首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We describe a method for more accurately determining residual biotinidase activity in sera of individuals with profound biotinidase deficiency. Using this method we found that there is a statistically significant difference in the means of residual serum enzyme activities of symptomatic children and those identified by newborn screening. A subgroup of children identified by screening have activities higher than any of the symptomatic population. These children may develop mild symptoms, may develop symptoms later in life, or may not develop symptoms at all.  相似文献   

2.
Biotinidase deficiency is an autosomal recessively inherited disorder in the recycling of the vitamin biotin. The most common mutation that causes profound biotinidase deficiency in symptomatic individuals is a deletion/insertion (G98:d7i3) that occurs in exon B of the biotinidase gene. We now report the second most common mutation, a C-to-T substitution (position 1612) in a CpG dinucleotide in exon D of the biotinidase gene. This mutation results in the substitution of a cysteine for arginine538 (designated R538C) and was found in 10 of 30 symptomatic children with profound biotinidase deficiency, 5 of whom also have the G98:d7i3 mutation. This mutation was not found in DNA samples from 32 individuals with normal biotinidase activity, but was found in one individual with enzyme activity in the heterozygous range. This mutation was not detected in 371 randomly selected, normal individuals using allele-specific oligonucleotide hybridization analysis. Aberrant biotinidase protein was not detectable in extracts of fibroblasts from a child who is homozygous for the R538C mutation, but was present in less than normal concentration in identical extracts treated with β-mercaptoethanol. Because there is no detectable biotinidase protein in sera of children who are homozygous for the R538C mutation and in combination with the deletion/insertion mutation, the R538C mutation likely results in inappropriate intra- or intermolecular disulfide bond formation, more rapid degradation of the aberrant enzyme, and failure to secrete the residual aberrant enzyme from the cells into blood. Received: 13 August 1996 / Revised: 13 November 1996  相似文献   

3.
Newborn screening for biotinidase deficiency has identified children with profound biotinidase deficiency (<10% of mean normal serum activity) and those with partial biotinidase deficiency (10%–30% of mean normal serum activity). Children with partial biotinidase deficiency and who are not treated with biotin do not usually exhibit symptoms unless they are stressed (i.e., prolonged infection). We found that 18 of 19 randomly selected individuals with partial deficiency have the transversion missense mutation G1330>C, which substitutes a histidine for aspartic acid444 (D444H) in one allele of the biotinidase gene. We have previously estimated that the D444H mutation results in 48% of normal enzyme activity for that allele and occurs with an estimated frequency of 0.039 in the general population. The D444H mutation in biotinidase deficiency is similar to the Duarte variant in galactosemia. The D444H mutation in one allele in combination with a mutation for profound deficiency in the other allele is the common cause of partial biotinidase deficiency. Received: 8 December 1997 / Accepted: 22 January 1998  相似文献   

4.
Biotinidase cleaves biotin from biocytin, thereby recycling the vitamin. We have determined the structure of the human biotinidase gene. A genomic clone, containing three exons that code for the mature enzyme, was obtained by screening a human genomic bacteriophage library with the biotinidase cDNA by plaque hybridization. To obtain a clone containing the most 5′ exon of the biotinidase cDNA, a human PAC library by PCR was screened. The human biotinidase gene is organized into four exons and spans at least 23 kb. The 5′-flanking region of exon 1 contains a CCAAT element, three initiator sequences, an octamer sequence, three methylation consensus sites, two GC boxes, and one HNF-5 site, but has no TATA element. The region from nt −600 to +400 has features of a CpG island and resembles a housekeeping gene promoter. The structure and sequence of this gene are useful for identifying and characterizing mutations that cause biotinidase deficiency. Received: 30 September 1997 / Accepted: 5 December 1997  相似文献   

5.
Renewed interest in biotinidase, the enzyme responsible for recycling the vitamin biotin, initially came from the discovery of biotinidase deficiency in 1982. Since then, the elucidation of other activities of the enzyme, alternative splicing of the biotinidase gene and differential subcellular localization of the enzyme have prompted speculation and investigations of its other possible functions. The results of these studies have implicated biotinidase in aspects of biotin metabolism, specifically the biotinylation of various proteins, such as histones. Biotinidase may have an important regulatory role(s) in chromatin/DNA function.  相似文献   

6.
Biotinidase deficiency is an autosomal recessive disorder of biotin metabolism leading to varying degrees of neurologic and cutaneous symptoms when untreated. In the present study, we report the clinical features and the molecular investigation of biotinidase deficiency in four unrelated consanguineous Algerian families including five patients with profound biotinidase deficiency and one child characterized as partial biotinidase deficiency. Mutation analysis revealed three novel mutations, c.del631C and c.1557T>G within exon 4 and c.324-325insTA in exon 3. Since newborn screening is not available in Algeria, cascade screening in affected families would be very helpful to identify at risk individuals.  相似文献   

7.
J Oizumi  K Hayakawa  M Hosoya 《Biochimie》1989,71(11-12):1163-1169
Biotinidase was purified from human breast milk (4,000-fold), and was compared with human serum biotinidase (enriched 30,000-fold). The molecular weight of milk enzyme was 68,000 Da as determined by SDS-PAGE. It was definitely smaller than that of serum biotinidase (Mr = 76,000). Isoelectric point of milk biotinidase was 4.6, whereas that of serum biotinidase was 4.3. Sialic acid content in milk biotinidase was less than that found in serum enzyme. N-Acetyl-galactosamine was present in milk enzyme, whereas it was absent in serum enzyme. Milk biotinidase is O-glycosylated, whereas serum biotinidase is N-glycosylated. These differences in glycosylation suggest the existence of different types of excretion mechanisms between milk and serum biotinidase. Both biotinidases were found to be thiol-type enzyme, however, the extent of activation of the enzyme by 2-mercaptoethanol was 13-fold in milk, whilst the serum enzyme was activated only 1.5-fold. Km for biotinyl-4-amino-benzoate was 22 microM in milk enzyme and 50 microM in serum enzyme. Competitive inhibition by biotin (Ki) of milk enzyme was 43 microM and 1.3 mM for serum enzyme. These results suggest the structural differences at or near the active site of the each enzyme.  相似文献   

8.
The effects of a disulfide reducing agent and sulfhydryl blocking agents on the biotinidase activity in human serum and on the purified biotinidase have been extensively studied by using a newly developed HPLC assay method. This HPLC method directly measures the product (p-aminobenzoate, PAB), and is not interfered with by sulfhydryl-reactive agents. Further, because the substrate solution of this HPLC assay method contains only substrate (biotin 4-amidobenzoate) and phosphate buffer, accurate studies on the effects of sulfhydryl blocking reagents on the purified enzyme could be performed. Biotinidase activities in human sera (n = 83) were always enhanced by 2-mercaptoethanol (ME). The optimum concentration was found to be 1 mM. The degree of activation was variable (100 to 400% of the original) depending on the serum sample. Sulfhydryl blocking reagents such as organic mercurials were tested on fresh serum and purified enzyme. Mercuric agents were found to inhibit the activity of fresh serum and purified enzyme at 0.05 and 0.005 mM, respectively. Sulfhydryl alkylating agents, N-ethylmaleimide (NEM) and dithiobis(2-nitro)benzoic acid (DTNB), inhibited 100 and 64% of the activity of the purified enzyme at 0.1 and 1.0 mM, respectively. However, lower concentrations (less than 5 nM) of organic mercurials and mercuric ion exhibited a slight enhancement (20-30%) of the activity of the purified enzyme. These results indicate the presence of an essential sulfhydryl residue at the active center. The enzyme contains 2.5 sulfhydryls per molecule, as determined by using Ellman's assay method. Serine protease inhibitors such as phenylmethylsulfonyl fluoride (PMSF) and diisopropylfluorophosphate (DFP) did not inhibit the enzyme activity at 0.05 mM or higher concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Purification and characterization of human serum biotinidase   总被引:3,自引:0,他引:3  
Biotinidase has been purified from human serum to a specific activity of 1900 units/mg protein by a five-step procedure. After ammonium sulfate precipitation (33-55% cut) it was purified by DEAE-Sephacel, hydroxylapatite, octyl-Sepharose CL-4B, and Sephadex G-100 chromatography. The purified enzyme showed a single silver staining band with polyacrylamide gel electrophoresis under denaturing and non-denaturing conditions. Biotinidase is a glycoprotein. The sialic acid residues in the molecule are not required for enzyme activity. The Mr of human serum biotinidase estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Ferguson plot) and by sedimentation analysis was 68,000. Human serum biotinidase showed maximum activity in the pH range 6.0 to 7.5 with N-(d-biotinyl) p-aminobenzoate as substrate. However, with biocytin as substrate, the maximal activity of the enzyme was in the pH range 4.5 to 6.0. Using structural analogs of the substrate we have shown that biotinidase is not a general proteolytic enzyme and has specific structural requirements in the substrate for hydrolysis.  相似文献   

10.
Purified human serum biotinidase exhibited amino-exo-peptidase activity. Enkephalins and dynorphin A (less than 10-mer) seemed to be the most appropriate substrates among various physiological peptides in terms of the kcat/Km values. Similar kcat/Km values were obtained for both biocytin (biotinyllysine) and these opioid-neuropeptides. Neuro-oligo-peptides ranging from 2-mer to 18-mer were hydrolyzed. The presence of amino group at the carboxyl terminal position increased the kcat/Km value by decreasing the Km value. The results of inhibition studies using various kinds of antibiotic inhibitors, metals, and chelating agents indicated that enkephalin hydrolysis was mediated by the peptide-hydrolyzing center probably containing Zn ions. This aminopeptidase activity was uniquely inhibited by a vitamin of biocytin. The reason for the high content of biotinidase activity in serum may be related to the binary function of this enzyme; i.e., biocytin hydrolyzing amidase and enkephalin hydrolyzing aminopeptidase functions.  相似文献   

11.
Enzyme kinetic parameters, such as K(m), V(max) (or V), k(cat)/K(m), and K(i) (by biotin or lipoic acid) for biotinidase and lipoamidase were determined in Lewis (LEW) rat and Lactobacillus casei (Shirota) using fluorimetric high-performance liquid chromatography (HPLC). It was found that the final protein concentration below 0.1mg/ml is sufficient to obtain linear hydrolytic reaction and to determine the Michaelis-Menten type kinetic parameters (K(m), V, K(i)). We applied this HPLC enzyme assay method onto the rat and some bacteria. The highest specific activities (Vs) for biotinidase were found in Lactobacillus casei (Shirota) and rat kidney. It was also found that the largest K(i) by product for biotinidase and lipoamidase were present in the Lactobacillus casei (Shirota). There has been found specie (between rat and mouse) differences and tissue (organ) differences, together with tissue region differences and sex differences in some tissues. Summary of the distributions of both enzymes in LEW rat was also presented. Therefore, this HPLC determination method for the enzyme kinetic parameters in tissues is expected to be an indispensable tool for the investigation of the various diseases in humans.  相似文献   

12.
Summary DL-ethionine increases the activity of liver biotinidase, an enzyme which hydrolyzes biotinylesters and biotinylpeptides. Chronic DL-ethionine feeding increases transiently the activity of biotinidase in mouse and rat liver, after which it remains elevated in the serum. In the present work we show that both isomers of DL-ethionine are equally good enhancers of the liver biotinidase, while, 3-ethylthiopropionate, the toxic metabolite of DL-ethionine, has no effect on the biotinidase activity of either liver or serum. We have also employed two different combinations of inhibitors of the hydrolytic pathway of SAH, a transmethylation product and potent inhibitor of methylation. It was found that these inhibitors (EHNA and Ara-A, 2-deoxycoformycin and adenosine) increase the activity of serum biotinidase as was the case with ethionine. Because SAH does not ethylate biomolecules, these changes in biotinidase activity, which can not be preveneted by adenine, biotin or lecithin are most probably related to the inhibition of methylation.Abbreviations Ara-A 9--D-arabinofuranosyladenine - EHNA erythro-9-(2-hydroxy-3-nonyl)adenine - SAE S-adenosylethionine - SAH S-adenosylhomocysteine - SAM S-adenosylmethionine  相似文献   

13.
In a Muslim Israeli Arab village, different types of hearing loss affect some 2% of the inhabitants. Most cases of profound deafness are due to recessive mutations in the Connexin-26 gene. Since in this community, marriages are by preference within the family (consanguineous), for many of the couples from the village the risk for an affected child is high. There are 30 families living in the village in which both parents have normal hearing and at least one child has a profound hearing defect. In these families, the birth of a child with profound deafness did not change family planning. The rate of marriage was similar for the siblings of deaf children as for other individuals in the village. The major problems were encountered by the deaf individuals themselves; in particular, most of the women were not married. Because of the distinctive nature of this particular problem, different types of screening programs were envisaged. However, all of them are problematic. Therefore, as a first step it was decided to begin a program including individual genetic counseling together with education of the entire population on practical aspects of human genetics.  相似文献   

14.
In the short day plant Chenopodium rubrum and the long day plant Nicotiana tabacum cv. Havana 425, adenylate kinase (EC 2.7.4.3) occurs as a family of isoforms, with at least two members localized in the chloroplast representing the main isoforms. In this work, isoforms were separated by anion exchange chromatography and relative isoform activities were compared between vegetative plants and plants induced to flowering. In both species examined, a light regime leading to floral induction resulted in a significant decrease in the activity of one chloroplast isoform. This decrease modified considerably the relative distribution of isoform activities, especially that between the two chloroplast activities.  相似文献   

15.
Biotinidase activity was measured in plasmas of 1-, 7-, 14-, and 21-day-old rats from control dams and dams that had been fed a biotin-depleting diet from Day 15 of gestation. Biotinidase activity increased significantly in the plasma of rats from control and depleted mothers until Postnatal Day 14, after which there was a small but significant decline at Day 21. Differences between the mean activities of the two groups of pups on each sampling day were not significant and there were no significant differences in activity levels attributable to sex. Plasma albumin concentrations increased from birth until Day 21, and plasma biotinidase activity and albumin concentration were significantly correlated (r = +/- 0.43). We suggested that these two proteins may be controlled by a common mechanism in the early postnatal period, and that biotin deficiency does not affect the development of biotinidase activity. Because biotin-depleted neonatal pups show developmental changes in biotinidase activity similar to those of human newborns, and they can be produced reliably by depleting dams from Day 15 of gestation, they may be useful models for studying the developmental abnormalities associated with human biotinidase deficiency.  相似文献   

16.
Purified biotinidase (enriched 24,000-fold) from fresh human plasma exhibited reduced catalytic activity when incubated with heat-inactivated dialyzed plasma. The polypeptide fractions separated from the heat-inactivated dialyzed plasma using streptavidin-Sepharose resin showed the same effect on purified biotinidase. These inhibitory effects on biotinidase were partial (25-45%) rather than complete. The polypeptide fraction from streptavidin-Sepharose resin was analyzed by SDS-PAGE in the Laemmli system and by various types of HPLC. Analyses by ion-exchange and reversed-phase HPLC revealed the existence of three relatively small mol. wt polypeptides. Each of these peak fractions exhibited similar inhibitory effects on biotinidase activity. SDS-PAGE analysis indicated that the streptavidin affinity resin fraction was composed of four major polypeptides whose mol. wts were 120,000, 76,000, 53,000 and 27,000. The two bands of 120,000 and 76,000 corresponded to the mol. wts of the biotinyl subunit of pyruvate carboxylase, beta-methyl-crotonyl-CoA and/or propionyl-CoA carboxylase respectively. However, the polypeptides of mol. wts 53,000 and 27,000 were found to be two unique biotinyl-peptides present in human plasma. These bands on the gels were transblotted and exhibited a fluorescent activity after incubated with a FITC-avidin. These findings strongly suggest the existence of circulating plasma biotinyl-polypeptides as inhibitory factor(s) on human plasma biotinidase.  相似文献   

17.
Plasma platelet activating factor-acetylhydrolase (PAF-AH)   总被引:9,自引:0,他引:9  
The platelet-activating factor-acetylhydrolase (PAF-AH) is an enzyme which catalyzes the hydrolysis of acetyl ester at the sn-2 position of PAF. The family of PAF-AHs consists of two intracellular isoforms (Ib and II), and one secreted isoform (plasma). These PAF-AHs show different biochemical characteristics and molecular structures. Plasma PAF-AH and intracellular isoform, II degrade not only PAF but also oxidatively fragmented phospholipids with potent biological activities. Among these PAF-AHs, plasma PAF-AH has been the target of many clinical studies in inflammatory diseases, such as asthma, sepsis, and vascular diseases, because the plasma PAF-AH activity in the patients with these diseases is altered when compared with normal individuals. Finding a genetic deficiency in the plasma PAF-AH opened the gate in elucidating the protecting role of this enzyme in inflammatory diseases. The most common loss-of-function mutation, V279F, is found in more than 30% of Japanese subjects (4% homozygous, 27% heterozygous). This single nucleotide polymorphism in plasma PAF-AH and the resulting enzymatic deficiency is thought to be a genetic risk factor in various inflammatory diseases in Japanese subjects. Administration of recombinant plasma PAF-AH or transfer of the plasma PAF-AH gene improves pathology in animal models. Therefore, substitution of plasma PAF-AH would be an effective in the treatment of the patients with the inflammatory diseases and a novel clinical approach. In addition, the detection of polymorphisms in the plasma PAF-AH gene and abnormalities in enzyme activity would be beneficial in the diagnosis of the inflammatory diseases.  相似文献   

18.
An investigation was conducted in which the stabilities of four structurally different biotin derivatives were assessed with regard to biotinamide bond hydrolysis by the enzyme biotinidase. The biotin derivatives studied contained an extra methylene in the valeric acid chain of biotin (i.e., homobiotin), or contained conjugated amino acids having hydroxymethylene, carboxylate, or acetate functionalities on a methylene alpha to the biotinamide bond. The biotinidase hydrolysis assay was conducted on biotin derivatives that were radioiodinated at high specific activity, and then subjected to diluted human serum at 37 degrees C for 2 h. After incubation, assessment of biotinamide bond hydrolysis by biotinidase was readily achieved by measuring the percentage of radioactivity that did not bind with avidin. As controls, an unsubstituted biotin derivative which is rapidly cleaved by biotinidase and an N-methyl-substituted biotin derivative which is stable to biotinidase cleavage were included in the study. The results indicate that increasing the distance from the biotin ring structure to the biotinamide bond by one methylene only decreases the rate of biotinidase cleavage, but does not block it. The data obtained also indicate that placing a hydroxymethylene, carboxylate, or acetate alpha to the biotinamide bond is effective in blocking the biotinamide hydrolysis reaction. These data, in combination with data previously obtained, which indicate that biotin derivatives containing hydroxymethylene or carboxylate moieties retain the slow dissociation rate of biotin from avidin and streptavidin [Wilbur, D. S., et al. (2000) Bioconjugate Chem. 11, 569-583], strongly support incorporation of these structural features into biotin derivatives being used for in vivo targeting applications.  相似文献   

19.
Biotinidase catalyzes the hydrolysis of N epsilon-biotinyllysine (biocytin) to form biotin and free lysine. The enzyme has been purified 4800-fold from outdated human plasma and was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to have a molecular weight of (76 +/- 2) X 10(3). The same molecular weight was found by molecular sieve chromatography under nondenaturing conditions, indicating biotinidase is a monomer. This value is in contrast to a molecular weight of 115 000 determined by Pispa [Pispa, J. (1965) Ann. Med. Exp. Biol. Fenn., Suppl. 5, 5-39] with an impure biotinidase. The Km for biocytin was 6.2 X 10(-6) M, and biotinidase was found to be sensitive to phenylmethanesulfonamide and iodoacetamide in agreement with earlier studies by Knappe and co-workers [Knappe, J., Brümmer, W., & Bierderbick, K. (1963) Biochem. Z. 338, 599-613], who suggested that serine hydroxyl groups and sulfhydryl groups are essential for enzymatic activity. The specificity of biotinidase was examined by using synthetic and natural biotinyl peptides isolated by specific proteolytic cleavage of the biotinyl subunit of transcarboxylase. It was found that the rate of hydrolysis of biocytin was 83-fold higher than that found for biotin-containing peptides 5-13 residues in length. Removal of methionine from either side of the conserved region around the biocytin did not greatly alter the rate of cleavage. Increasing the peptide to 65-123 residues in length decreased the rate 1200-fold compared to that of biocytin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
1. In order to investigate the distribution of myotoxin isoforms in the snake Bothrops asper, venoms from individual specimens were analyzed by a cathodic electrophoretic system for basic proteins under native conditions. 2. The electrophoretic system resolved at least five bands with slight differences in mobility, corresponding to the fastest migrating proteins in the venom. The identity of the bands was confirmed by immunoblotting, using a rabbit anti-myotoxin serum. 3. There were clear differences in the individual patterns of myotoxin isoform expression, both in specimens from the Atlantic and Pacific regions of Costa Rica. Some individuals possessed all five variants. 4. In agreement with previous reports, the venoms of ten newborn (less than 10 days of age) specimens completely lacked myotoxin bands, indicating an ontogenetic regulation in the expression of these toxins in B. asper. 5. One of the bands, corresponding to the lysine-49 phospholipase myotoxin II, was the only isoform present in all individuals studied, suggesting a possible selective pressure for the conservation of this type of protein in the venom of B. asper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号