首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Early changes in the concentrations of indole-3-acetic acid (IAA) and abscisic acid (ABA) were investigated in the larger axillary bud of 2-week-old Phaseolus vulgaris L. cv Tender Green seedlings after removal of the dominant apical bud. Concentrations of these two hormones were measured at 4, 6, 8, 12 and 24 hours following decapitation of the apical bud and its subtending shoot. Quantitations were accomplished using either gas chromatography-mass spectrometry-selected ion monitoring (GS-MS-SIM) with [13C6]-IAA or [2H6]-ABA as quantitative internal standards, or by an indirect enzyme-linked immunosorbent assay, validated by GC-MS-SIM. Within 4 hours after decapitation the IAA concentration in the axillary bud had increased fivefold, remaining relatively constant thereafter. The concentration of ABA in axillary buds of decapitated plants was 30 to 70% lower than for buds of intact plants from 4 to 24 hours following decapitation. Fresh weight of buds on decapitated plants had increased by 8 hours after decapitation and this increase was even more prominent by 24 hours. Anatomical assessment of the larger axillary buds at 0, 8, and 24 hours following decapitation showed that most of the growth was due to cell expansion, especially in the intermodal region. Thus, IAA concentration in the axillary bud increases appreciably within a very few hours of decapitation. Coincidental with the rise in IAA concentration is a modest, but significant reduction in ABA concentration in these axillary buds after decapitation.  相似文献   

2.
HARTUNG  W.; FUNFER  C. 《Annals of botany》1981,47(3):371-375
Abscisic acid (ABA) applied to the decapitated second internodeof runner bean plants enhanced outgrowth of lateral buds onlywhen internode stumps were no longer elongating. Applied toelongating internodes of slightly younger plants, ABA causesinhibition of bud outgrowth. Together with 10–4 M indol-3-ylacetic acid (IAA), ABA stimulated internode elongation and interactedadditively in the inhibition of bud outgrowth. A mixture of10–5 M ABA and 10–6 M gibberellic acid (GA3 ) causedsimilar effects on internode growth as IAA + ABA, but was mutuallyantagonistic in effect on growth of the lateral buds. Abscisic acid, apical dominance, gibberellic acid, indol-3yl acetic acid, Phaseolus coccineus, bean  相似文献   

3.
The possibility has been investigated that abscisic acid (ABA)might act as a correlative inhibitor of lateral bud growth inPisum sativum and Phaseolus vulgaris. Application of ABA insmall quantities (2µg) to axillary buds on decapitatedplants of P. sativum caused appreciable inhibition of theirgrowth, and induced a compensatory growth of the bud on an adjacentnode. Application of this same quantity of ABA to axillary budson decapitated plants of Phaseolus vulgaris was without effect,but a high concentration in lanolin (1 mg g–1) did substantiallyreduce bud outgrowth. Endogenous ABA-like substances in Phaseolusvulgaris, detected by bioassay and electron capture g.l.c.,were present in similar concentrations in shoot tips, lateralbuds on intact plants and lateral buds on plants decapitated24 h earlier. The effects of applied ABA suggested that it might be involvedin the mechanism of correlative inhibition in Pisum sativum,but it was not possible to test this hypothesis by determiningendogenous ABA levels in axillary buds because of their smallsize. The evidence presented here suggests that ABA is not acorrelative inhibitor in Phaseolus vulgaris even though at highconcentration it can inhibit the growth of axillary buds.  相似文献   

4.
The level of IAA and ABA in lateral buds of birch shoots 24 h and 5 days after the decapitation of the apical bud was determined. Twenty four hours after decapitation, when visible signs of outgrowth of lateral buds were not observed yet, an increase in the level of IAA and a decrease of ABA, as compared with the buds of non-decapitated shoots, was found. Five days later, when lateral buds were in the period of intensive outgrowth, a decrease in the levels of IAA and ABA was observed. It has been suggested that removing the source of auxin, by the decapitation of the apical bud makes possible the lateral buds to undertake the synthesis of their own auxin. It could lead to the decrease in the content of ABA. These all events could create suitable conditions for the outgrowth of lateral shoots.  相似文献   

5.
The outgrowth of lateral buds is known to be controlled by theupper shoot tissues, which include the apex, the young leavesand the upper stem. An analysis of the influence of these plantparts on axillary bud elongation in Ipomoea nil was carriedout by various treatments on these specific tissues. A restriction of elongation in the main shoot due to eitherdecapitation or shoot inversion resulted in the release of apicaldominance A non-linear type of compensating growth relationshipwas observed between the 13 cm apical growing region of thestem and the lateral buds. It was determined by decapitation,defoliation and AgNO3 treatments that both the 13 cm stem-growthregion and the young leaves (1–5 cm in length) had a muchgreater inhibitory influence on the outgrowth of specified lateralbuds than did the stem apex (consisting of the terminal 0.5cm of the shoot). The specified lateral buds which were analyzedfor outgrowth were located a number of nodes below the shootapex. The intervening nodes were debudded. Although the importanceof young leaves in the control of apical dominance has beenpreviously recognized, the most significant result from thepresent study with Ipomoea was the strong influence of the 13cm apical growth region of the stem on the out growth of thelateral buds. Apical dominance, Ipomoea nil L., Pharbitis nil, growth region, lateral bud outgrowth, decapitation, defoliation, shoot inversion  相似文献   

6.
The translocation of14C-ABA from roots into other parts of the plant was followed in intact and decapitated pea seedlings. In intact plants ABA from roots was translocated above all into the apical part of epicotyl. In decapitated plants the regulative ability of intact apex can be partly simulated by exogenous IAA. The growth of lateral buds occurring after decapitation was associated with an intensive flow of14C-ABA from roots into released lateral buds as late as 72 h after decapitation,i.e. in the stage of intensive elongation growth of buds.  相似文献   

7.
TUCKER  D. J. 《Annals of botany》1979,43(5):571-577
A study has been made of the distribution of substances resemblingindol-3-ylacetic acid (IAA), abscisic acid (ABA) and cytokinin-likesubstances in the stem tissue of Craigella tomato plants ascompared with that found in two isogenic lines of this variety,Craigella Blind (blbl) and Craigella Lateral Suppressor (lsls),in both of which side shoot growth is suppressed to varyingdegrees. There was no evidence to suggest that the distributionof these hormones in the stem had any association with the differentpatterns of side shoot development of the three types, thoughsome of the lateral suppressor plants which exhibited only partialbud inhibition did show a relation between high auxin and abscisicacid levels and lack of side shoot development from the centralnodes of the shoot. Decapitation led to a stimulation of bud outgrowth from allnodes of the Craigella plants but the lateral suppressor plantsremained inhibited. The blind plants were found to initiatebud primordia at the cotyledonary nodes only when the severedapex was replaced by exogenous IAA. The results are discussed in relation to our knowledge of themechanisms controlling apical dominance in the tomato. Lycopersicon esculentumL, tomato, apical dominance, growth regulation, indol-3-ylacetic acid, abscisic acid, cytokinins  相似文献   

8.
Hormone Interaction in Apical Dominance in Phaseolus vulgaris L.   总被引:2,自引:0,他引:2  
Gibberellic acid (GA3), kinetin, and indole-3yl-acetic acid(IAA) were applied to roots of Phaseolus vulgaris under twodifferent light intensities and when either young or old leaveswere removed In all cases GA3, promoted stem and lateral growth,especially when light intensity was reduced. Promotion by GA3,of stem growth under reduced light was reduced if IAA and kinetinwere present; promotion of lateral growth under reduced lightwas reduced if IAA was added and eliminated if kinetin or kinetinplus IAA were added to GA3. Removal of young and mature leavesreduced main stem growth; removal of young leaves promoted,and of mature leaves reduced, lateral shoot growth. We suggestthat shoot growth and apical dominance are governed by the balanceof hormones present in elongating internodes. There may be twoways of modifying this balance; firstly by altering light, temperature,or nutrients, or by applying hormones generally to the plant.Secondly, local modifications can be made by removing apicesor young leaves, or applying hormones in lanolin to specificareas. Knowledge of both the general and local conditions maybe necessary for a complete understanding of apical dominance.  相似文献   

9.
10.
Axillary buds of pea (Pisum sativum L. cv. Alaska) do not growon intact plants. Dormant axillary buds can be stimulated togrow rapidly after decapitation. Here, we isolated cDNAs ofPCNA, cyclinB, cyclinD, and cdc2 from pea. The mRNA expressionlevels of these genes were very low in dormant axillary buds,whereas they remarkably increased after decapitation. Basedon the mRNA accumulation patterns of these genes, we found thatmost cells in dormant axillary buds are arrested at the G1 phasein the cell cycle. There are four buds at the second node onpea seedlings. After decapitation, mRNAs became abundant inthe large and small buds and were kept during the following3 d. After 4 d, mRNAs were still present in the large bud, butnot in the small bud. However, after removal of the large bud,the mRNA levels started to increase again in the small bud.These mRNA accumulation patterns were the same as those afterthe first decapitation. These results suggested that most cellsin axillary buds at the second node are arrested at the G1]phase again and have the capacity to undergo multiple cyclesof dormancy and growth. Moreover, in situ hybridization analysesdemonstrated that PCNA mRNA increased in all parts of the axillarybuds after decapitation. (Received October 31, 1997; Accepted December 11, 1997)  相似文献   

11.
Endogenous levels of abscisic acid (ABA) were measured by gas-liquid chromatography (electron capture) in stems and axillary buds of intact or decapitated broad-bean plants ( Vicia faba L. cv. Aguadulce). Endogenous ABA was distributed in the main axis according to a concentration gradient from the apical part of the stem towards the base. Axillary buds contained ABA levels which were from 4 to 9 times higher than those in the corresponding nodes and internodes. Decapitation of the plant was followed within 6 h by a large decrease of ABA levels in all the parts of the main axis. The diminution of ABA content was the most important in axillary buds released from apical dominance. Twenty-four hours after the decapitation, the ABA concentration further decreased in the upper parts of the stem, while no modification was observed in the basal parts of the stem containing the smallest levels of ABA.  相似文献   

12.
The apical dominance in dormant tubers ofCircaea intermedia preventing the extension of lateral buds under favourable conditions differs from the apically directed growth inhibition inducing true dormancy in the tubers. This acropetal inhibition affects the tuber tip more strongly than its lateral buds, which develop into long stolon-like shoots after the tuber decapitation. The local supply of ABA shows no tuberizing effect, but enhances the dormancy of the tuber top. MH interrupts the correlation between the tuber laterals tuberizing without previous stolon formation. The uppermost leaf structures participate in the apical dominance, inhibiting their own axillaries on intact tubers. Mature scales disclose this correlative influence only on decapitated or dissected tubers on which IAA or BA release their inhibitory effect, but ABA increases it. Two scale pairs occurring regularly at the top of dormant tubers and seen later at the erect base of the stem are involved in the initiation of foliage leaves for the next-year growth period. BA applied to an axil at the top of the tuber provokes its sylleptic branching.  相似文献   

13.
Terminal buds and successively subjacent lateral buds of the water fern, Marsilea drummondii, were examined to determine the pattern of hormone distribution in relation to apical dominance. Quantitative levels of indole-3-acetic acid (IAA), abscisic acid (ABA), zeatin and zeatin riboside (Z and ZR), and isopentenyladenosine (iPA) were determined by a solid-phase immunoassay using polycional antihormone antibodies. Enzyme-linked immunosorbent assay was used following a one-step HPLC purification procedure to obtain the free hormones. Active shoot apices contained the most IAA and Z-type cytokinins and inhibited buds the least. No significant differences in ABA levels were found leading to the conclusion that ABA did not play any role in apical dominance. The normal precedence of the most rapid outgrowth of the youngest inhibited bud as observed previously in decapitated plants was well correlated with its very high level of iPA observed in this study. The same phenomenon was observed in the median buds but with a weaker amplitude. The presence of this storage form could indicate that a bud at its entry into quiescence eventually looses the ability to hydroxylate iPA to Z-type cytokinins when it is fully inhibited. IAA and Z + ZR are concluded to be essential for lateral bud growth.  相似文献   

14.
The effect of floral-bud removal at different stages of developmenton the plant height and on the total number of buds of Petuniawas studied. Continuous removal of all the floral buds 2 d beforeanthesis caused a marked decrease in plant height and also increasedthe total number of floral buds formed thereafter. At otherstages of floral bud development, bud removal had a lesser effecton both phenomena. Moreover, the plants did not respond to budremoval at anthesis. GA3 at 25 ppm applied to plants from which the buds had beenremoved, promoted stem elongation. The most pronounced effectwas on plants from which the buds were removed 2 d before anthesis,but it had no effect on plants from which the buds were removedat anthesis stage. The possible involvement of endogenous growth hormones in theresponse of Petunia plants to floral-bud removal and to applicationof GA3 is discussed. Bud removal, bud number, dwarfness, GA3, Petunia, plant height  相似文献   

15.
TUCKER  D. J. 《Annals of botany》1981,48(6):837-843
Grafting experiments have been carried out in which rootstocksof the cultivar Craigella were paired with scions of an isogenicline Craigella Lateral Suppressor (ls ls) and vice versa, andthe levels of hormones in the roots and shoots of the graftedplants examined. The roots of Craigella plants differed from those of LateralSuppressor in that they contained a higher proportion of a cytokininthat co-chromatographed with N6 - (2—isopentenyl) adenosine.Reciprocal grafts did not lead to any qualitative or quantitativechanges in the cytokinins in the roots of either line. GraftingLateral Suppressor scions on Craigella rootstocks led to anincrease in the IAA content of the apical region and the ABAcontent of the stem tissue immediately below it, but when Craigellascions were grafted on Lateral Suppressor rootstocks there wereno changes in the level of either hormone. Cytokinins applied to the leaf axils of Lateral Suppressor plantsresulted in lateral bud initiation in the axils above the pointof treatment but not if the plants were also given a short periodof far-red light at the end of the photoperiod. Cytokinins wereineffective in initiating lateral buds in grafted Lateral Suppressorscions. It is suggested that root-produced cytokinins influence lateralbud outgrowth indirectly by way of their effect on the levelsof IAA and ABA in the shoot. Lycopersicon esculentum Mill., tomato, apical dominance, growth regulation, indol-3yl acetic acid, abscisic acid, cytokinins  相似文献   

16.
Ethephon and the ethylene inhibitors Ag+ and aminoethoxyvinylglycine (AVG) inhibited outgrowth of the axillary bud of thefirst trifoliate leaf in decapitated plants of Phaseolus vulgaris.Endogenous ethylene levels decreased in the stem upon decapitationalthough it is not conclusive that a causal relationship existsbetween this decrease and the release of axillary buds frominhibition. The proposition that auxin-induced ethylene is responsiblefor the suppression of axillary bud growth in the decapitatedplant when the apical shoot is replaced by auxin is not borneout in this study. Application of IAA directly to the axillarybud of intact plants gave rise to a transient increase in budgrowth. This growth increment was annulled when AVG was suppliedwith IAA to the bud despite the fact that the dosage of AVGused did not affect the normal slow growth rate of the bud ofthe intact plant or bud outgrowth resulting from shoot decapitation.  相似文献   

17.
Application of a sublethal dose of glyphosate (N-[phosphonomethyl]glycine) to the seedlings of soybean (Glycine max L. Merr. cv. Evans) and pea (Pisum sativum L. cv. Alaska) promoted growth of the cotyledonary and other lateral buds. The pattern of the glyphosate-induced lateral bud growth was different from that induced by decapitation. Under the experimental condition, glyphosate did not kill the apical buds. Feeding stem sections of the seedlings with radiolabeled indole-3-acetic acid ([214C]IAA) and subsequent analysis of free [2-14C]IAA and metabolite fractions revealed that the glyphosate-treated plants had higher rates of IAA metabolism than the control plants. The treated pea plants metabolized 75% of [2-14C]IAA taken up in the 4-h incubation period compared to 46.5% for the control, an increase of 61%. The increase was small but consistent in soybean seedlings. As a result, the glyphosate-treated plants had less free IAA and ethylene than the control plants. The increase of IAA metabolism induced by glyphosate is likely to change the auxin-cytokinin balance and contribute to the release of lateral buds from apical dominance in these plants.  相似文献   

18.
19.
The character of branching for two chrysanthemum (Chrysanthemum × morifolium) cvs. Jinghai and Jingyun was observed, and the changes of endogenous hormones in apical and lateral buds were investigated to determine the relationship between the pattern of hormone distribution, apical dominance, and lateral bud outgrowth. The growth rate of Jinghai lateral buds was higher than that of Jingyun. In vegetative growth stage, IAA level in apical buds of Jingyun was significantly higher than in Jinghai. After flower induction, IAA level in apical buds of two cultivars decreased remarkably, but the IAA level decreased in Jingyun faster than in Jinghai. These results showed that the higher was the IAA level in apical buds the stronger was inhibition of lateral bud outgrowth. An increase in IAA and iP/iPA and a decrease in ABA concentrations were closely associated with lateral bud growth alterations in chrysanthemum.  相似文献   

20.
Decapitation resulted in the transport of significant amountsof 14C to the axillary buds from either point of application,but pretreatment of the cut internode surface of decapitatedplants with IAA (alone or in combination with unlabelled kinetin)inhibited the transport of label to the axillary buds and resultedin its accumulation in the IAA-treated region of the stem. Inintact plants to which labelled kinetin was applied to the apicalbud there was little movement of 14C beyond the internode subtendingthis bud; when labelled kinetin was applied to the roots ofintact plants, 14C accumulated in the stem and apical bud butwas not transported to the axillary buds. A considerable proportionof the applied radioactivity became incorporated into ethanol-insoluble/NaOH-solublecompounds in the apical bud of intact plants, in internodestreated with IAA, and in axillary buds released from dominanceby removal of the apical bud. The results are discussed in relation to the possible role ofhormone-directed transport of cytokinins m the regulation ofaxillary bud growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号