首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The functions of the putative cadaverine transport protein CadB were studied in Escherichia coli. CadB had both cadaverine uptake activity, dependent on proton motive force, and cadaverine excretion activity, acting as a cadaverine-lysine antiporter. The Km values for uptake and excretion of cadaverine were 20.8 and 303 microM respectively. Both cadaverine uptake and cadaverine-lysine antiporter activities of CadB were functional in cells. Cell growth of a polyamine-requiring mutant was stimulated slightly at neutral pH by the cadaverine uptake activity and greatly at acidic pH by the cadaverine-lysine antiporter activity. At acidic pH, the operon containing cadB and cadA, encoding lysine decarboxylase, was induced in the presence of lysine. This caused neutralization of the extracellular medium and made possible the production of CO(2) and cadaverine and aminopropylcadaverine instead of putrescine and spermidine. The induction of the cadBA operon also generated a proton motive force. When the cadBA operon was not induced, the expression of the speF-potE operon, encoding inducible ornithine decarboxylase and a putrescine-ornithine antiporter, was increased. The results indicate that the cadBA operon plays important roles in cellular regulation at acidic pH.  相似文献   

2.
We report here on the existence of a new gene for lysine decarboxylase in Escherichia coli K-12. The hybridization experiments with a cadA probe at low stringency showed that the homologous region of cadA was located in lambda Kohara phage clone 6F5 at 4.7 min on the E. coli chromosome. We cloned the 5.0-kb HindIII fragment of this phage clone and sequenced the homologous region of cadA. This region contained a 2,139-nucleotide open reading frame encoding a 713-amino-acid protein with a calculated molecular weight of 80,589. Overexpression of the protein and determination of its N-terminal amino acid sequence defined the translational start site of this gene. The deduced amino acid sequence showed 69.4% identity to that of lysine decarboxylase encoded by cadA at 93.7 min on the E. coli chromosome. In addition, the level of lysine decarboxylase activity increased in strains carrying multiple copies of the gene. Therefore, the gene encoding this lysine decarboxylase was designated Idc. Analysis of the lysine decarboxylase activity of strains containing cadA, ldc, or cadA ldc mutations indicated that ldc was weakly expressed under various conditions but is a functional gene in E. coli.  相似文献   

3.
4.
5.
旨在提高谷氨酸棒杆菌合成尸胺的能力,将CadB克隆至谷氨酸棒杆菌中,与LDC共表达,在谷氨酸棒杆菌合成尸胺的同时,帮助尸胺转运至细胞外,解除尸胺的反馈抑制作用。谷氨酸棒杆菌能够高产赖氨酸脱羧酶的底物L-赖氨酸,但不含ldc和cadB基因,因而不能够直接合成尸胺。从E.coliK12中克隆出赖氨酸-尸胺反向转运蛋白基因,与绿色荧光蛋白基因gfp融合构建成融合表达载体pXBG,并转化至谷氨酸棒杆菌进行诱导表达,结果表明表达的CadB蛋白可以正确的定位于谷氨酸棒杆菌的细胞膜上。将基因cadB连接到含有赖氨酸脱羧酶基因的pXMJ19-ldc上,构建成能够共表达赖氨酸脱羧酶和赖氨酸-尸胺反向转运蛋白的重组质粒pXLB,并转化到谷氨酸棒杆菌中。  相似文献   

6.
The nucleotide sequence of one of the putrescine transport operons (pPT71), located at 16 min of the Escherichia coli chromosome, was determined. It contained the genes for an induced ornithine decarboxylase and a putrescine transport protein. The gene for the ornithine decarboxylase contained a 2,196-nucleotide open reading frame encoding a 732-amino acid protein whose calculated Mr was 82,414, and the predicted amino acid sequence from the open reading frame had 65% homology with that of a constitutive ornithine decarboxylase encoded by the gene at 64 min. The ornithine decarboxylase activity was observed in the cells carrying pPT71 cultured at pH 5.2, but not in the cells cultured at pH 7.0. The gene for the putrescine transport protein contained a 1,317-nucleotide open reading frame encoding a 439-amino acid protein whose calculated Mr was 46,494. The hydropathy profile of the putrescine transport protein revealed that it consisted of 12 putative transmembrane spanning segments linked by hydrophilic segments of variable length. The transport protein was in fact found in the membrane fraction. When the gene for the putrescine transport protein was linked to the tet promoter of the vector instead of its own promoter, the putrescine transport activity increased greatly. The results suggest that the gene expression of the operon is repressed strongly under standard conditions.  相似文献   

7.
The induction of several amino acid decarboxylases under anaerobic conditions at low pH has been known for many years, but the mechanism associated with this type of regulation has not been elucidated. To study the regulation of the biodegradative arginine and lysine decarboxylases of Escherichia coli K12, Mudlac fusions to these genes were isolated. Mudlac fusion strains deficient for lysine decarboxylase or arginine decarboxylase were identified using decarboxylase indicator media and analysed for their regulation of beta-galactosidase expression. The position of the Mudlac fusion in lysine decarboxylase-deficient strains has been mapped to the cadA gene at 93.7 minutes, while the Mudlac fusions exhibiting a deficiency in the inducible arginine decarboxylase have been mapped to 93.4 minutes.  相似文献   

8.
The cad operon encodes lysine decarboxylase and a protein homologous to amino acid antiporters. These two genes are induced under conditions of low pH, anaerobiosis, and excess lysine. The upstream regulatory region of the cad operon has been cloned into lacZ expression vectors for analysis of the sequences involved in these responses. Deletion analysis of the upstream region and cloning of various fragments to make cadA::lacZ or cadB::lacZ protein fusions or operon fusions showed that cadA was translated more efficiently than cadB and localized the pH-responsive site to a region near an upstream EcoRV site. Construction of defined end points by polymerase chain reaction further localized the left end of the regulatory site. The presence of short fragments bearing the regulatory region on high-copy-number plasmids greatly reduced expression from the chromosomal cad operon, suggesting that titration of an essential activator protein was occurring. With nonoptimal polymerase chain reaction conditions, a set of single point mutants were made in the upstream regulatory region. Certain of these altered regulatory regions were unable to compete for the regulatory factor in vivo. The locations of these essential bases indicate that a sequence near the EcoRV site is very important for the activator-DNA interaction. In vivo methylation experiments were conducted with cells grown at pH 5.5 or at pH 8, and a difference in protection was observed at specific G residues in and around the region defined as important in pH regulation by the mutation studies. This work defines essential sequences for acid induction of this system involved in neutralization of extracellular acid.  相似文献   

9.
We previously reported that mutations in hns, the structural gene for the histone-like protein H-NS, cause derepressed expression of cadA, which encodes the acid-inducible lysine decarboxylase at noninducing pH (pH 8.0). This study reports the characterization of a plasmid isolated from an Escherichia coli library that suppresses the effect of an hns mutation on cadA expression. A previously sequenced open reading frame, leuO, proves to be the gene that causes the hns-complementing phenotype. The mechanism for this phenotype appears to be overexpression of leuO from a multicopy plasmid, which drastically reduces production of CadC, the essential activator for cadA induction. These results show an in vivo regulatory phenotype for leuO, consistent with its proposed protein sequence.  相似文献   

10.
We have previously described a polyamine-deficient strain of Escherichia coli that contained deletions in speA (arginine decarboxylase), speB (agmatine ureohydrolase), speC (ornithine decarboxylase), and speD (adenosylmethionine decarboxylase). Although this strain completely lacked putrescine and spermidine, it was still able to grow at a slow rate indefinitely on amine-deficient media. However, these cells contained some cadaverine (1,5-diaminopentane). To rule out the possibility that the presence of cadaverine permitted the growth of this strain, we isolated a mutant (cadA) that is deficient in cadaverine biosynthesis, namely, a mutant lacking lysine decarboxylase, and transduced this cadA gene into the delta (speA-speB) delta speC delta D strain. The resultant strain had essentially no cadaverine but showed the same phenotypic characteristics as the parent. Thus, these results confirm our previous findings that the polyamines are not essential for the growth of E. coli or for the replication of bacteriophages T4 and T7. We have mapped the cadA gene at 92 min; the gene order is mel cadA groE ampA purA. A regulatory gene for lysine decarboxylase (cadR) was also obtained and mapped at 46 min; the gene order is his cdd cadR fpk gyrA.  相似文献   

11.
A total of 40 fecal and environmental isolates, including 26 Escherichia coli strains, 9 members of the genus Klebsiella, and 5 members of the genus Enterobacter, were tested by enzyme assay for their endogenous and induced levels of lysine decarboxylase and ornithine decarboxylase when grown in Moeller decarboxylase medium. All of the coliforms examined had measurable lysine decarboxylase and ornithine decarboxylase activities whether or not they were positive in the Moeller test. In general, the Moeller lysine decarboxylase test reflected the inducibility of lysine decarboxylase whereas the Moeller ornithine decarboxylase test did not relect the inducibility of ornithine decarboxylase. Neither test measured the amount of intracellular enzyme; rather, they indicated whether the amount of polyamine liberated was sufficient to raise the pH of the culture medium above 7. Changing the growth conditions (i.e., the concentrations of glucose, lysine, and amino acids other than lysine) greatly influenced the lysine decarboxylase activity in coliforms. The limitations on the interpretation of the Moeller test results are discussed.  相似文献   

12.
A total of 40 fecal and environmental isolates, including 26 Escherichia coli strains, 9 members of the genus Klebsiella, and 5 members of the genus Enterobacter, were tested by enzyme assay for their endogenous and induced levels of lysine decarboxylase and ornithine decarboxylase when grown in Moeller decarboxylase medium. All of the coliforms examined had measurable lysine decarboxylase and ornithine decarboxylase activities whether or not they were positive in the Moeller test. In general, the Moeller lysine decarboxylase test reflected the inducibility of lysine decarboxylase whereas the Moeller ornithine decarboxylase test did not relect the inducibility of ornithine decarboxylase. Neither test measured the amount of intracellular enzyme; rather, they indicated whether the amount of polyamine liberated was sufficient to raise the pH of the culture medium above 7. Changing the growth conditions (i.e., the concentrations of glucose, lysine, and amino acids other than lysine) greatly influenced the lysine decarboxylase activity in coliforms. The limitations on the interpretation of the Moeller test results are discussed.  相似文献   

13.
Lactic acid bacteria play a pivotal role in many food fermentations and sometimes represent a health threat due to the ability of some strains to produce biogenic amines that accumulate in foods and cause trouble following ingestion. These strains carry specific enzymatic systems catalyzing the uptake of amino acid precursors (e.g., ornithine and lysine), the decarboxylation inside the cell, and the release of the resulting biogenic amines (e.g., putrescine and cadaverine). This study aimed to identify the system involved in production of cadaverine from lysine, which has not been described to date for lactic acid bacteria. Strain Lactobacillus saerimneri 30a (formerly called Lactobacillus sp. 30a) produces both putrescine and cadaverine. The sequencing of its genome showed that the previously described ornithine decarboxylase gene was not associated with the gene encoding an ornithine/putrescine exchanger as in other bacteria. A new hypothetical decarboxylation system was detected in the proximity of the ornithine decarboxylase gene. It consisted of two genes encoding a putative decarboxylase sharing sequence similarities with ornithine decarboxylases and a putative amino acid transporter resembling the ornithine/putrescine exchangers. The two decarboxylases were produced in Escherichia coli, purified, and characterized in vitro, whereas the transporter was heterologously expressed in Lactococcus lactis and functionally characterized in vivo. The overall data led to the conclusion that the two decarboxylases and the transporter form a three-component decarboxylation system, with the new decarboxylase being a specific lysine decarboxylase and the transporter catalyzing both lysine/cadaverine and ornithine/putrescine exchange. To our knowledge, this is an unprecedented observation of a bacterial three-component decarboxylation system.  相似文献   

14.
The lysA gene of Bacillus methanolicus MGA3 was cloned by complementation of an auxotrophic Escherichia coli lysA22 mutant with a genomic library of B. methanolicus MGA3 chromosomal DNA. Subcloning localized the B. methanolicus MGA3 lysA gene into a 2.3-kb SmaI-SstI fragment. Sequence analysis of the 2.3-kb fragment indicated an open reading frame encoding a protein of 48,223 Da, which was similar to the meso-diaminopimelate (DAP) decarboxylase amino acid sequences of Bacillus subtilis (62%) and Corynebacterium glutamicum (40%). Amino acid sequence analysis indicated several regions of conservation among bacterial DAP decarboxylases, eukaryotic ornithine decarboxylases, and arginine decarboxylases, suggesting a common structural arrangement for positioning of substrate and the cofactor pyridoxal 5'-phosphate. The B. methanolicus MGA3 DAP decarboxylase was shown to be a dimer (M(r) 86,000) with a subunit molecular mass of approximately 50,000 Da. This decarboxylase is inhibited by lysine (Ki = 0.93 mM) with a Km of 0.8 mM for DAP. The inhibition pattern suggests that the activity of this enzyme in lysine-overproducing strains of B. methanolicus MGA3 may limit lysine synthesis.  相似文献   

15.
S ummary . The use of high voltage paper electrophoresis for studies on the breakdown of amino acids by bacteria is described. Examination of a number of different isolates from the alimentary tract of the pig showed that the decarboxylase activity was restricted to Escherichia coli and one strain of Lactobacillus fermenti. In some isolates studied the optimum pH of activity differed from those previously reported for similar systems, being higher for ornithine, glutamic acid and lysine decarboxylases. The heterofermentative lactobacilli all converted arginine to ornithine and this may contribute to the final level of putrescine in the gut by providing a substrate for the ornithine decarboxylase of E. coli.  相似文献   

16.
17.
Jiang Y  Ye J  Wu H  Zhang H 《Biotechnology letters》2004,26(20):1585-1588
A polyhydroxyalkanote (PHA) depolymerase gene ( pha Z) was cloned by PCR from Pseudomonas putida and over-expressed in Escherichia coli as inclusion bodies. Nucleotide sequence analysis predicted an 852 bp open reading frame encoding a protein of 283 amino acids with a predicted molecular weight of 31283 Da. The deduced amino acid sequence had at least 80% homology to the PHA depolymerase from other Pseudomonas strains and consisted a conserved lipase box-like sequence (G-X-S(102)-X-G). The inclusion bodies were refolded and biochemically characterized. The depolymerase activity was optimal at 40 degrees C and pH 8.  相似文献   

18.
The lysA gene encodes meso-diaminopimelate (DAP) decarboxylase (E.C.4.1.1.20), the last enzyme of the lysine biosynthetic pathway in bacteria. We have determined the nucleotide sequence of the lysA gene from Pseudomonas aeruginosa. Comparison of the deduced amino acid sequence of the lysA gene product revealed extensive similarity with the sequences of the functionally equivalent enzymes from Escherichia coli and Corynebacterium glutamicum. Even though both P. aeruginosa and E. coli are Gram-negative bacteria, sequence comparisons indicate a greater similarity between enzymes of P. aeruginosa and the Gram- positive bacterium C. glutamicum than between those of P. aeruginosa and E. coli enzymes. Comparison of DAP decarboxylase with protein sequences present in data bases revealed that bacterial DAP decarboxylases are homologous to mouse (Mus musculus) ornithine decarboxylase (E.C.4.1.1.17), the key enzyme in polyamine biosynthesis in mammals. On the other hand, no similarity was detected between DAP decarboxylases and other bacterial amino acid decarboxylases.   相似文献   

19.
The stringent response regulator ppGpp has recently been shown by our group to inhibit the Escherichia coli inducible lysine decarboxylase, LdcI. As a follow-up to this observation, we examined the mechanisms that regulate the activities of the other four E. coli enzymes paralogous to LdcI: the constitutive lysine decarboxylase LdcC, the inducible arginine decarboxylase AdiA, the inducible ornithine decarboxylase SpeF, and the constitutive ornithine decarboxylase SpeC. LdcC and SpeC are involved in cellular polyamine biosynthesis, while LdcI, AdiA, and SpeF are involved in the acid stress response. Multiple mechanisms of regulation were found for these enzymes. In addition to LdcI, LdcC and SpeC were found to be inhibited by ppGpp; AdiA activity was found to be regulated by changes in oligomerization, while SpeF and SpeC activities were regulated by GTP. These findings indicate the presence of multiple mechanisms regulating the activity of this important family of decarboxylases. When the enzyme inhibition profiles are analyzed in parallel, a "zone of inhibition" between pH 6 and pH 8 is observed. Hence, the data suggest that E. coli utilizes multiple mechanisms to ensure that these decarboxylases remain inactive around neutral pH possibly to reduce the consumption of amino acids at this pH.  相似文献   

20.
Escherichia coli cad operon functions as a supplier of carbon dioxide   总被引:3,自引:2,他引:1  
We examined the gene expression of the Escherichia coli cad operon, which consisted of the genes cadB and cadA (lysine decarboxylase), using cells possessing cadB–lacZ fusion gene. The cad operon was expressed when O2 was limited, and the expression was optimal at pH6.3. The β-galactosidase activity was lowered by the addition of sodium carbonate to the medium. The expression of the cad operon was reduced in cells containing the plasmid-encoding ornithine decarboxylase, which produced carbon dioxide, indicating that the gene expression of the cad operon was regulated by carbon dioxide (or its derivatives). It is known that the Krebs cycle is a major pathway for producing carbon dioxide, and that its activity is repressed when O2 is limited. Thus, our present results suggested that the physiological role of the cad operon is to supply carbon dioxide when its internal level is lowered under O2-limiting conditions at a low pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号