNA 异质性与衰老和多种疾病密切相关。mtDNA异质性特性、mtDNA 异质性与衰老和疾病相关性以及线粒体疾病的治疗等都是近年来遗传学研究的热点。本文从 mtDNA 异质性的动态变化、组织特异性、mtDNA 异质性与疾病以及线粒体疾病的治疗等方面对 mtDNA 异质性进行综述。  相似文献   

3.
Gross alterations in cell energy metabolism underlie manifestations of hereditary OXPHOS (oxidative phosphorylation) diseases, many of which depend on proportion of mutant mitochondrial DNA (mtDNA) in tissues. An animal model of OXPHOS disease with maternal inheritance of mitochondrial heteroplasmy might help understanding the peculiarities of abnormal mtDNA distribution and its effect on pre- and postnatal development. Previously we obtained mice that carry human mtDNA in some tissues. It co-existed with murine mtDNA (heteroplasmy) and was transmitted maternally to the progeny of animals developed from zygotes injected with human mitochondria. To analyze the probability of obtaining heteroplasmic mice we increased the number of experiments with early embryos and obtained more specimens from F1. About 33% of zygotes injected with human mtDNA developed into post-implantation embryos (7th-13th days). Lower amount of such developed into neonate mice (ca. 21%). Among post-implantation embryos and in generations F0 and F1 percentages of human mtDNA-carriers were ca. 14-16%. Such percentages are sufficient for modeling maternally inherited heteroplasmy in small animal groups. More data are needed to understand the regularities of anomalous mtDNA distribution among cells and tissues and whether heart and muscles frequently carrying human mtDNA in our experiments are particularly susceptible to heteroplasmy.  相似文献   

4.
线粒体DNA(mitochondrial DNA mtDNA)的异质性自从被发现以来,一直被遗传学、进化学、发育遗传学以及法医遗传学、分子生物学领域所重视。由于线粒体异质性的存在,使得很多涉及疾病、进化、系统发育线粒体基因组与核基因组的相互作用关系、线粒体DNA复制机制以及法医学运用线粒体DNA进行实际案件评估的问题变得复杂化。此外线粒体DNA异质性的发生原因以及对线粒体异质性的检测方法标准化问题还没有一个统一的答案。针对线粒体DNA异质性带来的种种问题,近年来国内外取得了不少研究进展。  相似文献   

5.
To date, more than 100 point mutations and several hundreds of structural rearrangements of mitochondrial DNA (mtDNA) are known too be connected with characteristic neuromuscular and other mitochondrial syndromes varying form those causing death at the neonatal stage to diseases with late ages of onset. The immediate cause of mitochondrial disorders is a defective oxidative phosphorylation. Wide phenotypic variation and the heteroplasmy phenomenon, which some authors include in mutation load, are characteristic of human mitochondrial diseases. As the numbers of cases identified and pedigrees described increase, data on the genotype--phenotype interaction and the structure and frequency of pathogenic and conditionally pathogenic mtDNA mutations in human populations are rapidly accumulated. The data on the genetics and epidemiology of mitochondrial diseases are not only important for differential diagnosis and genetic counseling. Since both neutral and mildly pathogenic mutations of mtDNA are progressively accumulated in maternal phyletic lines, molecular analysis of these mutations permits not only reconstruction of the genealogical tree of modern humans, but also estimation of the role that these mutations play in natural selection.  相似文献   

6.
To date, more than 100 point mutations and several hundreds of structural rearrangements of mitochondrial DNA (mtDNA) are known too be connected with characteristic neuromuscular and other mitochondrial syndromes varying form those causing death at the neonatal stage to diseases with late ages of onset. The immediate cause of mitochondrial disorders is a defective oxidative phosphorylation. Wide phenotypic variation and the heteroplasmy phenomenon, which some authors include in mutation load, are characteristic of human mitochondrial diseases. As the numbers of cases identified and pedigrees described increase, data on the genotype–phenotype interaction and the structure and frequency of pathogenic and conditionally pathogenic mtDNA mutations in human populations are rapidly accumulated. The data on the genetics and epidemiology of mitochondrial diseases are not only important for differential diagnosis and genetic counseling. Since both neutral and mildly pathogenic mutations of mtDNA are progressively accumulated in maternal phyletic lines, molecular analysis of these mutations permits not only reconstruction of the genealogical tree of modern humans, but also estimation of the role that these mutations play in natural selection.  相似文献   

7.
Mouse models are widely employed to study mitochondrial inheritance, which have implications to several human diseases caused by mutations in the mitochondrial genome (mtDNA). These mouse models take advantage of polymorphisms between the mtDNA of the NZB/BINJ and the mtDNA of common inbred laboratory (i.e., C57BL/6) strains to generate mice with two mtDNA haplotypes (heteroplasmy). Based on PCR followed by restriction fragment length polymorphism (PCR-RFLP), these studies determine the level of heteroplasmy across generations and in different cell types aiming to understand the mechanisms underlying mitochondrial inheritance. However, PCR-RFLP is a time-consuming method of low sensitivity and accuracy that dependents on the use of restriction enzyme digestions. A more robust method to measure heteroplasmy has been provided by the use of real-time quantitative PCR (qPCR) based on allelic refractory mutation detection system (ARMS-qPCR). Herein, we report an ARMS-qPCR assay for quantification of heteroplasmy using heteroplasmic mice with mtDNA of NZB/BINJ and C57BL/6 origin. Heteroplasmy and mtDNA copy number were estimated in germline and somatic tissues, providing evidence of the reliability of the approach. Furthermore, it enabled single-step quantification of heteroplasmy, with sensitivity to detect as low as 0.1% of either NZB/BINJ or C57BL/6 mtDNA. These findings are relevant as the ARMS-qPCR assay reported here is fully compatible with similar heteroplasmic mouse models used to study mitochondrial inheritance in mammals.  相似文献   

8.
哺乳动物线粒体DNA(mitochondrial DNA, mtDNA)位于线粒体.当细胞中mtDNA发生突变时,就会出现野生型与突变型mtDNA的共存.这种情况被称为mtDNA异质性.从mtDNA异质性的形成到在表型上引起相应的病变是一个复杂的过程.mtDNA异质性是如何形成和其在特异组织的增殖复制,mtDNA异质性的变化对个体的影响,如何提高mtDNA突变负荷检测的精度和灵敏度都是近些年的研究热点.本文对mtDNA异质性的检测、遗传、组织特异性以及其相关的疾病等方面进行了阐述.  相似文献   

9.
The association of a particular mitochondrial DNA (mtDNA) mutation with different clinical phenotypes is a well-known feature of mitochondrial diseases. A simple genotype–phenotype correlation has not been found between mutation load and disease expression. Tissue and intercellular mosaicism as well as mtDNA copy number are thought to be responsible for the different clinical phenotypes. As disease expression of mitochondrial tRNA mutations is mostly in postmitotic tissues, studies to elucidate disease mechanisms need to be performed on patient material. Heteroplasmy quantitation and copy number estimation using small patient biopsy samples has not been reported before, mainly due to technical restrictions. In order to resolve this problem, we have developed a robust assay that utilizes Molecular Beacons to accurately quantify heteroplasmy levels and determine mtDNA copy number in small samples carrying the A8344G tRNALys mutation. It provides the methodological basis to investigate the role of heteroplasmy and mtDNA copy number in determining the clinical phenotypes.  相似文献   

10.
Determining the levels of human mitochondrial heteroplasmy is of utmost importance in several fields. In spite of this, there are currently few published works that have focused on this issue. In order to increase the knowledge of mitochondrial DNA (mtDNA) heteroplasmy, the main goal of this work is to investigate the frequency and the mutational spectrum of heteroplasmy in the human mtDNA genome. To address this, a set of nine primer pairs designed to avoid co-amplification of nuclear DNA (nDNA) sequences of mitochondrial origin (NUMTs) was used to amplify the mitochondrial genome in 101 individuals. The analysed individuals represent a collection with a balanced representation of genders and mtDNA haplogroup distribution, similar to that of a Western European population. The results show that the frequency of heteroplasmic individuals exceeds 61%. The frequency of point heteroplasmy is 28.7%, with a widespread distribution across the entire mtDNA. In addition, an excess of transitions in heteroplasmy were detected, suggesting that genetic drift and/or selection may be acting to reduce its frequency at population level. In fact, heteroplasmy at highly stable positions might have a greater impact on the viability of mitochondria, suggesting that purifying selection must be operating to prevent their fixation within individuals. This study analyses the frequency of heteroplasmy in a healthy population, carrying out an evolutionary analysis of the detected changes and providing a new perspective with important consequences in medical, evolutionary and forensic fields.  相似文献   

11.
The mutation 3243A-->G is the most common heteroplasmic pathogenic mitochondrial DNA (mtDNA) mutation in humans, but it is not understood why the proportion of this mutation decreases in blood during life. Changing levels of mtDNA heteroplasmy are fundamentally related to the pathophysiology of the mitochondrial disease and correlate with clinical progression. To understand this process, we simulated the segregation of mtDNA in hematopoietic stem cells and leukocyte precursors. Our observations show that the percentage of mutant mtDNA in blood decreases exponentially over time. This is consistent with the existence of a selective process acting at the stem cell level and explains why the level of mutant mtDNA in blood is almost invariably lower than in nondividing (postmitotic) tissues such as skeletal muscle. By using this approach, we derived a formula from human data to correct for the change in heteroplasmy over time. A comparison of age-corrected blood heteroplasmy levels with skeletal muscle, an embryologically distinct postmitotic tissue, provides independent confirmation of the model. These findings indicate that selection against pathogenic mtDNA mutations occurs in a stem cell population.  相似文献   

12.
Defects of mitochondrial DNA (mtDNA) are an important cause of disease and play a role in the ageing process. There are multiple copies of the mitochondrial genome in a single cell. In many patients with acquired or inherited mtDNA mutations, there exists a mixture of mutated and wild type genomes (termed heteroplasmy) within individual cells. As a biochemical and clinical defect is only observed when there are high levels of mutated mtDNA, a crucial investigation is to determine the level of heteroplasmic mutations within tissues and individual cells. We have developed an assay to determine the relative amount of deleted mtDNA using real-time fluorescence PCR. This assay detects the vast majority of deleted molecules, thus eliminating the need to develop specific probes. We have demonstrated an excellent correlation with other techniques (Southern blotting and three- primer competitive PCR), and have shown this technique to be sensitive to quantify the level of deleted mtDNA molecules in individual cells. Finally, we have used this assay to investigate patients with mitochondrial disease and shown in individual skeletal muscle fibres that there exist different patterns of abnormalities between patients with single or multiple mtDNA deletions. We believe that this technique has significant advantages over other methods to quantify deleted mtDNA and, employed alongside our method to sequence the mitochondrial genome from single cells, will further our understanding of the role of mtDNA mutations in human disease and ageing.  相似文献   

13.
Modulating heteroplasmy   总被引:3,自引:0,他引:3  
Patients with mitochondrial DNA (mtDNA) disease usually harbor a mixture of mutant and wild-type mtDNA (a state termed heteroplasmy), and the clinical features of the disease depend on the percentage of mutant mtDNA (the "mutation load") in vulnerable tissues. Factors that modulate the mutation load are poorly understood, but recent work has started to unravel the mechanisms. In certain circumstances heteroplasmy might be regulated at the level of the individual mitochondrial genome.  相似文献   

14.
Quantitation of wild-type and deleted mitochondrial DNA (mtDNA) coexisting within the same cell (a.k.a., heteroplasmy) is important in mitochondrial disease and aging. We report the development of a multiplex three-primer PCR assay that is capable of absolute quantitation of wild-type and deleted mtDNA simultaneously. Molecular beacons were designed to hybridize with either type of mtDNA molecule, allowing real-time detection during PCR amplification. The assay is specific and can detect down to six copies of mtDNA, making it suitable for single-cell analyses. The relative standard deviation in the threshold cycle number is approximately 0.6%. Heteroplasmy was quantitated in individual cytoplasmic hybrid cells (cybrids), containing a large mtDNA deletion, and bulk cell samples. Individual cybrid cells contained 100-2600 copies of wild-type mtDNA and 950-4700 copies of deleted mtDNA, and the percentage of heteroplasmy ranged from 43+/-16 to 95+/-16%. The average amount of total mtDNA was 3800+/-1600 copies/cybrid cell, and the average percentage of heteroplasmy correlated well with the bulk cell sample. The single-cell analysis also revealed that heteroplasmy in individual cells is highly heterogeneous. This assay will be useful for monitoring clonal expansions of mtDNA deletions and investigating the role of heteroplasmy in cell-to-cell heterogeneity in cellular models of mitochondrial disease and aging.  相似文献   

15.
The mitochondrial genotype of heteroplasmic human cell lines containing the pathological np 3243 mtDNA mutation, plus or minus its suppressor at np 12300, has been followed over long periods in culture. Cell lines containing various different proportions of mutant mtDNA remained generally at a consistent, average heteroplasmy value over at least 30 wk of culture in nonselective media and exhibited minimal mitotic segregation, with a segregation number comparable with mtDNA copy number (>/=1000). Growth in selective medium of cells at 99% np 3243 mutant mtDNA did, however, allow the isolation of clones with lower levels of the mutation, against a background of massive cell death. As a rare event, cell lines exhibited a sudden and dramatic diversification of heteroplasmy levels, accompanied by a shift in the average heteroplasmy level over a short period (<8 wk), indicating selection. One such episode was associated with a gain of chromosome 9. Analysis of respiratory phenotype and mitochondrial genotype of cell clones from such cultures revealed that stable heteroplasmy values were generally reestablished within a few weeks, in a reproducible but clone-specific fashion. This occurred independently of any straightforward phenotypic selection at the individual cell-clone level. Our findings are consistent with several alternate views of mtDNA organization in mammalian cells. One model that is supported by our data is that mtDNA is found in nucleoids containing many copies of the genome, which can themselves be heteroplasmic, and which are faithfully replicated. We interpret diversification and shifts of heteroplasmy level as resulting from a reorganization of such nucleoids, under nuclear genetic control. Abrupt remodeling of nucleoids in vivo would have major implications for understanding the developmental consequences of heteroplasmy, including mitochondrial disease phenotype and progression.  相似文献   

16.
The human mitochondrial genome has an exclusively maternal mode of inheritance. Mitochondrial DNA (mtDNA) is particularly vulnerable to environmental insults due in part to an underdeveloped DNA repair system, limited to base excision and homologous recombination repair. Radiation exposure to the ovaries may cause mtDNA mutations in oocytes, which may in turn be transmitted to offspring. We hypothesized that the children of female cancer survivors who received radiation therapy may have an increased rate of mtDNA heteroplasmy mutations, which conceivably could increase their risk of developing cancer and other diseases. We evaluated 44 DNA blood samples from 17 Danish and 1 Finnish families (18 mothers and 26 children). All mothers had been treated for cancer as children and radiation doses to their ovaries were determined based on medical records and computational models. DNA samples were sequenced for the entire mitochondrial genome using the Illumina GAII system. Mother's age at sample collection was positively correlated with mtDNA heteroplasmy mutations. There was evidence of heteroplasmy inheritance in that 9 of the 18 families had at least one child who inherited at least one heteroplasmy site from his or her mother. No significant difference in single nucleotide polymorphisms between mother and offspring, however, was observed. Radiation therapy dose to ovaries also was not significantly associated with the heteroplasmy mutation rate among mothers and children. No evidence was found that radiotherapy for pediatric cancer is associated with the mitochondrial genome mutation rate in female cancer survivors and their children.  相似文献   

17.
Mitochondria are cytoplasmic organelles containing their own multi-copy genome. They are organized in a highly dynamic network, resulting from balance between fission and fusion, which maintains homeostasis of mitochondrial mass through mitochondrial biogenesis and mitophagy. Mitochondrial DNA (mtDNA) mutates much faster than nuclear DNA. In particular, mtDNA point mutations and deletions may occur somatically and accumulate with aging, coexisting with the wild type, a condition known as heteroplasmy. Under specific circumstances, clonal expansion of mutant mtDNA may occur within single cells, causing a wide range of severe human diseases when mutant overcomes wild type. Furthermore, mtDNA deletions accumulate and clonally expand as a consequence of deleterious mutations in nuclear genes involved in mtDNA replication and maintenance, as well as in mitochondrial fusion genes (mitofusin-2 and OPA1), possibly implicating mtDNA nucleoids segregation. We here discuss how the intricacies of mitochondrial homeostasis impinge on the intracellular propagation of mutant mtDNA.This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.  相似文献   

18.
Morbidity and mortality from diabetes mellitus and associated illnesses is a major problem across the globe. Anti-diabetic medicines must be improved despite existing breakthroughs in treatment approaches. Diabetes has been linked to mitochondrial dysfunction. As a result, particular mitochondrial diabetes kinds like MIDD (maternally inherited diabetes & deafness) and DAD (diabetic autonomic dysfunction) have been identified and studied (diabetes and Deafness). Some mutations as in mitochondrial DNA (mtDNA), that encodes for a significant portion of mitochondrial proteins as well as mitochondrial tRNA essential for mitochondrial protein biosynthesis, are responsible for hereditary mitochondrial diseases. Tissue-specificity and heteroplasmy have a role in the harmful phenotype of mtDNA mutations, making it difficult to generalise findings from one study to another. There are a huge increase in the number for mtDNA mutations related with human illnesses that have been identified using current sequencing technologies. In this study, we make a list on mtDNA mutations linked with diseases and diabetic illnesses and explore the methods by which they contribute to the pathology's emergence.  相似文献   

19.
In most species mitochondrial DNA (mtDNA) is inherited maternally in an apparently clonal fashion, although how this is achieved remains uncertain. Population genetic studies show not only that individuals can harbor more than one type of mtDNA (heteroplasmy) but that heteroplasmy is common and widespread across a diversity of taxa. Females harboring a mixture of mtDNAs may transmit varying proportions of each mtDNA type (haplotype) to their offspring. However, mtDNA variants are also observed to segregate rapidly between generations despite the high mtDNA copy number in the oocyte, which suggests a genetic bottleneck acts during mtDNA transmission. Understanding the size and timing of this bottleneck is important for interpreting population genetic relationships and for predicting the inheritance of mtDNA based disease, but despite its importance the underlying mechanisms remain unclear. Empirical studies, restricted to mice, have shown that the mtDNA bottleneck could act either at embryogenesis, oogenesis or both. To investigate whether the size and timing of the mitochondrial bottleneck is conserved between distant vertebrates, we measured the genetic variance in mtDNA heteroplasmy at three developmental stages (female, ova and fry) in chinook salmon and applied a new mathematical model to estimate the number of segregating units (N(e)) of the mitochondrial bottleneck between each stage. Using these data we estimate values for mtDNA Ne of 88.3 for oogenesis, and 80.3 for embryogenesis. Our results confirm the presence of a mitochondrial bottleneck in fish, and show that segregation of mtDNA variation is effectively complete by the end of oogenesis. Considering the extensive differences in reproductive physiology between fish and mammals, our results suggest the mechanism underlying the mtDNA bottleneck is conserved in these distant vertebrates both in terms of it magnitude and timing. This finding may lead to improvements in our understanding of mitochondrial disorders and population interpretations using mtDNA data.  相似文献   

20.
Mutations of mitochondrial DNA (mtDNA) cause a wide array of multisystem disorders, particularly affecting organs with high energy demands. Typically only a proportion of the total mtDNA content is mutated (heteroplasmy), and high percentage levels of mutant mtDNA are associated with a more severe clinical phenotype. MtDNA is inherited maternally and the heteroplasmy level in each one of the offspring is often very different to that found in the mother. The mitochondrial genetic bottleneck hypothesis was first proposed as the explanation for these observations over 20 years ago. Although the precise bottleneck mechanism is still hotly debated, the regulation of cellular mtDNA content is a key issue. Here we review current understanding of the factors regulating the amount of mtDNA within cells and discuss the relevance of these findings to our understanding of the inheritance of mtDNA heteroplasmy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号