首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental data are presented on ovalbumin denaturation (OD, EC10) and human acetylcholine esterase (AChE) inhibition (IC50) in vitro, following exposure to the chemicals used in the international Multicentre Evaluation of In vitro Cytotoxicity (MEIC) programme. Data were obtained for 40 (OD test) and 43 (AChE test) of the 50 MEIC chemicals. These data were compared with similar data from other methods used in the MEIC programme, and good correlations (R2) were obtained with data from MEIC studies on cell lines: 0.80 for human, 0.81 for other animal, and 0.78 for fish cell line IC50 values and AChE values, and 0.76 for human, 0.69 other animal and 0.75 for fish cell line IC50 values and OD values. The correlation increased substantially, if chemicals which freely cross the blood-brain barrier were solely considered, with R2 = 0.90 for human, 0.90 for other animal, and 0.82 for fish cell line IC50 values and AchE values, and 0.87 for human, 0.86 for other animal, and 0.92 for fish cell line IC50 values and OD values, in this case. Such chemicals are the main cause of non-specific depression of the central nervous system (CNS). The AChE IC50 permits a good prediction of human acute toxicity, similar to the IC50 values obtained with human cell lines and the same MEIC chemicals. These results confirm the basal toxicity hypothesis formulated by Bj?rn Ekwall. It is concluded that in vitro methods based on the disruption of the functions of the proteins vital for body operation can be used as an alternative to the cell culture methods, when non-specific toxic effects of chemicals on humans and animals are evaluated.  相似文献   

2.
The aim of the Evaluation-guided Development of new In Vitro Test Batteries (EDIT) multicentre programme is to establish and validate in vitro tests relevant to toxicokinetics and for organ-specific toxicity, to be incorporated into optimal test batteries for the estimation of human acute systemic toxicity. The scientific basis of EDIT is the good prediction of human acute toxicity obtained with three human cell line tests (R(2) = 0.77), in the Multicentre Evaluation of In Vitro Cytotoxicity (MEIC) programme. However, the results from the MEIC study indicated that at least two other types of in vitro test ought to be added to the existing test battery to improve the prediction of human acute systemic toxicity - to determine key kinetic events (such as biotransformation and passage through biological barriers), and to predict crucial organ-specific mechanisms not covered by the tests in the MEIC battery. The EDIT programme will be a case-by-case project, but the establishment and validation of new tests will be carried through by a common, step-wise procedure. The Scientific Committee of the EDIT programme defines the need for a specific set of toxicity or toxicokinetic data. Laboratories are then invited to perform the defined tests in order to provide the "missing" data for the EDIT reference chemicals. The results obtained will be evaluated against the MEMO (the MEIC Monograph programme) database, i.e. against human acute systemic lethal and toxicity data. The aim of the round-table discussions at the 19th Scandinavian Society for Cell Toxicology (SSCT) workshop, held in Ringsted, Denmark on 6-9 September 2001, was to identify which tests are the most important for inclusion in the MEIC battery, i.e. which types of tests the EDIT programme should focus on. It was proposed that it is important to include in vitro methods for various kinetic events, such as biotransformation, absorption in the gut, passage across the blood-brain barrier, distribution volumes, protein binding, and renal clearance/accumulation. Models for target organ toxicity were also discussed. Because several of the outlier chemicals (paracetamol, digoxin, malathion, nicotine, paraquat, atropine and potassium cyanide) in the MEIC in vivo-in vitro evaluation have a neurotoxic potential, it was proposed that the development within the EDIT target organ programme should initially be focused on the nervous system.  相似文献   

3.
Kolman A 《Tsitologiia》2010,52(10):888-90, inside back cover
Dr. Bj?rn Ekwall (1940-2000) was a prominent Swedish scientist--cell toxicologist, who made an outstanding contribution in the field of in vitro toxicology. In the early 80-ties Ekwall formulated so called basal cytotoxicity concept, which served as a basis for modern orientation in the field of cell toxicology: the use of tests on cells in culture for prediction of acute systemic toxicity in humans, instead of the use of tests on experimental animals. To be able to verify his theories, Ekwall organized and led the international toxicological project called MEIC: Multicentre Evaluation of In Vitro Cytotoxicity Programme (1989-1999). In this project, 50 selected chemicals were tested in 100 laboratories worldwide with more than 60 different in vitro tests (laboratories have chosen tests themselves). MEIC project was unique not only because its large scale, but, in particular, because, for the first time, the human peak blood concentrations after acute poisoning with chemicals were used as references, aiming to check predictability of the in vitro assays. The results of the MEIC project have clearly demonstrated a possibility to use in vitro tests for prediction of toxicity of chemicals in humans.  相似文献   

4.
In our previously described Hep G2/24-hour/total protein assay, protein levels were measured by using the Lowry method. This assay was the best acute in vitro assay for the prediction of human toxicity within the Multicentre Evaluation of In Vitro Cytotoxicity (MEIC) study. In order to increase the MEIC data-base with a wider range of chemicals, we were interested in introducing the more practical 3-(4-carboxybenzoyl)- quinoline-2-carboxaldehyde (CBQCA) method for the quantification of the total protein content. Therefore, we investigated whether the same good results for the prediction of acute human toxicity would be obtained with the CBQCA method. The cells were treated for 24 hours, then cytotoxicity was determined by measuring the total protein content with CBQCA. The results were quantified by using the PI50c: the concentration (in mM) of test compound required to reduce the total protein content measured with the CBQCA-method by 50% as compared to the control cells. The results were compared with the PI50, the corresponding value when the Lowry method was used. A relatively low correlation was observed between PI50 and PI50c, reflecting the large and unexpected, differences when using the two protein assays. However, when comparing the log PI50c with the human toxicity, a correlation coefficient of r(2) = 0.761 (n = 44) was obtained for exactly the same series of MEIC chemicals. This value is clearly higher than that for the Lowry method (r(2) = 0.695). Compared to the Lowry method originally used, the Hep G2/24-hour/CBQCA total protein assay has the additional important advantage that it can be very easily adapted for large-scale analyses with robotic systems, including the on-line calculation of the results.  相似文献   

5.
Since vitamin E increases the antioxidant status of cells, its influence on cytotoxicity was investigated. The neutral red uptake (NRU) inhibition effects of 39 MEIC reference chemicals were measured after treatment of rat hepatoma-derived Fa32 cells in the presence of vitamin E for 30 minutes. The results were quantified in terms of the NI50, the concentration of test compound required to reduce the NRU by 50%. Sodium chloride was the only chemical that was more toxic in the presence of vitamin E. This effect was related to the concentration of vitamin E in the cell culture medium. A vitamin E dose-related response was also observed for the decreased toxicity of paracetamol and caffeine. Glutathione levels were slightly increased in the presence of vitamin E, which could contribute to the protective effect of vitamin E. Of the remaining chemicals, 50% were less toxic in the presence of vitamin E, but the correlation with the acute human toxicity data of the MEIC study was not improved. The results imply that reactive oxygen species interfere with the toxicity of a high proportion of toxic chemicals. The assay described provides a quick and easy method for checking whether reactive oxygen species contribute to the toxicity of a chemical.  相似文献   

6.
The relevance of the pulsed field gel electrophoresis (PFGE) assay for the estimation of the DNA damaging effects of chemicals was studied. Four chemicals were randomly chosen from the list of 50 Multicentre Evaluation of In Vitro Cytotoxicity (MEIC) reference chemicals with known human acute systemic toxicity: acetylsalicylic acid, paracetamol, ethylene glycol and sodium chloride. Human fibroblasts (VH-10) were used as a model system. For the estimation of cytotoxic effect, cell monolayers were treated with chemicals for 24 hours. Cloning efficiency (colony-forming ability) at different concentrations of the test chemicals was estimated, and the 50% inhibitory concentration (IC50) was determined. The IC50 values obtained demonstrated a correlation with human lethal blood concentrations. The induction of DNA double-strand breaks, measured by PFGE as the fraction of activity released, was detected after treatment with paracetamol. However, the other three chemicals tested mainly induced DNA degradation.  相似文献   

7.
A database of over 280 chemicals has been compiled by using a mouse 3T3-L1 fibroblast-like cell line in exponential growth, exposed to chemicals for 72 hours in a 96-well tissue culture plate format, and determining cell number via the Kenacid blue (KB) assay for total protein. Ranking the chemicals according to their basal cytotoxicity, expressed as the concentration (mM) that inhibits increase in total cellular protein over 72 hours by 50% (the ID50 value) shows a wide range of ID50 values, from 0.00003 mM to 10,096 mM. This information includes the results for MEIC chemicals 1-50, and we have now added basal cytotoxicity data for 23 of the next 25 MEIC chemicals. When the neutral red uptake (NRU) assay was performed with the same cell cultures, before the KB assay, very similar indications of basal cytotoxicity were obtained. Comparisons between the results with 3T3-L1 cells and with a human fibroblast-like cell line, BCL-D1 showed a significant difference in order of magnitude of the ID50 value for only 5 of 52 chemicals. However, there was a difference in ID50 value of more than one order of magnitude for 8 of 24 chemicals tested with an undifferentiated teratocarcinoma cell line, F9.  相似文献   

8.
9.
A battery of in vitro methods has been developed for the prediction of acute oral toxicity, to reduce the number of animals used for this purpose. However, the results of these tests correlate more closely with lethal serum concentrations than with lethal doses. To address this issue, we have further evaluated the HPCT-1E3 model, which may be better able to emulate toxicokinetic factors that occur in vivo, due to the presence in these hepatocytoma cells of endogenous transmembrane carriers and a basal activity of xenobiotic metabolism. IC50 values produced by using the MTT test after a 48-hour incubation with 20 randomly-selected MEIC substances, correlated better with human oral LD50 values than with LC50 data, supporting this hypothesis. As with other models, the toxicity of receptor-specific rather than cytotoxic substances, for example digoxin, was underpredicted. When digoxin was removed from the correlation analysis, the coefficient of determination (r(2)) improved to 0.81, and none of remaining chemicals were wrongly predicted by more than one order of magnitude. IC50 values obtained with HepG2 cells under similar conditions (MEIC Test No. 3, 24 hours, MTT) correlated with human LD50 data with a r(2) value of 0.55. A direct comparison of HPCT-1E3 and HepG2 cells further suggested that the differences between them may be due to transport processes. In conclusion, the HPCT-1E3 model may be valuable in improving the prediction of lethal doses, rather than lethal serum concentrations.  相似文献   

10.
This study was designed to compare the cytotoxic concentrations of chemicals, determined with three independentin vitro cytotoxicity testing protocols, with each other and with established animal LD50 values, and against human toxic concentrations for the same chemicals. Ultimately, these comparisons allow us to evaluate the potential ofin vitro cell culture methods for the ability to screen a variety of chemicals for prediction of human toxicity. Each laboratory independently tested 50 chemicals with known human lethal plasma concentrations and LD50 values. Two of the methods used monolayer cell cultures to measure the incorporation of radiolabeled amino acids into newly synthesized proteins and cellular protein content, while the third technique used the pollen tube growth test. The latter is based on the photometric quantification of pollen tube mass production in suspension culture. Experiments were performed in the absence or presence of increasing doses of the test chemical, during an 18- to 24-h incubation. Inhibitory concentrations were extrapolated from concentration-effect curves after linear regression analysis. Comparison of the cytotoxic concentrations confirms previous independent findings that the experimental IC50 values are more accurate predictors of human toxicity than equivalent toxic blood concentrations (HETC values) derived from rodent LD50s. In addition, there were no conclusive statistical differences among the methods. It is anticipated that, together, these procedures can be used as a battery of tests to supplement or replace currently used animal protocols for human risk assessment.Abbreviations DCP dichlorophenoxyacetic acid - DMEM Dulbecco's modified Eagles' medium - DMSO dimethylsulfoxide - IC inhibitory concentration - LD50 lethal dose 50% - MEIC Multicenter Evaluation forIn Vitro Cytotoxicity - PI50 protein inhibition 50% - PTG pollen tube growth - TCA trichloroacetic acid - TCE trichloroethane  相似文献   

11.
The HTC hepatoma cell line was used as an "in vitro" model to detect the cytotoxicity of eighteen chemicals, chosen on the basis of different biological activities and physicochemical characteristics. Two different cytotoxicity assays measuring cell lethality (CS) or inhibition of cell growth (CF) were applicated to confluent cell monolayers or to colony-forming cells, respectively. Cells were exposed to the chemicals at doses ranging from 10(-6) M to 10(-2) M for 24 h. The results indicated a wide range of IC 50 (the concentration resulting in 50% inhibition of toxicity parameters) from as low as 1 microM (Potassium dichromate) to as high as 407.5 mM (Ethanol), the sensitivity of the CF test being greater than that of the CS test. A battery of cytotoxicity tests could be established in order to offer simple, rapid and economic methods which can be complementary and, in part, alternative to the use of laboratory animals.  相似文献   

12.
In ecotoxicology, in vitro assays with fish cells are currently applied for mechanistic studies, bioanalytical purposes and toxicity screening. This paper discusses the potential of cytotoxicity assays with fish cells to reduce, refine or replace acute lethality tests using fish. Basal cytotoxicity data obtained with fish cell lines or fish primary cell cultures show a reasonable to good correlation with lethality data from acute toxicity tests, with the exception of compounds that exert a specific mode of toxic action. Basal cytotoxicity data from fish cell lines also correlate well with cytotoxicity data from mammalian cell lines. However, both the piscine and mammalian in vitro assays are clearly less sensitive than the fish test. Therefore, in vivo LC50 values (concentrations of the test compounds that are lethal to 50% of the fish in the experiment within 96 hours) currently cannot be predicted from in vitro values. This in vitro-in vivo difference in sensitivity appears to be true for both fish cell lines and mammalian cell lines. Given the good in vitro-in vivo correlation in toxicity ranking, together with the clear-cut difference in sensitivity, the role of cytotoxicity assays in a tiered alternative testing strategy could be in priority setting in relation to toxic hazard and in the toxicity classification of chemicals and environmental samples.  相似文献   

13.
Acute oral toxicity testing is still required for the classification and labelling of chemicals, agrochemicals and related formulations. There have been increasing efforts over the last two decades to reduce the number of animals needed for this testing, according to the Three Rs concept. To evaluate the utility of an in vitro cytotoxicity test in our routine testing for acute oral toxicity, we have implemented in our laboratory the neutral red uptake (NRU) method, with Balb/c 3T3 fibroblasts after a 48-hour exposure, which was recommended in ICCVAM Report 07-4519, 2006. Initially, we tested 16 substances that had existing in vivo and in vitro data available, to prove our technical proficiency with the in vitro test. Then, testing was performed with 187 test substances, including a broad variety of chemicals, agrochemicals and formulations. The starting dose for acute oral systemic toxicity assays in rats (LD50) was estimated by using the prediction model presented in the ICCVAM validation study, and subsequently compared to the results obtained by in vivo testing performed according to, or similar to, OECD Test Guideline 423. Comparison of all of the 203 predicted LD50 values that were deduced from the in vitro IC50 values, with the in vivo results from oral toxicity studies in rats, resulted in a low overall concordance of 35%. The in vitro cytotoxicity assay achieved a good concordance of 74%, only for the weakly toxic substances (EU-GHS Cat. 4). However, it must be noted that 71% of the substances tested (i.e. 145/203) were classified as being weakly toxic in vitro. We further analysed the utility of the in vitro test for predicting the starting dose for an in vivo study, and the potential reduction in animal usage that this would engender. In this regard, the prediction by the cytotoxicity test was useful for 59% of the substances. However, the use of a standard starting dose of 300 mg/kg bw by default (without previous cytotoxicity testing) would have been almost as useful (50%). In contrast, the prediction by an experienced toxicologist was correct for 95% of the substances. However, this was only performed for 40% of the substances, mainly those of no to low toxicity. Calculating the theoretical animal numbers needed in several scenarios supported these results. The additional analysis, considering some physicochemical data (solubility, molecular weight, log POW), substance class and mode of action, revealed no specific applicability domains. In summary, the use of the 3T3 NRU cytotoxicity data alone did not sufficiently contribute to refinement and reduction in the acute oral toxicity testing of the substance portfolio tested routinely in our laboratory.  相似文献   

14.
As a priority area of the Evaluation-Guided Development of In Vitro Toxicity and Toxicokinetic Tests (EDIT) programme, an in vitro protein precipitation (PP) assay was used on the 50 reference chemicals of the Multicentre Evaluation of In Vitro Cytotoxicity (MEIC) project, to confirm and extend the MEIC results. Dose-response curves were generated for only 30 of the chemicals, and the concentrations causing 10% (EC10) and 50% (EC50) protein precipitation versus the positive control were chosen as endpoints. The number of chemicals with a positive response increased to 46 when a new endpoint, the minimum effect concentration (MEC) that induces protein precipitation with respect to the negative control, was used. When the results were correlated with in vitro cytotoxicity in human cell lines, a similarly good correlation was found between the various endpoints of the PP assay at 5 hours and the 24-hour IC50 average cytotoxicity in human cell lines, even though the number of chemicals included in the correlation was larger for the MEC. Using the prediction error, the endpoint that gave the best correlation between the PP assay and human cell cytotoxicity was once more found to be the 5-hour MEC, and this was chosen for the PP assay. The sensitivity of the PP assay is lower than that of the in vitro cell-line cytotoxicity assay, possibly due to its shorter exposure period and because precipitation is the ultimate event in the sequence of a protein disturbance. It is expected that earlier denaturation steps would give better sensitivity. However, this simple, inexpensive and rapid assay could be useful in the early stages of testing chemicals.  相似文献   

15.
The Bj?rn Ekwall Memorial Foundation (BEMF) was initiated by the Scandinavian Society for Cell Toxicology in 2001, to honour the memory of Dr Bj?rn Ekwall (1940-2000) and to establish a prize, the Bj?rn Ekwall Memorial Award. The prize is awarded to scientists who have significantly contributed to the field of cell toxicology, and whose work is contributing toward the replacement of animal experiments by alternative toxicity tests. Over the past 10 years, the Bj?rn Ekwall Memorial Award has been presented annually. Bj?rn Ekwall, an outstanding Swedish cell toxicologist, was one of the pioneers in the development and application of alternative methods to animal tests in toxicology. All his scientific work was devoted to in vitro toxicology, and in particular, to the use of cultured human cells for the screening of toxic chemicals. In the middle of the 1980s, he initiated the international Multicentre Evaluation of In Vitro Cytotoxicity (MEIC) project, to evaluate the usefulness of in vitro tests for the estimation of human acute systemic toxicity. To prove his "basal cytotoxicity concept", he established the MEMO database, in which data on the acutely toxic human blood concentrations of drugs and chemicals were collated from the literature and from clinical studies. He also initiated another project, Evaluation-Guided Development of In Vitro Toxicity and Toxicokinetic Tests (EDIT). The ideas from the EDIT project, together with those from the MEIC project, became the basis for today's international EU projects, e.g. ACuteTox, Sens-it-iv and ReProTect. In this article, 10 years after the start of the BEMF, the scientific achievements of each of the award winners in the field of in vitro toxicology are presented, together with a brief synopsis of their careers.  相似文献   

16.
17.
The Scandinavian Society for Cell Toxicology (SSCT) has arranged annual scientific meetings since 1983. These workshops were the forum for the Multicentre Evaluation of In Vitro Cytotoxicity (MEIC) programme. Along with the MEIC programme, which was completed in 1998, a wide range of topics relating to cytotoxicity have been discussed. The meetings have also given an opportunity for graduate students and young scientists to present their work to an international audience. At the same time, experts in the fields of in vitro toxicity have been invited as speakers. The 19th SSCT scientific meeting, which was held at S?rup Manor in Ringsted, Denmark, was no exception. The meeting consisted of four sessions: mechanisms of toxicity; environmental toxicological testing; alternatives to animal experiments; and validation of in vitro tests.  相似文献   

18.
Quantitative structure toxicity relationship (QSTR) equations were obtained to predict and describe the cytotoxicity of 31 phenols using logLD(50) as a concentration to induce 50% cytotoxicity of isolated rat hepatocytes in 2 h and logP as octanol/water partitioning: logLD(50) (microM)=-0.588(+/-0.059)logP+4.652(+/-0.153) (n=27, r(2)=0.801, s=0.261, P<1 x 10(-9)). Hydroquinone, catechol, 4-nitrophenol, and 2,4-dinitrophenol were outliers for this equation. When the ionization constant pK(a) was considered as a contributing factor a two-parameter QSTR equation was derived: logLD(50) (microM)=-0.595(+/-0.051)logP+0.197(+/-0.029)pK(a)+2.665(+/-0.281) (n=28, r(2)=0.859, s=0.218, P<1 x 10(-6)). Using sigma+, the Brown variation of the Hammet electronic constant, as a contributing parameter, the cytotoxicity of phenols towards hepatocytes were defined by logLD(50) (microM)=-0.594(+/-0.052)logP-0.552(+/-0.085)sigma+ +4.540(+/-0.132) (n=28, r(2)=0.853, s=0.223, P<1 x 10(-6)). Replacing sigma+ with the homolytic bond dissociation energy (BDE) for (X-PhOH+PhO.-->X-PhO.+PhOH) led to logLD(50) (microM)=-0.601(+/-0.066)logP-0.040(+/-0.018)BDE+4.611(+/-0.166) (n=23, r(2)=0.827, s=0.223, P<0.05). Hydroquinone, catechol and 2-nitrophenol were outliers for the above equations. Using redox potential and logP led to a new correlation: logLD(50) (microM)=-0.529(+/-0.135)logP+2.077(+/-0.892)E(p/2)+2.806(+/-0.592) (n=15, r(2)=0.561, s=0.383, P<0.05) with 4-nitrophenol as an outlier. Our findings indicate that phenols with higher lipophilicity, BDE, or sigma+ values or with lower pK(a) and redox potential were more toxic towards hepatocytes. We also showed that a collapse of hepatocyte mitochondrial membrane potential preceded the cytotoxicity of most phenols. Our study indicates that one or a combination of mechanisms; i.e. mitochondrial uncoupling, phenoxy radicals, or phenol metabolism to quinone methides and quinones, contribute to phenol cytotoxicity towards hepatocytes depending on the phenol chemical structure.  相似文献   

19.
The cytotoxicity of 48 compounds included in the MEIC (Multicenter Evaluation of In Vitro Cytotoxicity) list was determined in cultures of rat hepatocytes, McCoy, and MDBK cells. The average minimum concentration of each compound inducing cytotoxicity was measured in each cell type. The cytotoxicity values were then compared with published oral LDS p values for rats and mice. The logarithmic transformation of in vivo toxic doses and the corresponding in vitro cytotoxic concentrations showed a statistically significant correlation between the in vitro and in vivo values. The results show that an accurate in vivo LDS p dose could be predicted from in vitro data for at least 75% of the selected compounds. It is hoped that this finding will not only stimulate others to pursue in vitro technique but will eventually lead to elimination of the in vivo LD50 test.Abbreviations CT50 50% cytotoxic concentration - CT100 100% cytotoxic concentration - DMSO dimethyl sulfoxide - LD50 50% lethal dose - LDH Lactate dehydrogenase - MEIC Multicenter Evaluation of In Vitro Cytotoxicity  相似文献   

20.
A new international project to evaluate the relevance for human systemic and local toxicity of in vitro tests of general toxicity of chemicals has been organized by the Scandinavian Society of Cell Toxicology under the title Multicenter Evaluation of In Vitro Cytotoxicity (MEIC). The basic assumptions underlying the project, as well as the practical goals and the design of the program are outlined. The list of the first 50 reference chemicals is presented. The chemicals are an otherwise unbiased selection of compounds with known human acutely lethal dosage and blood concentrations, including LD50-values in the rat or mouse. Most agents also have other data on human toxicity and toxicokinetics, including more extensive animal toxicity data. International laboratories already using or developing in vitro tests of various partial aspects of general toxicity are invited to test the substances, the results of which will be evaluated by us. The predictivity of the in vitro results for both partial and gross human toxicity data will be determined with combined use of univariate regression analysis and soft multivariate modeling. The predictivity of the in vitro results will be compared with the predictivity of conventional animal tests for the same chemicals. Finally, batteries of tests with optimal prediction power for various types of human toxicity will be selected. The need for and possible uses of such batteries are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号