首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypochlorous acid (HOCl), the main product of the myeloperoxidase system, is a strong oxidant and a potent chlorinating agent, which can damage host tissues. In the present work, the scavenger effect of three aglycone flavonols (myricetin, quercetin and kaempferol) and of the natural glycoside flavonol, rutin, was studied towards HOCl using luminol-dependent chemiluminescence (CL). At 1 micro mol/L fi nal concentration, rutin was the most powerful scavenger of HOCl with an inhibitory luminol oxidation of 91.4% +/- 3.2%. Quercetin, kaempferol and myricetin inhibited the luminol-dependent CL at the same concentration only by 75.9% +/- 3.4%, 57.7% +/- 5.3% and 43.3% +/- 3.5%, respectively. With increasing concentration of these flavonols, a dose-dependent inhibition of luminol CL was observed. In order to prove to what extent flavonols scavenge HOCl, their concentrations that gave 50% inhibition of luminescence (IC50) were compared to IC50 values of the sulphur-containing compounds N-acetyl cysteine (NAC) and taurine. The scavenging activities of compounds tested decrease in the order: rutin > NAC > quercetin > kaempferol > taurine. The present study revealed that rutin was the most effective scavenger agent.  相似文献   

2.
The present study investigated the microbial degradation of the plant flavonol quercetin and its naturally occurring glycosides isoquercitrin and rutin in the porcine hindgut. The experiments were carried out with the semicontinuous colon-simulation technique. The fluid and particle phase of pig hindgut contents from freshly slaughtered animals were used for the in vitro incubations. Following a five-day equilibration period, quercetin, isoquercitrin or rutin were administered to fermentation vessels and their turnover rate was determined. None of the flavonols affected parameters of microbial fermentation like pH, redox potential or VFA production. The turnover rate for isoquercitrin was seven times higher than the turnover for the fermentation fluid. The turnover rates for quercetin and rutin were four and twofold higher than fluid turnover, respectively. After administration of isoquercitrin or rutin, their aglycone quercetin was detected as an intermediary metabolite. Under sterile conditions using autoclaved incubation fluids and hindgut contents, turnover rates for quercetin and rutin were still higher than the fluid turnover in the fermentation vessels. This indicates a certain chemical instability of the flavonols and/or adsorption to ingesta particles. Thus, flavonols are subjected to microbial metabolism in the porcine hindgut. The glycosidic structure strongly influences the rate of metabolism.  相似文献   

3.
Abstract

The present study investigated the microbial degradation of the plant flavonol quercetin and its naturally occurring glycosides isoquercitrin and rutin in the porcine hindgut. The experiments were carried out with the semicontinuous colon-simulation technique. The fluid and particle phase of pig hindgut contents from freshly slaughtered animals were used for the in vitro incubations. Following a five-day equilibration period, quercetin, isoquercitrin or rutin were administered to fermentation vessels and their turnover rate was determined. None of the flavonols affected parameters of microbial fermentation like pH, redox potential or VFA production. The turnover rate for isoquercitrin was seven times higher than the turnover for the fermentation fluid. The turnover rates for quercetin and rutin were four and twofold higher than fluid turnover, respectively. After administration of isoquercitrin or rutin, their aglycone quercetin was detected as an intermediary metabolite. Under sterile conditions using autoclaved incubation fluids and hindgut contents, turnover rates for quercetin and rutin were still higher than the fluid turnover in the fermentation vessels. This indicates a certain chemical instability of the flavonols and/or adsorption to ingesta particles. Thus, flavonols are subjected to microbial metabolism in the porcine hindgut. The glycosidic structure strongly influences the rate of metabolism.  相似文献   

4.
The plant flavonoids quercetin (3,5,7,3',4'-pentahydroxyflavone), morin (3,5,7,2',4'-pentahydroxyflavone), kaempferol (3,5,7,4'-tetrahydroxyflavone), chrysin (5,7-dihydroxyflavone), fisetin (3,7,3',4'-tetrahydroxyflavone), myricetin (3,5,7,3',4',5'-hexahydroxyflavone), myricitrin (myricetin-3-rhamnoside), hesperetin (3',5,7-trihydroxy-4'-methoxyflavanone), quercitrin (quercetin-3-L-rhamnoside), rutin (quercetin-3-rhamnosylglucoside or quercetin-3-rutinoside), and hesperidin (hesperetin-7-rutinoside) have been assayed for mutagenicity in the Salmonella/microsomal activation system. Quercetin, morin, kaempferol, fisetin, myricetin, quercitrin and rutin were mutagenic in the histidine reversion system with the frameshift strain TA98. The flavonols quercetin and myricetin are mutagenic without metabolic activation, although more effective when a rat liver microsomal preparation (S-9) is included; all others require metabolic activation. Flavonoids are common constituents of higher plants, with extensive medical uses. In addition to pure compounds, we have examined crude extracts of tobacco (snuff) and extracts from commonly available nutritional supplements containing rutin. Mutagenic activity can be detected and is correlated with the flavonoid content.  相似文献   

5.
Four new flavonol gycosides: kaempferide 3-O-beta-xylosyl (1-->2)-beta-glucoside, kaempferol 3-O-alpha-rhamnoside-7,4'-di-O-beta-galactoside, kaempferol 3,7,4'-tri-O-beta-glucoside and quercetin 3-O-[alpha-rhamnosyl (1-->6)] [beta-glucosyl (1-->2)]-beta-glucoside-7-O-alpha-rhamnoside, were characterized from a methanolic leaf extract of Warburgia ugandensis. The known flavonols: kaempferol, kaempferol 3-rhamnoside, kaempferol 3-rutinoside, myricetin, quercetin 3-rhamnoside, kaempferol 3-arabinoside, quercetin 3-glucoside, quercetin, kaempferol 3-rhamnoside-4'-galactoside, myricetin 3-galactoside and kaempferol 3-glucoside were also isolated. Structures were established by spectroscopic and chemical methods and by comparison with authentic samples.  相似文献   

6.
Flavonols are phytochemicals widely found in commonly consumed foods. In spite of their beneficial effects on human health, however, cytotoxicity and even suspected genotoxicity have also been reported for the flavonol, quercetin. This points to the need for preventive studies to identify any cytotoxic effects associated with pure flavonol intake. This work was performed with the aim of verifying whether a plant-based in vitro system, the pollen tube, could be used to evaluate the cytotoxic potential of exogenous flavonols. Increasing concentrations of the aglycone, quercetin, and its glycoside, rutin, were assayed with regard to tube growth of kiwifruit pollen, determined by applying the pollen tube growth test protocol. This test, based on the photometric quantification of pollen tube mass production in suspension cultures, has already been applied in the sensitive and reliable toxicological evaluation of a wide range of chemicals. Whereas 60-800 microM rutin promoted kiwifruit pollen tube elongation, 10-50 microM quercetin strongly inhibited growth, and also produced irreversible malformations, such as screw-like tube growth, abnormal vacuolation, alteration of organelle streaming, and nuclear positioning. Thus, the cytotoxic potentials of the two flavonols have been confirmed to differ. Pollen tubes seem to afford a promising test system for a preventive, rapid in vitro biosafety assessment of antioxidant nutritional supplements, without using laboratory animals.  相似文献   

7.
The iron binding properties and antioxidant activities of compounds with hydroxy-keto binding sites, 3-hydroxychromone, 5-hydroxychromone, and sulfonated morin were investigated. For these compounds, prevention of iron-mediated DNA damage and kinetics of FeII oxidation were studied in aqueous solutions close to physiological pH (pH 6). 3-Hydroxychromone and sulfonated morin inhibit iron-mediated DNA damage at lower concentrations than 5-hydroxychromone. All three compounds bind iron, but 3-hydroxychromone and sulfonated morin promote FeII oxidation much faster than 5-hydroxychromone. These results indicate that DNA damage inhibition by flavonols with competing hydroxy-keto binding sites is primarily due to iron binding at the 3-hydroxy-keto site. Iron oxidation rate also plays a significant role in antioxidant activity. In addition to iron binding and oxidation, reactive oxygen species scavenging occurs at high concentrations for the hydroxychromones. This study emphasizes the importance of iron binding in polyphenol antioxidant behavior and provides insights into the iron binding antioxidant activity of similar flavonols such as quercetin and myricetin.  相似文献   

8.
Reperfusion injury of ischemic organs is suggested to result from metabolic derangements initiating an imbalanced formation of free oxygen radicals. Most investigators in this field have used the spin-trap 5,5'-dimethyl-N-pyrroline-N-oxide (DMPO) to stabilize these short-lived radicals and make them visible by means of the electron spin resonance (ESR) technique. ESR signals obtained from intravascular DMPO were reported to indicate the formation of free OH. radicals and, in some cases, also carbon-centered radicals. We were unable to confirm these findings. Carbon-centered radicals were not obtained irrespectively of conditions studied, while oxygen-centered DMPO-adducts could only be detected in minor amounts. Instead, we observed an ascorbyl-related ESR signal. The addition of ethylenediaminetetraacetic acid (EDTA), which was used by many investigators in this field, was found to greatly influence ESR-spectra of the reperfusion fluid. The ascorbyl radical concentration was clearly reduced and the DMPO-OH. adduct became more prominent. The addition of iron further stimulated this change eliciting a Fenton-type reaction responsible for DMPO-OH.-related ESR spectra in the perfusate after ischemia. Accordingly, we observed the release of iron and ascorbic acid into the perfusate as a consequence of ischemia. We could demonstrate that iron in the presence of ascorbate and EDTA causes both types of radicals detected in the perfusate. DMPO-OH. generation in the presence of EDTA was found to result from free OH. radicals that were not generated in the absence of EDTA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Over 70 naturally occurring and synthetic flavonoids were screened for mutagenicity with 5 tester strains in the Salmonella/mammalian microsome assay: TA1535, TA100, TA1537, TA1538 and TA98. Frameshift mutagenicity was confined to the flavonols (flavon-3-ols) in strain TA98, TA1537 and TA100. The two most mutagenic falvonols, namely, quercetin (3,3',4',5,7-pentahydroxyflavone) and kaempferol (3,4',5,7-tetrahydroxyflavone), exhibiting 12 and 7 revertants/nmol in TA98 respectively, are also the most common flavonols occurring in plants. Other flavonols exhibited less activity (revertants/nmol): galangin (2.0), rhamnetin (0.45), kaempferide (0.24), fisetin (0.14), myricetin (0.12), robinetin (0.06) and morin (0.05). All of these flavonols apparently exhibited significant activation by Aroclor 1254 induced rat-liver microsome preparations (S9). However, subsequent study revealed that only those flavonols either lacking or possessing one B ring hydroxyl group had an absolute requirement for microsomal activation. Alternatively, quercetin with two B-ring OH groups is not activated by microsomal enzymes, but by soluble (S100) enzymes from liver which are apparently constitutive and not subject to the usual chemical induction. 3 flavonol glycosides, namely, quercetrin (quercetin-3-O-rhamnoside), rutin (quercetin-3-O-rutinoside) and robinin (kaempferol-3-O-galactosido-rhamnoside-7-O-rhamnoside), were found to be nonmutagenic. They could, however, be activated by a variety of mixed glycosidases incorporated in the usual pour plate procedure. The most effective enzyme mixtures were obtained from rat cecal bacteria and from the snail Helix pomatia.  相似文献   

10.
Tomatoes are an excellent source of the carotenoid lycopene, a compound that is thought to be protective against prostate cancer. They also contain small amounts of flavonoids in their peel ( approximately 5-10 mg/kg fresh weight), mainly naringenin chalcone and the flavonol rutin, a quercetin glycoside. Flavonols are very potent antioxidants, and an increasing body of epidemiological data suggests that high flavonoid intake is correlated with a decreased risk for cardiovascular disease. We have upregulated flavonol biosynthesis in the tomato in order to generate fruit with increased antioxidant capacity and a wider range of potential health benefit properties. This involved transformation of tomato with the Petunia chi-a gene encoding chalcone isomerase. Resulting transgenic tomato lines produced an increase of up to 78 fold in fruit peel flavonols, mainly due to an accumulation of rutin. No gross phenotypical differences were observed between high-flavonol transgenic and control lines. The phenotype segregated with the transgene and demonstrated a stable inheritance pattern over four subsequent generations tested thus far. Whole-fruit flavonol levels in the best of these lines are similar to those found in onions, a crop with naturally high levels of flavonol compounds. Processing of high-flavonol tomatoes demonstrated that 65% of flavonols present in the fresh fruit were retained in the processed paste, supporting their potential as raw materials for tomato-based functional food products.  相似文献   

11.
Alpha1-antitrypsin is well known for its ability to inhibit human neutrophil elastase. Pretreatment of alpha1-antitrypsin with hypohalous acids HOCl and HOBr as well as with the myeloperoxidase-hydrogen peroxide-chloride (or bromide) system inactivated this proteinase. The flavonols rutin, quercetin, myricetin, and kaempferol inhibited the inactivation of alpha1-antitrypsin by HOCl and HOBr with rutin having the most pronounced effect. In contrast, these flavonols did not remove the proteinase inactivation by the myeloperoxidase-hydrogen peroxide-halide system. Taurine did not protect against the inactivation of alpha1-antitrypsin by HOCl, HOBr, or the myeloperoxidase-hydrogen peroxide-halide system, while methionine was efficient in all systems. A close association between myeloperoxidase and alpha1-antitrypsin was revealed by native gel electrophoresis and in-gel peroxidase staining. In addition, alpha1-antitrypsin binds to the myeloperoxidase components transferred after SDS-PAGE on a blotting membrane. With this complex formation, myeloperoxidase overcomes the natural antioxidative protective system of plasma and prevents the inactivation of alpha1-antitrypsin.  相似文献   

12.
Malonylated flavonol glycosides from the petals of Clitoria ternatea   总被引:2,自引:0,他引:2  
Kazuma K  Noda N  Suzuki M 《Phytochemistry》2003,62(2):229-237
Three flavonol glycosides, kaempferol 3-O-(2"-O-alpha-rhamnosyl-6"-O-malonyl)-beta-glucoside, quercetin 3-O-(2"-O-alpha-rhamnosyl-6"-O-malonyl)-beta-glucoside, and myricetin 3-O-(2",6"-di-O-alpha-rhamnosyl)-beta-glucoside were isolated from the petals of Clitoria ternatea cv. Double Blue, together with eleven known flavonol glycosides. Their structures were identified using UV, MS, and NMR spectroscopy. They were characterized as kaempferol and quercetin 3-(2(G)- rhamnosylrutinoside)s, kaempferol, quercetin, and myricetin 3-neohesperidosides, 3-rutinosides, and 3-glucosides in the same tissue. In addition, the presence of myricetin 3-O-(2"-O-alpha-rhamnosyl-6"-O-malonyl)-beta-glucoside was inferred from LC/MS/MS data for crude petal extracts. The flavonol compounds identified in the petals of C. ternatea differed from those reported in previous studies.  相似文献   

13.
Quercetin 2,3-dioxygenase (2,3QD) is a copper-containing dioxygenase that catalyses the oxidation of the flavonol quercetin to 2-protocatechuoylphloroglucinol carboxylic acid with concomitant production of carbon monoxide. In contrast to iron dioxygenases, very little is known about copper dioxygenases. We have characterized 2,3QD from the fungus Aspergillus japonicus by electron paramagnetic resonance spectroscopy (EPR). At pH 6.0, 2,3QD shows a mixture of two EPR species. The major form has parameters typical of type 2 Cu sites (g// = 2.330, A// = 13.7 mT), the minor one has a more distorted geometry (g// = 2.290, A// = 12.5 mT). Anaerobic addition of the substrate quercetin results in a different, single species EPR spectrum with g// = 2.336, A// = 11.4 mT, parameters, which are in-between those of the type 2 and type 1 Cu sites in the Peisach-Blumberg (g// vs. A//) plot. After turnover, a new EPR signal is observed, which is ascribed to the carboxylic acid ester product complex. This spectrum is similar to that of the native enzyme at pH 10.0 and has g-tensor parameters suggesting a trigonal bipyramidal site. Of a variety of flavonoids studied, only flavonols are able to bind to the copper centre of 2,3QD. Nine flavonols with different hydroxylation patterns at the A- and B-ring have been analysed. They cluster in two different regions of the Peisach-Blumberg plot and show that the presence of a 5-OH group has a large effect on the A// parameter. Several differences are noted between A. japonicus 2,3QD and the enzyme from A. niger German Collection of Microorganisms 821.  相似文献   

14.
Flavonol-deficient petunia pollen [conditionally male fertile (CMF) pollen] is unable to germinate but application of nanomolar concentrations of flavonol aglycones completely restores function (Mo et al. 1992). In this study a chemically synthesized radioactive flavonol, [4′-O-14C]kaempferide, was used as a model compound to study the metabolism of flavonols during the first few hours of pollen germination. [4′-O-14C] Kaempferide was as efficient at inducing CMF pollen germination as kaempferol and quercetin, the aglycone form of the endogenous flavonols in petunia pollen. Analysis by high-performance liquid chromatography (HPLC) of extracts from both in-vitro-germinated pollen and the germination medium showed that more than 95% of the applied radioactivity was recovered as three kaempferide 3-O-glycosides and unmetabolized kaempferide; no flavonol catabolites were detected. Only HPLC fractions that contained the aglycone, or produced it upon acid hydrolysis, could induce CMF pollen germination in vitro. Structurally diverse flavonols could be classified according to how efficiently the aglycone was internalized and glycosylated during pollen germination. The ability of an individual flavonol to restore germination correlated with the total uptake of flavonols but not with the amount of glycoside formed in the pollen. Thus this study reinforces the conclusion that flavonol aglycones are the active compound for inducing pollen germination. Received: 4 November 1996/Accepted: 4 December 1996  相似文献   

15.
Dai F  Miao Q  Zhou B  Yang L  Liu ZL 《Life sciences》2006,78(21):2488-2493
The in vitro oxidative hemolysis of human red blood cells (RBCs) was used as a model to study the free radical-induced damage of biological membranes and the protective effect of flavonols and their glycosides (FOHs), i.e., myricetin (MY), quercetin (Q), morin (MO), kaempferol (K), rutin (R), quercetin galactopyranoside (QG), quercetin rhamnopyranoside (QR), and kaempferol glucopyranoside (KG). The hemolysis of RBCs was induced by a water-soluble free radical initiator 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH). It was found that addition of AAPH at 37 degrees C to the suspension of RBCs caused fast hemolysis after a short period of inhibition period, and addition of FOHs significantly suppressed the hemolysis. The FOHs (MY, Q, R, QG and QR) which bears an ortho-dihydroxyl functionality showed much more effective anti-hemolysis activity than that of the other FOHs (MO, K and KG) bearing no such functionality.  相似文献   

16.
Five controversial species of Fallopia sect. Fallopia sensu Holub were examined for leaf flavonoid constituents. Twenty-one flavonoid compounds were isolated and identified; they were glycosylated derivatives of the flavonols kaempferol, quercetin, and myricetin, and of the flavones apigenin and luteolin. Among them, quercetin 3-O-galactoside and quercetin 3-O-glucoside were major flavonoid constituents and present in all species. Although the flavonoid data for some species are lacking, those available appear to be useful for species delimitation and for recognizing species relationships in the section. The flavonoid data, in conjunction with morphological evidence, strongly suggest that F. scandens, F. dentatoalata, F. dumetorum, and F. convolvulus are closely allied but distinct species. In addition, the flavonoid data for F. cilinodis lend additional support to the segregation of sect. Parogonum from sect. Fallopia.  相似文献   

17.
Spectral properties of flavonols of three varieties (Golden Delicious, Antonovka, and Renet Simirenko) of anthocyanin-free apple fruit were investigated with reflectance spectroscopy. The results of spectral and biochemical analyses suggested that fruit reflectance in a broad spectral range 365-430 nm is strongly dependent on and, in sunlit fruit surfaces, governed by flavonols. The build up of peel flavonols (mainly rutin and other quercetin glycosides) resulted in a dramatic decrease of fruit reflectance in this range, flattening of the spectrum, and extending the region with low reflectance (4-5%) to ca. 410 nm. The spectral features observed suggest that flavonols contribute significantly to screening of excessive radiation, not only UV-A, but in the short-wave bands of chlorophyll and carotenoid absorption in the visible part of the spectrum as well. To retrieve quantitatively flavonol content from reflectance spectra, we tested the applicability of an inversion technique developed for non-destructive leaf pigment assessment. The model for flavonol content assessment was suggested in the form (R(-1)410 - R(-1)460)R800, where Rlambda is reflectance at wavelength lambda. The model was linearly related to flavonol content between 8 and 220nmol/cm2 with the coefficient of determination r2=0.92 and root mean square error of flavonol estimation of 20 nmol/ cm2 regardless of cultivar, chlorophyll, and carotenoid content.  相似文献   

18.
We have isolated and identified seven flavonoid compounds from the foliar extracts ofHeloniopsis orientalis, a member of Liliaceae, which is habituated at Namhansanseong and Maranggol (Jinburyung). All are glycosylated derivatives of the flavonols isorhamnetin, kaempferol, and quercetin. Among them, quercetin 3-O-galactoside is the major compound, while isorhamnetin 3-O-arabinosylgalactoside, isorhamnetin 3-O-digalactoside, kaempferol 3,7-O-galactoside, kaempferol 3-O-arabinosylgalactoside, kaempferol 3-O-glycoside, and quercetin 3-O-arabinosylgalactoside are present in smaller amounts. Although the two populations do not differ significantly in their overall flavonol profiles, their relative amounts indicate that flavonoid levels, especially for isorhamnetin, are geographically controlled and specifically depend on the origin of the individual population.  相似文献   

19.
40 compounds structurally related to the plant flavonol quercetin were tested for mutagenic activity in Salmonella typhimurium strain TA98. 10 flavonols, quercetin, myricetin, rhamnetin, galangin, kaempferol, tamarixetin, morin, 3'-O-methylquercetin, 7,4'-di-O-methylquercetin and 5,7-di-O-methyl-quercetin, exhibited unequivocal mutagenic activity. 4 compounds, quercetin, myricetin, rhamnetin and 5,7-di-O-methylquercetin, were active without metabolic activation, although metabolic activation markedly enhanced their activity. All 4 have free hydroxyl groups at the 3' and 4' positions of the B ring. The other active compounds required an in vitro rat-liver metabolizing system for significant activity. Structural features which appear essential for mutagenic activity in this strain are a basic flavanoid ring structure with (1) a free hydroxyl group at the 3 position, (2) a double bond at the 2, 3 position, (3) a keto group at the 4 position, and (4) a structure which permits the proton of the 3-hydroxyl group to tautomerise to a 3-keto compound. The data are consistent with the requirement for a B ring structure that permits oxidation to quininoid intermediates. Free hydroxyl groups in the B ring are not essential for activity if a rat-liver metabolic activating system is employed. Data from 12 compounds which differ only at the essential sites described above indicate that the structural requirements for mutagenicity in strain TA100 are the same as those for activity in strain TA98. Based on the above structural requirements, a metabolic pathway for flavonol activation to DNA-reactive species is proposed.  相似文献   

20.
The metal chelating properties of flavonoids suggest that they may play a role in metal-overload diseases and in all oxidative stress conditions involving a transition metal ion. A detailed study has been made of the ability of flavonoids to chelate iron (including Fe 3+ ) and copper ions and its dependence of structure and pH. The acid medium may be important in some pathological conditions. In addition, the ability of flavonoids to reduce iron and copper ions and their activity-structure relationships were also investigated. To fulfil these objectives, flavones (apigenin, luteolin, kaempferol, quercetin, myricetin and rutin), isoflavones (daidzein and genistein), flavanones (taxifolin, naringenin and naringin) and a flavanol (catechin) were investigated. All flavonoids studied show higher reducing capacity for copper ions than for iron ions. The flavonoids with better Fe 3+ reducing activity are those with a 2,3-double bond and possessing both the catechol group in the B-ring and the 3-hydroxyl group. The copper reducing activity seems to depend largely on the number of hydroxyl groups. The chelation studies were carried out by means of ultraviolet spectroscopy and electrospray ionisation mass spectrometry. Only flavones and the flavanol catechin interact with metal ions. At pH 7.4 and pH 5.5 all flavones studied appear to chelate Cu 2+ at the same site, probably between the 5-hydroxyl and the 4-oxo groups. Myricetin and quercetin, however, at pH 7.4, appear to chelate Cu 2+ additionally at the ortho -catechol group, the chelating site for catechin with Cu 2+ at pH 7.4. Chelation studies of Fe 3+ to flavonoids were investigated only at pH 5.5. Only myricetin and quercetin interact strongly with Fe 3+ , complexation probably occurring again between the 5-hydroxyl and the 4-oxo groups. Their behaviour can be explained by their ability to reduce Fe 3+ at pH 5.5, suggesting that flavonoids reduce Fe 3+ to Fe 2+ before association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号