首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plant volatiles mediate host finding in insect herbivores and lead to host fidelity and habitat‐specific mating, generating premating reproductive isolation and facilitating sympatric divergence. The apple fruit moth, Argyresthia conjugella Zeller (Lepidoptera: Argyresthiidae), is a particularly suitable species to study the cues and behavioural mechanisms leading to colonization of a new host: it recurrently oviposits on the non‐host plant, apple Malus domestica Borkh. (Rosaceae), where the larvae cannot complete their development. The larval host of the apple fruit moth (Lepidoptera, Argyresthiidae), is rowan Sorbus aucuparia L. (Rosaceae). Fruit setting in rowan, however, fluctuates strongly over large areas in Scandinavia. Every 2–4 years, when too few rowanberries are available for egg laying in forests, apple fruit moth females oviposit instead on apple in nearby orchards, but not on other fruits, such as pear or plum. This poses the question of which cues mediate attraction to rowan and apple, and how apple fruit moth discriminates rowan from apple. Chemical analysis and antennal recordings showed that 11 out of 15 rowan volatiles eliciting an antennal response in A. conjugella females co‐occur in rowan and apple headspace, in a different proportion. In the field, A. conjugella was attracted to several of these plant volatiles, especially to 2‐phenyl ethanol, methyl salicylate, and decanal. Addition of anethole to 2‐phenyl ethanol had a strong synergistic effect, the 1 : 1 blend is a powerful attractant for A. conjugella males and females. These results confirm that volatiles common to both plants may account for a host switch in A. conjugella from rowan to apple. Some of the most attractive compounds, including 2‐phenyl ethanol, anethole, and decanal, which have been found in several apple cultivars, were not present in the headspace of the apple cultivar, Aroma, which is also susceptible to attack by A. conjugella. This supports the idea that the odour signal from apple is suboptimal for attraction of A. conjugella, but is nonetheless sufficient for attraction, during times when rowan is not available for egg laying.  相似文献   

2.
Attraction of codling moth males to apple volatiles   总被引:4,自引:0,他引:4  
The attraction of the codling moth, Cydia pomonella, to apple volatile compounds known to elicit an antennal response was tested both in the field and in a wind tunnel. In the field, (E)‐β‐farnesene captured male moths. The addition of other apple volatiles, including (E,E)‐α‐farnesene, linalool, or (E,E)‐farnesol to (E)‐β‐farnesene did not significantly augment trap catch. Few females were caught in traps which also caught male moths, but female captures were not significantly different from blank traps. In the wind tunnel, males were attracted to (E,E)‐farnesol, but not to (E)‐β‐farnesene. The addition of (E,E)‐α‐farnesene to (E)‐β‐farnesene had a synergistic effect on male attraction. The male behavioural sequence elicited by plant volatiles, including upwind flight behaviour, was indistinguishable from the behaviour elicited by sex pheromone.  相似文献   

3.
Four volatile compounds emitted from fungus-infected date fruit,Phoenix dactylifera L., were identified using coupled gas chromatographic-electroantennographic recordings, coupled gas chromatographic-mass spectrometric analysis, electroantennographic assays of synthetic standards, and wind tunnel bioassays. These compounds were ethyl hexanoate, ethanol, acetaldehyde, and 2-phenylethanol. Wind tunnel bioassays showed that ethyl hexanoate was capable of stimulating upwind flight and landing on the source by mated female carob moths,Ectomyelois ceratoniae (Zeller). Addition of both ethanol and acetaldehyde to ethyl hexanoate resulted in an increase in attraction to a level similar to that found for date fruits. No such effect was noted for additions of 2-phenylethanol at the dosages tested. In this study, it appears that ethyl hexanoate is a dominant olfactory stimulant and attractant for mated female carob moths, and represents a novel compound with regard to previously identified lepidopteran host odor attractants.  相似文献   

4.
The attractiveness of peach ( Prunus persica L. Batsch) and apple ( Malus domestica L. Borkh.) (both Rosaceae) tissue to gravid female oriental fruit moth, Grapholita (=  Cydia ) molesta (Busck) (Lepidoptera: Tortricidae), was assessed at three distinct stages throughout the growing season using a dual-choice bioassay. Plant material offered to the female moths consisted of a plant shoot in early spring, before fruit became available. Later, it consisted of a leaf-bearing twig and a fruit, either alone or in combination. The level of attraction of the female moths to the various plant tissues varied substantially over time and according to the plant species. Before fruit became available, female moths were significantly attracted to peach as well as to apple shoots. During the early fruit growth stage, moths were attracted to a leaf-bearing twig originating from a peach tree, but not to that from an apple tree. In peach, it was the vegetative tissue that accounted for the attraction, whereas in apple, it was the reproductive tissue (a developing fruit). During the late fruit growth stage, both peach fruit and apple fruit were highly attractive, whereas a twig with leaves from either an apple or a peach tree was neither attractive nor repellent to the female moths. This changing female olfactory response to volatiles emitted by vegetative tissue and fruits from the two host plant species with progressing season is discussed with respect to the biology and the dispersal of this moth species.  相似文献   

5.
Mating has profound effects on animal physiology and behaviour, not only in females but also in males, which we show here for olfactory responses. In cotton leafworm moths, Spodoptera littoralis, odour-mediated attraction to sex pheromone and plant volatiles are modulated after mating, producing a behavioural response that matches the physiological condition of the male insect. Unmated males are attracted by upwind flight to sex pheromone released by calling females, as well as to volatiles of lilac flowers and green leaves of the host plant cotton, signalling adult food and mating sites, respectively. Mating temporarily abolishes male attraction to females and host plant odour, but does not diminish attraction to flowers. This behavioural modulation is correlated with a response modulation in the olfactory system, as shown by electro-physiological recordings from antennae and by functional imaging of the antennal lobe, using natural odours and synthetic compounds. An effect of mating on the olfactory responses to pheromone and cotton plant volatiles but not to lilac flowers indicates the presence of functionally independent neural circuits within the olfactory system. Our results indicate that these circuits interconnect and weigh perception of social and habitat odour signals to generate appropriate behavioural responses according to mating state.  相似文献   

6.
Male moths locate conspecific females by pheromone‐induced upwind flight maintained by detecting a visual flow, termed optomotor anemotaxis. Their behavioural pattern is characterized by an upwind surge in response to a pheromone stimulus and crosswind casting after odour loss, which is considered to be reset and restarted on receipt of another pheromone pulse. However, pheromone‐stimulated males of the potato tuberworm moth Phthorimaea operculella exhibit a series of short and straight intermittent flights, or hops, when moving upwind. It is unclear whether they navigate by employing the same behavioural pattern and wind detection mechanism as that used by flying moths. To analyze odour‐modulated anemotaxis in male potato tuberworm moths, a flat wind tunnel is constructed to give regular odour stimuli to an insect regardless of its location. Moths are subjected to pheromone pulses of different frequencies to test whether they show a behavioural pattern that is reset and restarted by a pheromone pulse. Moths on the ground are also subjected to crosswind shear to examine their detection of wind direction. Path analyses reveal that males surge upwind when they receive a pheromone pulse and exhibit casting by successive hops when they lose odour. This behavioural pattern appears to be similar to that of flying moths. When the direction of the airflow is switched orthogonally, males adjust their course angle accordingly when they are on the ground. It is suggested that, instead of optomotor anemotaxis, this ‘aim‐then‐shoot’ system aids the detection of wind direction, possibly by mechanosensory means.  相似文献   

7.
Abstract 1 Two codling moth Cydia pomonella kairomonal attractants, ethyl (E,Z)‐2,4‐decadienoate (pear ester) and (E)‐β‐farnesene, were tested in an insecticide‐sprayed apple orchard and an orchard treated for mating disruption with synthetic pheromone (E,E)‐8,10‐dodecadienol (codlemone). Male captures with pear ester were higher in the pheromone‐treated than in the insecticide‐treated orchard, whereas captures with (E)‐β‐farnesene were not different. Subsequent wind tunnel experiments confirmed that pre‐exposure to sex pheromone codlemone increased the behavioural response of codling moth males to pear ester. This supports the idea that male attraction to the plant volatile pear ester and sex pheromone codlemone is mediated through the same sensory channels. 2 Pear ester is a bisexual codling moth attractant and even captures of female moths were significantly increased in the pheromone‐treated orchard. In the laboratory wind tunnel, pheromone pre‐exposure had no effect on female response to pear ester, but significantly more mated than unmated codling moth females flew upwind towards a pear ester source. Differences in mating status in insecticide‐treated vs. pheromone‐treated orchards may thus account for the differences in female trap captures with pear ester. 3 These findings are important with respect to monitoring of codling moth with pear ester in mating disruption orchards. They also emphasize the importance of host plant volatiles in pheromone‐mediated mating disruption, which has been neglected to date.  相似文献   

8.
In the European grapevine moth, Lobesia botrana (Denis and Schiffermüller) (Lepidoptera: Tortricidae), it has recently been shown that volatiles emitted from the main host plant, grapevine, are attractive to adult females. Here, using wind tunnel experiments, we tested the attractiveness of various grapevine, Vitis vinifera L. (Vitaceae), plant parts at different phenological stages, including ripe berries infested with the pathogenic fungus Botrytis cinerea (Persoon: Fries) (Sclerotiniaceae) to laboratory‐reared virgin and mated male and female moths. We also tested the attractiveness of the non‐host plant, tansy [Tanacetum vulgare (L.) (Asteraceae)], as flowers and flower volatiles were previously shown to be attractive to L. botrana females in the field. Mated female moths were the only adults to exhibit upwind orientation to grape plant parts in the flight tunnel. The most attractive parts of the grapevine plants were leaves, flower buds, and ripe berries. No attraction was observed to flowers. This corresponds to the phenological stages available when females of the 2–3 generations during a year are present in the field. No attraction was observed to leaves and flowers of tansy.  相似文献   

9.
Abstract Airborne pheromone plumes in wind comprise filaments of odour interspersed with gaps of clean air. When flying moths intercept a filament, they have a tendency to surge upwind momentarily, and then fly crosswind until another filament is intercepted. Thus, the moment-to-moment contact with pheromone mediates the shape of a flight track along the plume. Within some range of favourable interception rates, flight tracks become straighter and are headed more due upwind. However, as the rate of interception increases, there comes a point at which the moth should not be able to discern discreet filaments but, rather, should perceive a 'fused signal'. At the extreme, homogeneous clouds of pheromone inhibit upwind progress by representative tortricids. In a wind tunnel, Cadra cautella (Walker) (Lepidoptera: Pyralidae) were presented with 10 ms pulses of pheromone at a repetition rate of 5, 10, 17 and 25/s and a continuous, internally turbulent plume. Pulse size and concentrations were verified with a miniature photoionization detector sampling surrogate odour, propylene, at 100 Hz. Male moths maintain upwind progress even at plumes of 25 filaments/s. Furthermore, moths exhibited greater velocities and headings more due upwind at 17 and 25 Hz than at the lower frequencies or with the continuous plume. It is hypothesized that either C. cautella possesses a versatile sensory system that allows the resolution of these rapidly pulsed pheromone plumes, or that this species does not require a 'flickering' signal to fly upwind.  相似文献   

10.
A flight tunnel study was done to decipher the behavioral effect of grape odor in grapevine moth Lobesia botrana. A blend of 10 volatile compounds, which all elicit a strong antennal response, attracts mated grapevine moth females from a distance, by upwind orientation flight. These 10 grape volatiles are in part behaviorally redundant, since attraction to a 3-component blend of beta-caryophyllene, (E)-beta-farnesene and (E)-4,8-dimethyl-1,3,7-nonatriene was not significantly different from the 10-component blend. Blending these three compounds had a strong synergistic effect on female attraction, and omission of any one compound from this 3-component blend almost abolished attraction. It was nonetheless possible to substitute the three compounds with the other grape volatiles which are perceived by the female antenna, to partly restore attraction. Several blends, of varying composition, elicited significant attraction. The observed behavioral plasticity in response to grape volatile blends probably reflects the variation of the natural plant signal, since females oviposit on different grape varieties, in different phenological stages.  相似文献   

11.
We analyzed berry production in rowan, Sorbus aucuparia L., in southern Norway and examined the ramifying effects of rowan masting on the dynamics of the dominant seed predator and its parasitoid. The apple fruit moth, Argyresthia conjugella Zeller, is a pre-dispersal seed predator of rowan. The larva of the apple fruit moth rely on rowan berries, which in turn is attacked by the parasitoid wasp, Microgaster politus Marsh. We found classic masting in rowan: berry production varied across years (the mean coefficient of variation=1.02) and was spatially synchronized at large scale (the averaged correlation coefficient=0.67). Berry production represented a two-year cycle in western but a three-year cycle in eastern Norway. The abundance of the moth and the parasitoid also varied across years and were spatially synchronized. The degree of spatial synchrony decreased and cyclicity became obscure with increasing trophic level. We attempted to assess two different components to the predator satiation, functional and numerical satiations, based on a simple population dynamics model. The observed pattern of seed predation testified that both of functional and numerical satiations were at work in this system. In a comparison at different locations, rowan trees with more variable berry production were more effective in reducing losses to the seed predator. The parasitoids also seemed to experience satiation through the fluctuation in their host abundance. These results show that rowan masting has an adaptive foundation, which impacts the dynamics of higher trophic levels.  相似文献   

12.
Mature females of the tomato fruit fly Neoceratitis cyanescens can detect host fruit at a short distance using only visual stimuli, but little is known about the role of airborne volatile cues in the host searching strategy. A series of experiments is conducted in a laboratory wind tunnel, in which the behavioural responses of individual flies to volatiles from Solanaceae host plants (including tomato Lycopersicum esculentum Mill., bug weed Solanum mauritianum Scop. and Turkey berry Solanum torvum Sw.) are observed, according to some environmental (air speed) and physiological (age and mating status of females, time of day) factors. Mature females respond primarily to specific olfactory cues from blends of flowers or host fruit, preferentially unripe fruit for bug weed, as opposed to ripe fruit for Turkey berry or tomato. Males are also highly attracted by the odour of unripe fruit of bug weed. Wind plays a key role, as shown by the proportion of flies that reach the upwind section of the tunnel in the presence of both fruit odour and air flow (66.7%) and in the absence of either fruit odour (13.3%) or wind (36.7%). In response to fruit volatiles carried by wind, flies embark in a ‘plume tracking’ or ‘aim and shoot' flight, consistent with odour‐conditioned anemotaxis. Females respond to host fruit odour regardless of their age, egg load or mating status, and also more consistently in the afternoon, which is their preferential time of day for egg‐laying. Searching behaviour and response to host volatiles in N. cyanescens are discussed in the light of host‐finding and an adaptive strategy.  相似文献   

13.
 Masting of rowan Sorbus aucuparia L. has been studied in 45 sites in southern Norway for 22 years. We present data on the year-to-year variation in fruit setting of rowan, and show that masting is spatially synchronous in Norway and probably all over Fennoscandia. The apple fruit moth Argyresthia conjugella Zeller is an important seed predator on rowan. We present data on the abundance of apple fruit moth in rowanberries during these years and discuss the consequences of masting and intermasting of rowan for apple fruit moth as a pest of apple. We conclude that growth and climate have little impact on flowering intensity and suggest that masting of rowan is an adaptive defense against seed predation and a new example of predator satiation: intermast years inhibit predators and prepare the rowan for the subsequent mast. Received: September 3, 2001 / Accepted: February 24, 2003  相似文献   

14.
Floral to green: mating switches moth olfactory coding and preference   总被引:1,自引:0,他引:1  
Mating induces profound physiological changes in a wide range of insects, leading to behavioural adjustments to match the internal state of the animal. Here, we show for the first time, to our knowledge, that a noctuid moth switches its olfactory response from food to egg-laying cues following mating. Unmated females of the cotton leafworm (Spodoptera littoralis) are strongly attracted to lilac flowers (Syringa vulgaris). After mating, attraction to floral odour is abolished and the females fly instead to green-leaf odour of the larval host plant cotton, Gossypium hirsutum. This behavioural switch is owing to a marked change in the olfactory representation of floral and green odours in the primary olfactory centre, the antennal lobe (AL). Calcium imaging, using authentic and synthetic odours, shows that the ensemble of AL glomeruli dedicated to either lilac or cotton odour is selectively up- and downregulated in response to mating. A clear-cut behavioural modulation as a function of mating is a useful substrate for studies of the neural mechanisms underlying behavioural decisions. Modulation of odour-driven behaviour through concerted regulation of odour maps contributes to our understanding of state-dependent choice and host shifts in insect herbivores.  相似文献   

15.
Since the 1970s it has been known that the nursery pollinator Hadena bicruris is attracted to the flowers of its most important host plant, Silene latifolia, by their scent. Here we identified important compounds for attraction of this noctuid moth. Gas chromatographic and electroantennographic methods were used to detect compounds eliciting signals in the antennae of the moth. Electrophysiologically active compounds were tested in wind-tunnel bioassays to foraging na?ve moths, and the attractivity of these compounds was compared with that to the natural scent of whole S. latifolia flowers. The antennae of moths detected substances of several classes. Phenylacetaldehyde elicited the strongest signals in the antennae, but lilac aldehydes were the most attractive compounds in wind-tunnel bioassays and attracted 90% of the moths tested, as did the scent of single flowers. Our results show that the most common and abundant floral scent compounds in S. latifolia, lilac aldehydes, attracted most of the moths tested, indicating a specific adaptation of H. bicruris to its host plant.  相似文献   

16.
ABSTRACT. Orientation responses of adult apterous virginoparae of Cryptomyzus korschelti Börner were recorded using a locomotion-compensator in front of a wind tunnel. Individual aphids were tested under four consecutive treatments: without wind; clean wind; and wind carrying odour of the host plant Stachys sylvatica or odour of a non-host plant Solanum tuberosum. The walking tracks were tortuous in all treatments except when the odour of host plants was used. Host plant odour induced upwind orientation of aphids (odour-conditioned positive anemotaxis). Track variables such as vector length, straightness, upwind time and upwind length, increased when the aphids moved upwind. Walking speeds were not affected. The simultaneous stimulation by wind and host plant odour caused aphids to walk upwind for more than 1 m in 10 min. These findings suggest that olfactory attraction of aphids is involved in host plant selection.  相似文献   

17.
Compounds from the odour-producing glands of the fox Vulpes vulpes were collected. This complex mixture of compounds was used to stimulate the ‘ascoid’ olfactory organs of female sandflies in single sensillum and gas chromatography-linked single sensillum recordings. Sixteen of these compounds were identified using gas chromatography-linked mass spectrometry and amounts present were determined. The compounds fell into four organic classes: ketones, carboxylic acids, alcohols and aldehydes. Specific neurones present in the ascoid sensillum that responded to each of these classes of compound were characterized. A bioassay chamber was developed that gave female sandflies the choice of two odour sources. Female sandflies were attracted upwind by fox odour and were trapped in closer proximity to the fox odour port than the control port. Synthetic compounds were recombined in appropriate quantities to mimic the fox odour. In this bioassay, the synthetic blend attracted sandflies upwind, and again they were caught closer to the test port than the control port. Furthermore, the synthetic fox odour induced an electrophysiological response from neurones in the ascoid sensillum that was very similar to that induced by natural fox odour. No synthetic compound alone induced the same behavioural response from sandflies as did whole fox odour. However, benzaldehyde, 4-hydroxy-4-methyl-2-pentanone and 4-methyl-2-pentanone alone did cause sandflies to fly upwind and to be caught closer to the test port than the control.  相似文献   

18.
Combined attracticide formulations targeting Oriental fruit moth, Grapholita molesta (Busck), and codling moth, Cydia pomonella (L.), were tested in a field trapping experiment. Capture of male codling moths in traps baited with the combined formulation was reduced compared with traps baited with the codling moth formulation alone, whereas capture of male Oriental fruit moth was increased compared with traps baited with the Oriental fruit moth formulation alone. Subsequent wind tunnel experiments showed that a single locus of the mixed attracticide formulation or close parallel presentation of the two formulations enhanced source contact by male Oriental fruit moths but did not influence earlier behaviors. However, the two formulations presented in a serial arrangement to Oriental fruit moth males in the wind tunnel resulted in enhanced lock-on, upwind flight, and source contact behaviors. In addition, male Oriental fruit moths remained on mixed pheromone droplets of the paste matrix longer than on droplets of the Oriental fruit moth formulation alone. The increased time spent on the mixed droplet was correlated with a more rapid poisoning and a greater proportion of poisoned males compared with males exposed to the Oriental fruit moth attracticide alone. These results demonstrate that a combined attracticide formulation will have different effects on each of the targeted species. It is anticipated that, due to decreased attractiveness, a combined formulation would be less effective against the codling moth. However, a mixed formulation, due to increased attractiveness and toxicity, could be more effective against the Oriental fruit moth under field conditions.  相似文献   

19.
A viscous formulation based on castor oil containing the pyrethroid insecticide cyfluthrin and E8, E10-dodecadienol, the main component of the codling moth sex pheromone, (Cydia pomonellaL.: Tortricidae, Olethreutinae) was developed. The insecticidal performance of the formulation was evaluated in the laboratory using a tarsal-contact bioassay. The pheromone dosage required to attract male moths to the formulation was determined in behavioural tests performed in a wind tunnel. The efficacy of formulations applied to seedlings of the host plant was further investigated in glasshouse experiments conducted with male moths in small wire-gauze cages. The laboratory tests resulted in a formulation for preliminary field trials containing 4% cyfluthrin and 0.1% pheromone. During the 1995 growing season, experiments were conducted in apple orchards at three locations in Germany. The formulation was first applied to the bark of apple trees (Malus domestica) in mid May and then again in late July. A good level of control, comparable with a spray treatment using the insect growth regulator Alsystin was achieved. The potential of the attract and kill strategy, combining selective attraction of a pest species with the efficacy associated with a pyrethroid insecticide treatment, as a means of controlling the codling moth in commercial apple growing, is discussed.  相似文献   

20.
Abstract. Mature female Brachymeria intermedia (Hymenoptera: Chalcididae) were conditioned to fly towards vanilla odour in a wind tunnel. We analysed the tracks of wasps flying along turbulent plumes of either host odour (pupae of the gypsy moth, Lymantria dispar) or vanilla odour, along either a ribbon plume or a turbulent plume of vanilla odour, and before and after plume removal. Wasps flew in similar shallow zigzagging tracks along the turbulent plume of host and vanilla odours. When the plume was removed while wasps were flying upwind along a turbulent plume of vanilla odour, wasps either maintained an upwind course or drifted sideways, alternating upwind and downwind courses before turning around and flying downwind. No wasp casted upon loss of the plume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号