首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dna2 nuclease/helicase is a multitasking protein involved in DNA replication and recombinational repair, and it is important for preservation of genomic stability. Yeast Dna2 protein contains a conserved putative Fe-S (iron-sulfur) cluster signature motif spanning the nuclease active site. We show that this motif is indeed an Fe-S cluster domain. Mutation of cysteines involved in metal coordination greatly reduces not just the nuclease activity but also the ATPase activity of Dna2, suggesting that the nuclease and helicase activities are coupled. The affinity for DNA is not significantly reduced, but binding mode in the C to A mutants is altered. Remarkably, a point mutation (P504S), proximal to the Fe-S cluster domain, which renders cells temperature sensitive, closely mimics the global defects of the Fe-S cluster mutation itself. This points to an important role of this conserved proline residue in stabilizing the Fe-S cluster. The C to A mutants are deficient in DNA replication and repair in vivo, and, strikingly, the degree to which they are defective correlates directly with degree of loss of enzymatic activity. Taken together with previous results showing that mutations in the ATP domain affect nuclease function, our results provide a new mechanistic paradigm for coupling between nuclease and helicase modules fused in the same polypeptide.  相似文献   

2.
APS reductase from Pseudomonas aeruginosa has been shown to contain a [4Fe-4S] cluster. Thiol determinations and site-directed mutagenesis studies indicate that the single [4Fe-4S] cluster contains only three cysteine ligands, instead of the more typical arrangement in which clusters are bound to the protein by four cysteines. Resonance Raman studies in the Fe-S stretching region are also consistent with the presence of a redox-inert [4Fe-4S](2+) cluster with three cysteinate ligands and indicate that the fourth ligand is likely to be an oxygen-containing species. This conclusion is supported by resonance Raman and electron paramagnetic resonance (EPR) evidence for near stoichiometric conversion of the cluster to a [3Fe-4S](+) form by treatment with a 3-fold excess of ferricyanide. Site-directed mutagenesis experiments have identified Cys139, Cys228, and Cys231 as ligands to the cluster. The remaining two cysteines present in the enzyme, Cys140 and Cys256, form a redox-active disulfide/dithiol couple (E(m) = -300 mV at pH 7.0) that appears to play a role in the catalytic mechanism of the enzyme.  相似文献   

3.
The 5'-adenylyl sulfate (APS) reductase from the marine macrophytic green alga Enteromorpha intestinalis uses reduced glutathione as the electron donor for the reduction of APS to 5'-AMP and sulfite. The E. intestinalis enzyme (EiAPR) is composed of a reductase domain and a glutaredoxin-like C-terminal domain. The enzyme contains a single [4Fe-4S] cluster as its sole prosthetic group. Three of the enzyme's eight cysteine residues (Cys166, Cys257, and Cys260) serve as ligands to the iron-sulfur cluster. Site-directed mutagenesis experiments and resonance Raman spectroscopy are consistent with the presence of a cluster in which only three of the four ligands to the cluster irons contributed by the protein are cysteine residues. Site-directed mutagenesis experiments suggest that the thiol group of Cys250, a residue found only in algal APS reductases, is not an absolute requirement for activity. The other four cysteines that do not serve as cluster ligands, all of which are required for activity, are involved in the formation of two redox-active disulfide/dithiol couples. The couple involving Cys342 and Cys345 has an E(m) value at pH 7.0 of -140 mV, and the one involving Cys165 and Cys285 has an E(m) value at pH 7.0 of -290 mV. The C-terminal portion of EiAPR, expressed separately, exhibits the cystine reductase activity characteristic of glutaredoxins. It is proposed that the Cys342-Cys345 disulfide provides the site for entry of electrons from reduced glutathione and that the Cys166-Cys285 disulfide may serve as a structural element that is essential for keeping the enzyme in the catalytically active conformation.  相似文献   

4.
Ferredoxin:thioredoxin reductase (FTR) is a key regulatory enzyme of oxygenic photosynthetic cells involved in the reductive regulation of important target enzymes. It catalyzes the two-electron reduction of the disulfide of thioredoxins with electrons from ferredoxin involving a 4Fe-4S cluster and an adjacent active-site disulfide. We replaced Cys-57, Cys-87, and His-86 in the active site of Synechocystis FTR by site-directed mutagenesis and studied the properties of the mutated proteins. Mutation of either of the active-site cysteines yields inactive enzymes, which have different spectral properties, indicating a reduced Fe-S cluster when the inaccessible Cys-87 is replaced and an oxidized cluster when the accessible Cys-57 is replaced. The oxidized cluster in the latter mutant can be reversibly reduced with dithionite showing that it is functional. The C57S mutant is a very stable protein, whereas the C87A mutant is more labile because of the missing interaction with the cluster. The replacement of His-86 greatly reduces its catalytic activity supporting the proposal that His-86 increases the nucleophilicity of the neighboring cysteine. Ferredoxin forms non-covalent complexes with wild type (WT) and mutant FTRs, which are stable except with the C87A mutant. WT and mutant FTRs form stable covalent heteroduplexes with active-site modified thioredoxins. In particular, heteroduplexes formed with WT FTR represent interesting one-electron-reduced reaction intermediates, which can be split by reduction of the Fe-S cluster. Heteroduplexes form non-covalent complexes with ferredoxin demonstrating the ability of FTR to simultaneously dock thioredoxin and ferredoxin, which is in accord with the proposed reaction mechanism and the structural analyses.  相似文献   

5.
Redox stress is one of the major challenges faced by Mycobacterium tuberculosis during early infection and latency. The mechanism of sensing and adaptation to altered redox conditions is poorly understood. whiB family of Mtb is emerging as an important class of stress responsive genes. WhiB3/Rv3416 has been shown to be important for pathogenesis in animal model and was recently shown to co-ordinate a Fe-S cluster. Here, we report a simple, rapid and efficient matrix-assisted refolding method and important redox properties of WhiB3. Similar to other WhiB proteins, WhiB3 also has four conserved cysteine residues, where two of them are present in a CXXC motif. The Fe-S cluster of WhiB3 remained bound in the presence of strong protein denaturant. Upon cluster removal due to oxidation, the four cysteine residues which are ligands of Fe-S cluster, formed two intra-molecular disulfide bridges where one of them is possibly between the cysteines of CXXC motif, an important feature of several thiol-disulfide oxido-reductases. Far-UV CD spectroscopy revealed the presence of both alpha-helices and beta-strands in apo WhiB3. The secondary structural elements of apo WhiB3 were found resistant for thermal denaturation. The results demonstrated that apo WhiB3 functions as a protein disulfide reductase similar to thioredoxins. The importance of WhiB3 in redox sensing and its possible role in mycobacterial physiology has been discussed.  相似文献   

6.
Acetylcholinesterase subunits of type T (AChET) possess an alternatively spliced C-terminal peptide (t peptide) which endows them with amphiphilic properties, the capacity to form various homo-oligomers and to associate, as a tetramer, with anchoring proteins containing a proline rich attachment domain (PRAD). The t peptide contains seven conserved aromatic residues. By spectroscopic analyses of the synthetic peptides covering part or all of the t peptide of Torpedo AChET, we show that the region containing the aromatic residues adopts an alpha helical structure, which is favored in the presence of lipids and detergent micelles: these residues therefore form a hydrophobic cluster in a sector of the helix. We also analyzed the formation of disulfide bonds between two different AChET subunits, and between AChET subunits and a PRAD-containing protein [the N-terminal fragment of the ColQ protein (QN)] possessing two cysteines upstream or downstream of the PRAD. This shows that, in the complex formed by four T subunits with QN (T4-QN), the t peptides are not folded on themselves as hairpins but instead are all oriented in the same direction, antiparallel to that of the PRAD. The formation of disulfide bonds between various pairs of cysteines, introduced by mutagenesis at various positions in the t peptides, indicates that this complex possesses a surprising flexibility.  相似文献   

7.
The generally accepted role of iron-regulatory protein 1 (IRP1) in orchestrating the fate of iron-regulated mRNAs depends on the interconversion of its cytosolic aconitase and RNA-binding forms through assembly/disassembly of its Fe-S cluster, without altering protein abundance. Here, we show that IRP1 protein abundance can be iron-regulated. Modulation of IRP1 abundance by iron did not require assembly of the Fe-S cluster, since a mutant with all cluster-ligating cysteines mutated to serine underwent iron-induced protein degradation. Phosphorylation of IRP1 at S138 favored the RNA-binding form and promoted iron-dependent degradation. However, phosphorylation at S138 was not required for degradation. Further, degradation of an S138 phosphomimetic mutant was not blocked by mutation of cluster-ligating cysteines. These findings were confirmed in mouse models with genetic defects in cytosolic Fe-S cluster assembly/disassembly. IRP1 RNA-binding activity was primarily regulated by IRP1 degradation in these animals. Our results reveal a mechanism for regulating IRP1 action relevant to the control of iron homeostasis during cell proliferation, inflammation, and in response to diseases altering cytosolic Fe-S cluster assembly or disassembly.  相似文献   

8.
FAD synthase (FMN:ATP adenylyl transferase, FMNAT or FADS, EC 2.7.7.2) is the last enzyme in the pathway converting riboflavin into FAD. In humans, FADS is localized in different subcellular compartments and exists in different isoforms. Isoform 2 (490-amino acids) is organized in two domains: the 3′-phosphoadenosine-5′-phosphosulfate (PAPS) reductase domain, that is the FAD-forming catalytic domain, and one resembling a molybdopterin-binding (MPTb) domain, with a hypothetical regulatory role. hFADS2 contains ten Cys residues, seven of which located in the PAPS reductase domain, with a possible involvement either in FAD synthesis or in FAD delivery to cognate apo-flavoproteins. A homology model of the PAPS reductase domain of hFADS2 revealed a co-ordinated network among the Cys residues in this domain. In this model, C312 and C303 are very close to the flavin substrate, consistent with a significantly lowered FAD synthesis rate in C303A and C312A mutants. FAD synthesis is also inhibited by thiol-blocking reagents, suggesting the involvement of free cysteines in the hFADS2 catalytic cycle. Mass spectrometry measurements and titration with thiol reagents on wt hFADS2 and on several individual cysteine/alanine mutants allowed us to detect two stably reduced cysteines (C139 and C241, one for each protein domain), two stable disulfide bridges (C399–C402, C303–C312, both in the PAPS domain), and two unstable disulfides (C39–C50; C440–C464). Whereas the C39–C50 unstable disulfide is located in the MPTb domain and appears to have no catalytic relevance, a cysteine-based redox switch may involve formation and breakdown of a disulfide between C440 and C464 in the PAPS domain.  相似文献   

9.
The [2Fe-2S] cluster of the Rieske iron-sulfur protein is held between two loops of the protein that are connected by a disulfide bridge. We have replaced the two cysteines that form the disulfide bridge in the Rieske protein of Saccharomyces cerevisiae with tyrosine and leucine, and tyrosine and valine, to evaluate the effects of the disulfide bridge on assembly, stability, and thermodynamic properties of the Rieske iron-sulfur cluster. EPR spectra of the Rieske proteins lacking the disulfide bridge indicate the iron-sulfur cluster is assembled in the absence of the disulfide bridge, but there are significant shifts in all g values, indicating a change in the electronic structure of the [2Fe-2S] iron-sulfur center. In addition, the midpoint potential of the iron-sulfur cluster is lowered from 265 mV in the Rieske protein from wild-type yeast to 150 mV in the protein from the C164Y/C180L mutant and to 160 mV in the protein from the C164Y/C180V mutant. Ubiquinol-cytochrome c reductase activities of the bc(1) complexes with Rieske proteins lacking the disulfide bridge are less than 1% of the activity of the bc(1) complex from wild-type yeast, even though normal amounts of the iron-sulfur protein are present as judged by Western blot analysis. These activities are lower than the 105-115 mV decrease in the midpoint potential of the Rieske iron-sulfur cluster can account for. Pre-steady-state reduction of the bc(1) complexes with menadiol indicates that quinol is not oxidized through center P but is oxidized through center N. In addition, the levels of stigmatellin and UHDBT binding are markedly diminished, while antimycin binding is unaffected, in the bc(1) complexes with Rieske proteins lacking the disulfide bridge. Taken together, these results indicate that the ubiquinol oxidation site at center P is damaged in the bc(1) complexes with Rieske proteins lacking the disulfide bridge even though the iron-sulfur cluster is assembled into the Rieske protein.  相似文献   

10.
The DNA sequence of the Salmonella typhimurium ahp locus was determined. The locus was found to contain two genes that encode the two proteins (C22 and F52a) that comprise the S. typhimurium alkyl hydroperoxide reductase activity. The predicted sequence of the F52a protein component of the alkyl hydroperoxide reductase was found to be highly homologous to the Escherichia coli thioredoxin reductase protein (34% identity with many conservative substitutions). The homology was found to be particularly striking in the region containing the redox-active cysteines of the thioredoxin reductase molecule, and among the identities were the redox-active cysteines themselves. Aside from the strong similarity to thioredoxin reductase, overall homology between the F52a protein and other flavoprotein disulfide oxidoreductases such as glutathione reductase, dihydrolipoamide dehydrogenase, and mercuric reductase was found to be rather limited, and the conserved active site segment common to the three proteins was not observed within the F52a protein. However, three short segments that have been implicated in FAD and NAD binding were found to be conserved between the F52a protein and the other disulfide reductases. These results suggest that the alkyl hydroperoxide reductase is the second known member of a class of disulfide oxidoreductases which was represented previously by thioredoxin reductase alone; they also allow the putative assignment of several functional domains.  相似文献   

11.
The periplasmic nitrate reductase (Nap) is wide-spread in proteobacteria. NapA, the nitrate reductase catalytic subunit, contains a Mo-bisMGD cofactor and one [4Fe-4S] cluster. The nap gene clusters in many bacteria, including Rhodobacter sphaeroides DSM158, contain an napF gene, disruption of which drastically decreases both in vitro and in vivo nitrate reductase activities. In spite its importance in the Nap system, NapF has never been characterized biochemically, and its role remains unknown. The NapF protein has four polycysteine clusters that suggest that it is an iron-sulfur-containing protein. In the present study, a His(6)-tagged NapF protein was overproduced in Escherichia coli and purified anaerobically. The purified NapF protein was used to obtain polyclonal antibodies raised in rabbit, and cellular fractionation of R. sphaeroides followed by immunoprobing with anti-NapF antibodies revealed that the native NapF protein is located in the cytoplasm. This contrasts with the periplasmic location of the mature NapA. However, NapA could not be detected in an isogenic napF(-) strain of R. sphaeroides. The His(6)-tagged NapF protein displayed spectral properties indicative of Fe-S clusters, but these features were rapidly lost, suggesting cluster lability. However, reconstitution of the Fe-S centers into the apo-NapF protein was achieved in the presence of Azotobacter vinelandii cysteine desulfurase (NifS), and this allowed the recovery of nitrate reductase activity in NapA protein that had previously been treated with 2,2'-dipyridyl to remove the [4Fe-4S] cluster. This activity was not recovered in the absence of NapF. Taking into account the cytoplasmic localization of NapF, the presence of labile Fe-S clusters in the protein, the napF(-) strain phenotype, and the NapF-dependent reactivation of the 2,2'-dipyridyl-treated NapA, we propose a role for NapF in assembling the [4Fe-4S] center of the catalytic subunit NapA.  相似文献   

12.
Glutaredoxin (Grx) and protein-disulfide isomerase (PDI) are members of the thioredoxin superfamily of thiol/disulfide exchange catalysts. Thermodynamically, rat PDI is a 600-fold better oxidizing agent than Grx1 from Escherichia coli. Despite that, Grx1 is a surprisingly good protein oxidase. It catalyzes protein disulfide formation in a redox buffer with an initial velocity that is 30-fold faster than PDI. Catalysis of protein and peptide oxidation by the individual catalytic domains of PDI and by a Grx1-PDI chimera show that differences in active site chemistry are fundamental to their oxidase activity. Mutations in the active site cysteines reveal that Grx1 needs only one cysteine to catalyze rapid substrate oxidation, whereas PDI requires both cysteines. Grx1 is a good oxidase because of the high reactivity of a Grx1-glutathione mixed disulfide, and PDI is a good oxidase because of the high reactivity of the disulfide between the two active site cysteines. As a protein disulfide reductase, Grx1 is also superior to PDI. It catalyzes the reduction of nonnative disulfides in scrambled ribonuclease and protein-glutathione mixed disulfides 30-180 times faster than PDI. A multidomain structure is necessary for PDI to catalyze effective protein reduction; however, placing Grx1 into the PDI multidomain structure does not enhance its already high reductase activity. Grx1 and PDI have both found mechanisms to enhance active site reactivity toward proteins, particularly in the kinetically difficult direction: Grx1 by providing a reactive glutathione mixed disulfide to supplement its oxidase activity and PDI by utilizing its multidomain structure to supplement its reductase activity.  相似文献   

13.
The ABC protein ABCE1, formerly named RNase L inhibitor RLI1, is one of the most conserved proteins in evolution and is expressed in all organisms except eubacteria. Because of its fundamental role in translation initiation and/or ribosome biosynthesis, ABCE1 is essential for life. Its molecular mechanism has, however, not been elucidated. In addition to two ABC ATPase domains, ABCE1 contains a unique N-terminal region with eight conserved cysteines, predicted to coordinate iron-sulfur clusters. Here we present detailed information on the type and on the structural organization of the Fe-S clusters in ABCE1. Based on biophysical, biochemical, and yeast genetic analyses, ABCE1 harbors two essential diamagnetic [4Fe-4S](2+) clusters with different electronic environments, one ferredoxin-like (CPX(n)CX(2)CX(2)C; Cys at positions 4-7) and one unique ABCE1-type cluster (CXPX(2)CX(3)CX(n)CP; Cys at positions 1, 2, 3, and 8). Strikingly, only seven of the eight conserved cysteines coordinating the Fe-S clusters are essential for cell viability. Mutagenesis of the cysteine at position 6 yielded a functional ABCE1 with the ferredoxin-like Fe-S cluster in a paramagnetic [3Fe-4S](+) state. Notably, a lethal mutation of the cysteine at position 4 can be rescued by ligand swapping with an adjacent, extra cysteine conserved among all eukaryotes.  相似文献   

14.
Reynolds CM  Poole LB 《Biochemistry》2000,39(30):8859-8869
AhpF of Salmonella typhimurium, the flavoprotein reductase required for catalytic turnover of AhpC with hydroperoxide substrates in the alkyl hydroperoxide reductase system, is a 57 kDa protein with homology to thioredoxin reductase (TrR) from Escherichia coli. Like TrR, AhpF employs tightly bound FAD and redox-active disulfide center(s) in catalyzing electron transfer from reduced pyridine nucleotides to the disulfide bond of its protein substrate. Homology of AhpF to the smaller (35 kDa) TrR protein occurs in the C-terminal part of AhpF; a stretch of about 200 amino acids at the N-terminus of AhpF contains an additional redox-active disulfide center and is required for catalysis of AhpC reduction. We have demonstrated that fusion of the N-terminal 207 amino acids of AhpF to full-length TrR results in a chimeric protein (Nt-TrR) with essentially the same catalytic efficiency (k(cat)/K(m)) as AhpF in AhpC reductase assays; both k(cat) and the K(m) for AhpC are decreased about 3-4-fold for Nt-TrR compared with AhpF. In addition, Nt-TrR retains essentially full TrR activity. Based on results from two mutants of Nt-TrR (C129, 132S and C342,345S), AhpC reductase activity requires both centers while TrR activity requires only the C-terminal-most disulfide center in Nt-TrR. The high catalytic efficiency with which Nt-TrR can reduce thioredoxin implies that the attached N-terminal domain does not block access of thioredoxin to the TrR-derived Cys342-Cys345 center of Nt-TrR nor does it impede the putative conformational changes that this part of Nt-TrR is proposed to undergo during catalysis. These studies indicate that the C-terminal part of AhpF and bacterial TrR have very similar mechanistic properties. These findings also confirm that the N-terminal domain of AhpF plays a direct role in AhpC reduction.  相似文献   

15.
Glutamate decarboxylase (GAD) produces GABA, the main inhibitory neurotransmitter in adult mammalian brain. The physical characteristics of GAD were studied using mass spectrometry and partial protein digests. The N-termini of the two main isoforms, GAD65 and GAD67, were processed by removal of the initial methionine residues and acetylation of the penultimate alanines. Native recombinant GAD65 and GAD67 exist as homodimers that can be dissociated with non-reducing methods, indicating that homodimerization does not involve intermolecular disulfide bonds. Truncation of the N-terminal segment with trypsin digestion did not affect homodimerization but increased activity by decreasing the Km of GAD67 and increasing the Vmax of both isoforms. Of the 15 cysteines in GAD65, the six found in the N-terminal segment can form disulfide bonds and of the 13 cysteines in GAD67, cysteines 32 and 38 can form a disulfide bond. The in vitro formation of disulfide bonds in the N-termini, and the removal of the termini with relatively low amounts of trypsin, indicate that the N-terminal segments of GAD65 and GAD67 are exposed and flexible. The formation of a disulfide bridge between cysteines 30 and 45 of GAD65 suggests that alteration of normal redox conditions could affect GAD targeting.  相似文献   

16.
DNA polymerase ε (Polε) is a multi-subunit polymerase that contributes to genomic stability via its roles in leading strand replication and the repair of damaged DNA. Polε from Saccharomyces cerevisiae is composed of four subunits—Pol2, Dpb2, Dpb3, and Dpb4. Here, we report the presence of a [Fe-S] cluster directly within the active polymerase domain of Pol2 (residues 1–1187). We show that binding of the [Fe-S] cluster is mediated by cysteines in an insertion (Pol2ins) that is conserved in Pol2 orthologs but is absent in the polymerase domains of Polα, Polδ, and Polζ. We also show that the [Fe-S] cluster is required for Pol2 polymerase activity but not for its exonuclease activity. Collectively, our work suggests that Polε is perhaps more sensitive than other DNA polymerases to changes in oxidative stress in eukaryotic cells.  相似文献   

17.
Shokes JE  Duin EC  Bauer C  Jaun B  Hedderich R  Koch J  Scott RA 《FEBS letters》2005,579(7):1741-1744
Heterodisulfide reductase (HDR) catalyzes the formation of coenzyme M (CoM-SH) and coenzyme B (CoB-SH) by the reversible reduction of the heterodisulfide, CoM-S-S-CoB. This reaction recycles the two thiol coenzymes involved in the final step of microbial methanogenesis. Electron paramagnetic resonance (EPR) and variable-temperature magnetic circular dichroism spectroscopic experiments on oxidized HDR incubated with CoM-SH revealed a S=1/2 [4Fe-4S]3) cluster, the EPR spectrum of which is broadened in the presence of CoM-33SH [Duin, E.C., Madadi-Kahkesh, S., Hedderich, R., Clay, M.D. and Johnson, M.K. (2002) Heterodisulfide reductase from Methanothermobacter marburgensis contains an active-site [4Fe-4S] cluster that is directly involved in mediating heterodisulfide reduction. FEBS Lett. 512, 263-268; Duin, E.C., Bauer, C., Jaun, B. and Hedderich, R. (2003) Coenzyme M binds to a [4Fe-4S] cluster in the active site of heterodisulfide reductase as deduced from EPR studies with the [33S]coenzyme M-treated enzyme. FEBS Lett. 538, 81-84]. These results provide indirect evidence that the disulfide binds to the iron-sulfur cluster during reduction. We report here direct structural evidence for this interaction from Se X-ray absorption spectroscopic investigation of HDR treated with the selenium analog of coenzyme M (CoM-SeH). Se K edge extended X-ray absorption fine structure confirms a direct interaction of the Se in CoM-SeH-treated HDR with an Fe atom of the Fe-S cluster at an Fe-Se distance of 2.4A.  相似文献   

18.
The gene encoding a protein containing a novel iron sulfur cluster ([6Fe-6S]) has been cloned from Desulfovibrio desulfuricans ATCC 27774 and sequenced. An open reading frame was found encoding a 545 amino acid protein (M(r) 58,496). The amino acid sequence is highly homologous with that of the corresponding protein from D. vulgaris (Hildenborough) and contains a Cys-motif that may be involved in coordination of the Fe-S cluster.  相似文献   

19.
As an intermediate filament (IF)-based cytolinker protein, plectin plays a key role in the maintenance of cellular cytoarchitecture and serves at the same time as a scaffolding platform for signaling cascades. Consisting of six structural repeats (R1-6) and harboring binding sites for different IF proteins and proteins involved in signaling, the plectin C-terminal domain is of strategic functional importance. Depending on the species, it contains at least 13 cysteines, 4 of which reside in the R5 domain. To investigate the structural and biological functions of R5 cysteines, we used cysteine-to-serine mutagenesis and spectroscopic, biochemical, and functional analyses. Urea-induced unfolding experiments indicated that wild-type R5 in the oxidized, disulfide bond-mediated conformation was more stable than its cysteine-free mutant derivative. The binding affinity of R5 for vimentin was significantly higher, however, when the protein was in the reduced, more relaxed conformation. Of the four R5 cysteines, one (Cys4) was particularly reactive as reflected by its ability to form disulfide bridges with R5 Cys1 and to serve as a target for nitrosylation in vitro. Using immortalized endothelial cell cultures from mice, we show that endogenous plectin is nitrosylated in vivo, and we found that NO donor-induced IF collapse proceeds dramatically faster in plectin-deficient compared with wild-type cells. Our data suggest an antagonistic role of plectin in nitrosylation (oxidative stress)-mediated alterations of IF cytoarchitecture and a possible role of R5 Cys4 as a regulatory switch.  相似文献   

20.
Helicobacter pylori produces a heat shock protein A (HspA) that is unique to this bacteria. While the first 91 residues (domain A) of the protein are similar to GroES, the last 26 (domain B) are unique to HspA. Domain B contains eight histidines and four cysteines and was suggested to bind nickel. We have produced HspA and two mutants: Cys94Ala and Cys94Ala/Cys111Ala and identified the disulfide bridge pattern of the protein. We found that the cysteines are engaged in three disulfide bonds: Cys51/Cys53, Cys94/Cys111 and Cys95/Cys112 that result in a unique closed loop structure for the domain B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号