首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have mutated various features of the 5' noncoding region of the HIS4 mRNA in light of established Saccharomyces cerevisiae and mammalian consensus translational initiator regions. Our analysis indicates that insertion mutations that introduce G + C-rich sequences in the leader, particularly those that result in stable stem-loop structures in the 5' noncoding region of the HIS4 message, severely affect translation initiation. Mutations that alter the length of the HIS4 leader from 115 to 39 nucleotides had no effect on expression, and sequence context changes both 5' and 3' to the HIS4 AUG start codon resulted in no more than a twofold decrease of expression. Changing the normal context at HIS4 5'-AAUAAUGG-3' to the optimal sequence context proposed for mammalian initiator regions 5'-CACCAUGG-3' did not result in stimulation of HIS4 expression. These studies, in conjunction with comparative and genetic studies in S. cerevisiae, support a general mechanism of initiation of protein synthesis as proposed by the ribosomal scanning model.  相似文献   

2.
Bacteriophage λ repressor binds co-operatively to adjacent pairs of DNA target sites. A novel combination of positive genetic selections, involving two different operon fusions derived from P22 challenge phages, was used to isolate mutant λ repressors that have lost the ability to bind co-operatively to tandem sites yet retain the ability to bind a strong, single site. These cb (co-operative binding) mutations result in 10 different amino acid changes, which define eight residues in the carboxyl-terminus of repressor. Because challenge phage derivatives may be applied to study essentially any specific protein-DNA interaction, analogous combinations of genetic selections may be used to explore the ways that a variety of proteins interact to assemble regulatory complexes.  相似文献   

3.
Several lines of evidence suggest that the presence of the wild-type tumor suppressor gene p53 in human cancers correlates well with successful anti-cancer therapy. Restoration of wild-type p53 function to cancer cells that have lost it might therefore improve treatment outcomes. Using a systematic yeast genetic approach, we selected second-site suppressor mutations that can overcome the deleterious effects of common p53 cancer mutations in human cells. We identified several suppressor mutations for the V143A, G245S and R249S cancer mutations. The beneficial effects of these suppressor mutations were demonstrated using mammalian reporter gene and apoptosis assays. Further experiments showed that these suppressor mutations could override additional p53 cancer mutations. The mechanisms of such suppressor mutations can be elucidated by structural studies, ultimately leading to a framework for the discovery of small molecules able to stabilize p53 mutants.  相似文献   

4.
MUS81-EME1 is a conserved structure-selective endonuclease with a preference for branched DNA substrates in vitro that correspond to intermediates of DNA repair. Cells lacking MUS81 or EME1 show defects in the repair of DNA interstrand crosslinks (ICL) resulting in hypersensitivity to agents such as mitomycin C. In metazoans, a proportion of cellular MUS81-EME1 binds the SLX4 scaffold protein, which is itself instrumental for ICL repair. It was previously reported that mutations in SLX4 that abolished interaction with MUS81 affected ICL repair in human cells but not in murine cells. In this study we looked the other way around by pinpointing amino acid residues in MUS81 that when mutated abolish the interaction with SLX4. These mutations fully rescued the mitomycin C hypersensitivity of MUS81 knockout murine cells, but they were unable to rescue the sensitivity of two different human cell lines defective in MUS81. These data support an SLX4-dependent role for MUS81 in the repair, but not the induction of ICL-induced double-strand breaks. This study sheds light on the extent to which MUS81 function in ICL repair requires interaction with SLX4.  相似文献   

5.
A J Herr  J F Atkins    R F Gesteland 《The EMBO journal》1999,18(10):2886-2896
Translating ribosomes bypass a 50 nucleotide coding gap in bacteriophage T4 gene 60 mRNA between codons 46 and 47 in order to synthesize the full-length protein. Bypassing of the coding gap requires peptidyl-tRNA2Gly detachment from a GGA codon (codon 46) followed by re-pairing at a matching GGA codon just before codon 47. Using negative selection, based on the sacB gene from Bacillus subtilis, Escherichia coli mutants were isolated which reduce bypassing efficiency. All of the mutations are in the gene for tRNA2Gly. Most of the mutations disrupt the hydrogen bonding interactions between the D- and T-loops (G18*psi55 and G19*C56) which stabilize the elbow region in nearly all tRNAs. The lone mutation not in the elbow region destabilizes the anticodon stem at position 40. Previously described Salmonella typhimurium mutants of tRNA2Gly, which reduce the stability of the T-loop, were also tested and found to decrease bypassing efficiency. Each tRNA2Gly mutant is functional in translation (tRNA2Gly is essential), but has a decoding efficiency 10- to 20-fold lower than wild-type. This suggests that rigidity of the elbow region and the anticodon stem is critical for both codon-anticodon stability and bypassing.  相似文献   

6.
J Bargonetti  P Z Wang    R P Novick 《The EMBO journal》1993,12(9):3659-3667
We have prepared and analyzed two types of gene fusion between the replication initiator gene, repC, and the reporter gene, blaZ, in order to investigate the relationship between pT181 plasmid copy number and RepC initiator protein production. A series of pT181 copy mutant plasmids, with copy numbers ranging from 70 to 800 copies per cell, were analyzed. In one type of gene fusion used in this study, blaZ was translationally coupled to the C-terminal end of the repC coding sequence such that native forms of both proteins were produced. This gene fusion arrangement, which permitted monitoring of RepC production (as BlaZ activity) by plasmids using the protein for their own replication, demonstrated a linear relationship, with one exception, between RepC production and plasmid copy number over a 20-fold range. In the second type of fusion, blaZ was translationally fused to the C-terminal end of repC. As the translational fusion did not produce active RepC protein, the fusion-containing pT181 derivatives were maintained in a strain which provided RepC in trans, and were thus analyzed at constant copy number. In contrast to previous analyses of this type, our translational fusion constructs expressed repC at levels proportional to the copy numbers of the plasmids from which the fusions were prepared. Using these data, we have calculated a minimum figure for the number of RepC molecules synthesized per replication event.  相似文献   

7.
The interaction of the HIV-1 fusion protein gp120 with its cellular receptor CD4 represents a crucial step of the viral infection process, thus rendering gp120 a promising target for the intervention with anti-HIV drugs. Naturally occurring mutations of gp120, however, can decrease its affinity for anti-infective ligands like therapeutic antibodies or soluble CD4. To understand this phenomenon on a structural level, we performed molecular dynamics simulations of two gp120 variants (termed gp1203-2 and gp1202-1), which exhibit a significantly decreased binding of soluble CD4. In both variants, the exchange of a nonpolar residue byglutamate was identified as an important determinant for reduced binding. However, those glutamates are located at different sequence positions and affect different steps of the recognition process: E471 in gp1203-2 predominantly affects the CD4-bound conformation, whereas E372 in gp1202-1 mainly modulates the conformational sampling of free gp120. Despite these differences, there exists an interesting similarity between the two variants: both glutamates exert their function by modulating the conformation and interactions of glycine-rich motifs (G366–G367, G471–G473) resulting in an accumulation of binding incompetent gp120 conformations or a loss of intermolecular gp120–CD4 hydrogen bonds. Thus, the present data suggests that interference with the structure and dynamics of glycine-rich stretches might represent a more widespread mechanism, by which gp120 mutations reduce binding affinity. This knowledge should be helpful to predict the resistance of novel gp120 mutations or to design gp120–ligands with improved binding properties.

An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:41  相似文献   

8.
The c-Cbl protooncogene can function as a negative regulator of receptor protein tyrosine kinases (RPTKs) by targeting activated receptors for polyubiquitination and downregulation. This function requires its tyrosine kinase binding (TKB) domain for targeting RPTKs and RING finger domain to recruit E2 ubiquitin-conjugating enzymes. It has therefore been proposed that oncogenic Cbl proteins act in a dominant-negative manner to block this c-Cbl activity. In testing this hypothesis, we found that although mutations spanning the RING finger abolish c-Cbl-directed polyubiquitination and downregulation of RPTKs, they do not induce transformation. In contrast, it is mutations within a highly conserved alpha-helical structure linking the SH2 and RING finger domains that render Cbl proteins oncogenic. Thus, Cbl transformation involves effects additional to polyubiquitination of RPTKs that are independent of the RING finger and its ability to recruit E2-conjugating enzymes.  相似文献   

9.
10.
Mitochondrial translation of the mRNA encoding cytochrome c oxidase subunit III (coxIII) specifically requires the action of three position activator proteins encoded in the nucleus of Saccharomyces cerevisiae. Some mutations affecting one of these activators, PET122, can be suppressed by mutations in an unlinked nuclear gene termed PET123. PET123 function was previously demonstrated to be required for translation of all mitochondrial gene products. We have now generated an antibody against the PET123 protein and have used it to demonstrate that PET123 is a mitochondrial ribosomal protein of the small subunit. PET123 appears to be present at levels comparable to those of other mitochondrial ribosomal proteins, and its accumulation is dependent on the presence of the 15S rRNA gene in mitochondria. Taken together with the previous genetic data, these results strongly support a model in which the mRNA-specific translational activator PET122 works by directly interacting with the small ribosomal subunit to promote translation initiation on the coxIII mRNA.  相似文献   

11.
12.
13.
Field populations of Drosophila serrata display reproductive character displacement in cuticular hydrocarbons (CHCs) when sympatric with Drosophila birchii. We have previously shown that the naturally occurring pattern of reproductive character displacement can be experimentally replicated by exposing field allopatric populations of D. serrata to experimental sympatry with D. birchii. Here, we tested whether the repeated evolution of reproductive character displacement in natural and experimental populations was a consequence of genetic constraints on the evolution of CHCs. The genetic variance-covariance (G) matrices for CHCs were determined for populations of D. serrata that had evolved in either the presence or absence of D. birchii under field and experimental conditions. Natural selection on mate recognition under both field and experimental sympatric conditions increased the genetic variance in CHCs consistent with a response to selection based on rare alleles. A close association between G eigenstructure and the eigenstructure of the phenotypic divergence (D) matrix in natural and experimental populations suggested that G matrix eigenstructure may have determined the direction in which reproductive character displacement evolved during the reinforcement of mate recognition.  相似文献   

14.
Transcription of the mouse ribosomal spacer region.   总被引:2,自引:2,他引:2       下载免费PDF全文
  相似文献   

15.
The coat protein of the RNA bacteriophage MS2 is a specific RNA binding protein that represses translation of the viral replicase gene during the infection cycle. As an approach to characterizing the RNA-binding site of coat protein we have isolated a series of coat mutants that suppress the effects of a mutation in the translational operator. Each of the mutants exhibits a super-repressor phenotype, more tightly repressing both the mutant and wild-type operators than does the wild-type protein. The variant coat proteins were purified and subjected to filter binding assays to determine their affinities for the mutant and wild-type operators. Each protein binds the operators from 3 to 7.5-fold more tightly than normal coat protein. The amino acid substitutions seem to extend the normal binding site by introducing new interactions with RNA.  相似文献   

16.
Yeast ribosomal protein L11 is positioned at the intersubunit cleft of the large subunit central protuberance, forming an intersubunit bridge with the small subunit protein S18. Mutants were engineered in the central core region of L11 which interacts with Helix 84 of the 25S rRNA. Numerous mutants in this region conferred 60S subunit biogenesis defects. Specifically, many mutations of F96 and the A66D mutant promoted formation of halfmers as assayed by sucrose density ultracentrifugation. Halfmer formation was not due to deficiency in 60S subunit production, suggesting that the mutants affected subunit-joining. Chemical modification analyses indicated that the A66D mutant, but not the F96 mutants, promoted changes in 25S rRNA structure, suggesting at least two modalities for subunit joining defects. 25S rRNA structural changes were located both adjacent to A66D (in H84), and more distant (in H96-7). While none of the mutants significantly affected ribosome/tRNA binding constants, they did have strong effects on cellular growth at both high and low temperatures, in the presence of translational inhibitors, and promoted changes in translational fidelity. Two distinct mechanisms are proposed by which L11 mutants may affect subunit joining, and identification of the amino acids associated with each of these processes are presented. These findings may have implications for our understanding of multifaceted diseases such as Diamond–Blackfan anemia which have been linked in part with mutations in L11.  相似文献   

17.
18.
We have previously investigated the role of the N-terminal region of ribosomal protein S4 to participate in 30S ribosome assembly and function (1-3). In this report we extend these studies to the two fragments produced by the chemical cleavage of protein S4 at the tryptophan residue 167. We find that the carboxyl terminal fragment (168-203) does not bind 16S RNA nor does it participate in assembly with the other 20 proteins from the 30S ribosome. In contrast, the larger fragment (1-167), does bind 16S RNA specifically. If the S4-fragment (1-167) is used to replace protein S4 in the complete 30S assembly reaction, all 20 of the other 30S proteins are incorporated. We conclude that the carboxyl terminal section of the protein S4 is not directly involved in binding 16S RNA or in the assembly of any of the other 30S proteins.  相似文献   

19.
P C Ryan  D E Draper 《Biochemistry》1989,28(26):9949-9956
Ribosomal protein L11 from Escherichia coli specifically binds to a highly conserved region of 23S ribosomal RNA. The thermodynamics of forming a complex between this protein and several different rRNA fragments have been investigated, by use of a nitrocellulose filter binding assay. A 57-nucleotide region of the RNA (C1052-U1108) contains all the protein recognition features, and an RNA fragment containing this region binds L11 10(3)-10(4)-fold more tightly than tRNA. Binding constants are on the order of 10 microM-1 and are only weakly dependent on K+ concentration (delta log K/delta log [K+] = -1.4) or temperature. Binding requires multivalent cations; Mg2+ is taken up into the complex with an affinity of approximately 3 mM-1. Other multivalent cations tested, Ca2+ and Co(NH3)63+, promote binding nearly as well. The pH dependence of binding is a bell-shaped curve with a maximum near neutral pH, but the entire curve is shifted to higher pH for the smaller of two RNA fragments tested. This result suggests that the smaller fragment favors a conformation stabilizing protonated forms of the RNA recognition site and is potentially relevant to a hypothesis that this rRNA region undergoes an ordered series of conformational changes during the ribosome cycle.  相似文献   

20.
During Xenopus development, the synthesis of ribosomal proteins is regulated at the translational level. To identify the region of the ribosomal protein mRNAs responsible for their typical translational behavior, we constructed a fused gene in which the upstream sequences (promoter) and the 5' untranslated sequence (first exon) of the gene coding for Xenopus ribosomal protein S19 were joined to the coding portion of the procaryotic chloramphenicol acetyltransferase (CAT) gene deleted of its own 5' untranslated region. This fused gene was introduced in vivo by microinjection into Xenopus fertilized eggs, and its activity was monitored during embryogenesis. By analyzing the pattern of appearance of CAT activity and the distribution of the S19-CAT mRNA between polysomes and messenger ribonucleoproteins, it was concluded that the 35-nucleotide-long 5' untranslated region of the S19 mRNA is able to confer to the fused S19-CAT mRNA the translational behavior typical of ribosomal proteins during Xenopus embryo development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号