首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Bombyx mori pheromone-binding protein (BmorPBP) undergoes a pH-dependent conformational transition from a form at basic pH, which contains an open cavity suitable for ligand binding (BmorPBPB), to a form at pH 4.5, where this cavity is occupied by an additional helix (BmorPBPA). This helix α7 is formed by the C-terminal dodecapeptide 131-142, which is flexibly disordered on the protein surface in BmorPBPB and in its complex with the pheromone bombykol. Previous work showed that the ligand-binding cavity cannot accommodate both bombykol and helix α7. Here we further investigated mechanistic aspects of the physiologically crucial ejection of the ligand at lower pH values by solution NMR studies of the variant protein BmorPBP(1-128), where the C-terminal helix-forming tetradecapeptide is removed. The NMR structure of the truncated protein at pH 6.5 corresponds closely to BmorPBPB. At pH 4.5, BmorPBP(1-128) maintains a B-type structure that is in a slow equilibrium, on the NMR chemical shift timescale, with a low-pH conformation for which a discrete set of 15N-1H correlation peaks is NMR unobservable. The full NMR spectrum was recovered upon readjusting the pH of the protein solution to 6.5. These data reveal dual roles for the C-terminal tetradecapeptide of BmorPBP in the mechanism of reversible pheromone binding and transport, where it governs dynamic equilibria between two locally different protein conformations at acidic pH and competes with the ligand for binding to the interior cavity.  相似文献   

2.
Electrophoretic analysis of the major seed protein, G1 globulin, from four strains of Phaseolus vulgaris L. revealed a three-banded pattern for two strains having a high methionine content (BBL 240 and PI 302,542). The other two strains (PI 207,227 and PI 229,815) known to have a lower seed methionine content, had a two-banded subunit pattern for the G1 globulin. Analytical ultracentrifugation confirmed that globulin from the two-banded strains underwent pH-dependent reversible dissociation similar to that previously found for a three-banded cultivar; additionally, the protomer molecular weight showed that three subunits of about 50,000 molecular weight each were present in the G1 globulin of the two-banded strain. Gel patterns of G1 globulin from the two strains used as parents, BBL 240 and PI 229,815, showed differences in the largest subunit, which appeared as either a 53,000 molecular weight polypeptide known to be present in the three-banded strain, or as a shorter polypeptide having a molecular weight close to 47,000. Analysis of G1 protein from portions of single hybrid seeds showed a banding pattern intermediate between the two- and three-banded types. The subunit pattern from all seeds with intermediate-banded parents segregated in a manner consistent with that expected for control of the polypeptide by a single Mendelian gene. The remaining portions of the seeds were grown to confirm that they represented true crosses. The procedures used are essentially nondestructive, and can be used as a basis for selecting seeds having different protein characters.  相似文献   

3.
Coagulation factor IX-binding protein, isolated from Trimeresurus flavoviridis (IX-bp), is a C-type lectin-like protein. It is an anticoagulant consisting of homologous subunits, A and B. Each subunit has a Ca(2+)-binding site with a unique affinity (K(d) values of 14muM and 130muM at pH 7.5). These binding characteristics are pH-dependent and, under acidic conditions, the Ca(2+) binding of the low-affinity site was reduced considerably. In order to identify which site has high affinity and to investigate the pH-dependent Ca(2+) release mechanism, we have determined the crystal structures of IX-bp at pH 6.5 and pH 4.6 (apo form), and compared the Ca(2+)-binding sites with each other and with those of the solved structures under alkaline conditions; pH 7.8 and pH 8.0 (complexed form). At pH 6.5, Glu43 in the Ca(2+)-binding site of subunit A displayed two conformations. One (minor) is that in the alkaline state, and the other (major) is that at pH 4.6. However, the corresponding Gln43 residue of subunit B is in only a single conformation, which is almost identical with that in the alkaline state. At pH 4.6, Glu43 of subunit A adopts a conformation similar to that of the major conformer observed at pH 6.5, while Gln43 of subunit B assumes a new conformation, and both Ca(2+) positions are occupied by water molecules. These results showed that Glu43 of subunit A is much more sensitive to protonation than Gln43 of subunit B, and the conformational change of Glu43 occurs around pH6.5, which may correspond to the step of Ca(2+) release.  相似文献   

4.
The uncoupler-induced inactivation of H+-ATPase in hepatoma 22a and mouse liver mitochondria has been studied. The dependence of this process on delta microH, and pH and ATP was established. The inactivated ATPase could be reactivated at alkaline pH values in the absence of ATP. These data indicate that the inactivation is apparently caused by the natural protein inhibitor. ATP- and pH-dependent decrease of ATPase activity is also observed after Lubrol-WX disruption of mitochondria. It can be proposed that practically all ATPase molecules in hepatoma mitochondria are in a catalytically active complex with the protein inhibitor. At low delta microH this complex is inactivated via reversible pH-dependent and irreversible ATP-dependent rearrangements. The pH-dependent rearrangement of the isolated protein inhibitor from hepatoma mitochondria is also observed.  相似文献   

5.
The cytoplasmic domain of the erythrocyte membrane protein, band 3, contains binding sites for hemoglobin, several glycolytic enzymes, and ankyrin, the linkage to the cytoskeleton. In an earlier study, we found evidence which suggested that band 3 might undergo a native conformational change. We demonstrate here that the cytoplasmic domain of band 3 does exist in a reversible, pH-dependent conformational equilibrium among 3 native states. At physiological salt concentrations this equilibrium is characterized by apparent pKa values of 7.2 and 9.2; however, these apparent pKa values change if the domain's sulfhydryl groups are modified. A major component of the structural change appears to involve the pivoting of two subdomains of the cytoplasmic domain at a central hinge, as evidenced by both hydrodynamic and fluorescence energy transfer measurements. The probable site of this hinge is between residues 176 and 191, a region highly accessible to proteases and also rich in proline. These structural rearrangements also apparently extend to the cluster of tryptophan residues near the N terminus, since the domain's intrinsic fluorescence more than doubles between pH 6.5 and 9.5. No measurable change in band 3 secondary or quaternary structure could be detected during the conformational transitions. A structural model of the cytoplasmic domain of band 3 is presented to show the possible spatial relationships between the regions of conformational change and the sites of peripheral protein binding.  相似文献   

6.
Hemoglobin dissociation is of great interest in protein process and clinical medicine as well as in artificial blood research. However, the pathway and mechanisms of pH-dependent human Hb dissociation are not clear, whether Hb would really dissociate into monomers is still a question. Therefore, we have conducted a multi-technique investigation on the structure and function of human Hb versus pH. Here we demonstrate that tetramer hemoglobin can easily dissociate into dimer in abnormal pH and the tetramer → dimer dissociation is reversible if pH returns to normal physiological value. When the environmental pH becomes more acidic (<6.5) or alkaline (>8.0), Hb can further dissociate from dimer to monomer. The proportion of monomers increases while the fraction of dimers decreases as pH declines from 6.2 to 5.4. The dimer → monomer dissociation is accompanied with series changes of protein structure thus it is an irreversible process. The structural changes in the dissociated Hbs result in some loss of their functions. Both the Hb dimer and monomer cannot adequately carry and release oxygen to the tissues in circulation. These findings provide a comprehensive understanding on the pH-dependent protein transitions of human Hb, give guideline to explain complex protein processes and the means to control protein dissociation or re-association reaction. They are also of practical value in clinical medicine, blood preservation and blood substitute development.  相似文献   

7.
Light-scattering and related studies on protein of Dahlmense strain of tobacco mosaic virus (DTMV) show that its polymerization characteristics are considerably different from those of TMV protein. At pH 6.0 in phosphate buffer (I = 0.1), the extent of polymerization of DTMV protein is greater than that of TMV protein, they are nearly the same at pH 6.25, and that of DTMV protein is less than that of TMV protein at pH 6.5. At pH 7.0 and 7.5, DTMV protein polymerizes more readily than TMV protein. Similar studies in phosphate buffer (I = 0.05) show that the extent of polymerization for DTMV protein is less than that of TMV protein at pH 6.0 and almost negligible at pH 6.25. Acid-base titration studies show that, upon temperature-mediated polymerization, about 2 H+ ions are bound per monomer of DTMV protein at pH 6.O.Electron microscope studies show that DTMV protein exists at room temperature as double discs and polymerized rods in phosphate buffer at pH 7.5, I = 0.1; at pH values below 6.5, DTMV protein is entirely in the form of polymerized rods. Velocity sedimentation studies of DTMV protein at room temperature are in agreement with these findings. At low temperatures, except at pH 7.5, most of the material sedimented with an s value of around 25 S. Thus, at low temperatures, except at pH 7.5, DTMV protein in solution is in the form of particles the size of double discs with an M?r of 596,000 g/mole or even larger. Therefore, temperature-mediated polymerization of DTMV protein at pH values below 6.5 in phosphate buffer (I = 0.1) and below 6.25 in phosphate buffer (I = 0.05) involves particles at least as large as double discs as the starting material.  相似文献   

8.
Structural studies of mammalian prion protein at pH values between 4.5 and 5.5 established that the N-terminal 100 residue domain is flexibly disordered. Here, we show that at pH values between 6.5 and 7.8, i.e. the pH at the cell membrane, the octapeptide repeats in recombinant human prion protein hPrP(23-230) encompassing the highly conserved amino acid sequence PHGGGWGQ are structured. The nuclear magnetic resonance solution structure of the octapeptide repeats at pH 6.2 reveals a new structural motif that causes a reversible pH-dependent PrP oligomerization. Within the aggregation motif the segments HGGGW and GWGQ adopt a loop conformation and a beta-turn-like structure, respectively. Comparison with the crystal structure of HGGGW-Cu(2+) indicates that the binding of copper ions induces a conformational transition that presumably modulates PrP aggregation. The knowledge that the cellular prion protein is immobilized on the cell surface along with our results suggests a functional role of aggregation in endocytosis or homophilic cell adhesion.  相似文献   

9.
Bovine IF(1), a basic protein of 84 amino acids, is involved in the regulation of the catalytic activity of the F(1) domain of ATP synthase. At pH 6.5, but not at basic pH values, it inhibits the ATP hydrolase activity of the enzyme. The oligomeric state of bovine IF(1) has been investigated at various pH values by sedimentation equilibrium analytical ultracentrifugation and by covalent cross-linking. Both techniques confirm that the protein forms a tetramer at pH 8, and below pH 6.5, the protein is predominantly dimeric. By covalent cross-linking, it has been found that at pH 8.0 the fragment of IF(1) consisting of residues 44-84 forms a dimer, whereas the fragment from residues 32-84 is tetrameric. Therefore, some or all of the residues between positions 32 and 43 are necessary for tetramer formation and are involved in the pH-sensitive interconversion between dimer and tetramer. One important residue in the interconversion is histidine 49. Mutation of this residue to lysine abolishes the pH-dependent activation-inactivation, and the mutant protein is active and dimeric at all pH values investigated. It is likely from NMR studies that the inhibitor protein dimerizes by forming an antiparallel alpha-helical coiled-coil over its C-terminal region and that at high pH values, where the protein is tetrameric, the inhibitory regions are masked. The mutation of histidine 49 to lysine is predicted to abolish coiled-coil formation over residues 32-43 preventing interaction between two dimers, forcing the equilibrium toward the dimeric state, thereby freeing the N-terminal inhibitory regions and allowing them to interact with F(1).  相似文献   

10.
J M Denu  P F Fitzpatrick 《Biochemistry》1992,31(35):8207-8215
Primary deuterium kinetic isotope and pH effects on the reduction of D-amino acid oxidase by amino acid substrates were determined using steady-state and rapid reaction methods. With D-serine as substrate, reduction of the enzyme-bound FAD requires that a group with a pKa value of 8.7 be unprotonated and that a group with a pKa value of 10.7 be protonated. The DV/Kser value of 4.5 is pH-independent, establishing that these pKa values are intrinsic. The limiting rate of reduction of the enzyme shows a kinetic isotope effect of 4.75, consistent with this as the intrinsic value. At high enzyme concentration (approximately 15 microM) at pH 9,D-serine is slightly sticky (k3/k2 = 0.8), consistent with a decrease in the rate of substrate dissociation. With D-alanine as substrate, the pKa values are perturbed to 8.1 and 11.5. The DV/Kala value increases from 1.3 at pH 9.5 to 5.1 at pH 4, establishing that D-alanine is sticky with a forward commitment of approximately 10. The effect of pH on the DV/Kala value is consistent with a model in which exchange with solvent of the proton from the group with pKa 8.7 is hindered and is catalyzed by H2O and OH- above pH 7 and by H3O+ and H2O below pH 7. With glycine, the pH optimum is shifted to a more basic value, 10.3. The DV/Kgly value increases from 1.26 at pH 6.5 to 3.1 at pH 10.7, consistent with fully reversible CH bond cleavage followed by a pH-dependent step. At pH 10.5, the kinetic isotope effect on the limiting rate of reduction is 3.4.  相似文献   

11.
An alternative and simple procedure has been described for the simultaneous separation of the lectin and abrin from the seeds of Abrus precatorius and their purification free from each other. Both the lectin and abrin have been crystallized, the latter as salt-free crystals. One variety of abrin which was nonhemagglutinating and did not bind d-galactose was obtained. The lectin found homogeneous by immunodiffusion, immunoelectrophoresis and sedimentation had a molecular weight of 132,000 which underwent pH-dependent reversible association-dissociation at pH 7 and 2, dissociating into non-covalently bound subunits of approximately 64,000 molecular weight. The protein was stable in the pH range 2–10. The abrin molecule did not undergo any change at low pH values. The C- and NH2-terminal groups of the lectin were found to be Ala-Leu (or Leu-Ala) and valine, respectively. Crystalline lectin showed the presence of three isolectins in isoelectric focusing.  相似文献   

12.
Harper JR  Balke NE 《Plant physiology》1981,68(6):1349-1353
The phenolic compounds salicylic acid (o-hydroxybenzoic acid) and ferulic acid (4-hydroxy-3-methoxycinnamic acid) inhibited K+ (86Rb+) absorption in excised oat (Avena sativa L. cv. Goodfield) root tissue. Salicylic acid was the most inhibitory. The degree of inhibition was both concentration- and pH-dependent. With decreasing pH, the inhibitory effect of the phenolic increased. During the early stages of incubation, the time required to inhibit K+ absorption was also pH- and concentration-dependent. At pH 4.0, 5×10−4 molar salicylic acid inhibited K+ absorption about 60% within 1 minute; whereas, at pH 6.5, this concentration affected absorption only after 10 to 15 minutes. However, at 5 × 10−3 molar and pH 6.5, salicylic acid was inhibitory within 1 minute. The capacity of the tissue to recover following a 1-hour treatment in 5 × 10−4 molar salicylic acid ranged from no recovery at pH 4.5 to complete recovery at pH 7.5. The absorption of salicylic acid was pH-dependent, also. As pH decreased, more of the phenolic compound was absorbed by the tissue. The increased absorption of the compound at low pH most likely contributed to apparent tissue damage at pH 4.5 and might have accounted for the lack of recovery of K+ absorption as pH decreased.  相似文献   

13.
Native Paralithodes camtschaticae hemocyanin is found as a mixture of dodecamers (24S; 80%) and hexamers (16S; 20%). Removal of Ca2+ ions by dialysis against EDTA-containing buffer solution at neutral pH induces complete dissociation of the 24S form into the 16S form. Under these conditions, a further increase in pH to 9.2 produces complete dissociation of the hexamers into monomers (5S). In both cases, the dissociation process is reversible. The dodecamer (24S) is composed of two different hexamers which can be discriminated only by ion-exchange chromatography in the presence of Ca2+ ions. At alkaline pH and in the presence of EDTA, two major monomeric fractions can be separated by ion-exchange chromatography: ParcI (60%) and ParcII (40%). The reassociation properties of the two fractions were studied separately to define their ability to form hexamers and dodecamers. The oxygen-binding properties of the different aggregation states were investigated. Native hemocyanin binds O2 co-operatively (nH = 3) and with low affinity (p50 approximately 103 Torr). The two monomeric fractions, ParcI and ParcII, are not co-operative and the affinity is twice that of the native protein (p50 approximately 65 and 52 Torr). Oxygen-binding measurements of native hemocyanin carried out at different pH values indicate a strong positive Bohr effect within the pH range 6.5-8.0 and an increase in oxygen affinity at pH below 6.5.  相似文献   

14.
The effect of phosphate buffer on the activity of jack bean urease was studied in the range of pH 5.80–8.07. The inhibition constants of phosphate buffer were determined by measuring initial reaction rates at each pH for a series of buffer concentrations at a series of urea concentrations. It was shown that: (1) at pH 5.80–7.49 the buffer is a competitive inhibitor of the enzyme with Ki,buffer increasing from 0.54 mM for pH 5.80 to 362 mM for pH 7.49, (2) the values of pKi,buffer are pH-dependent exhibiting a slope of −1 at pH 5.80–6.5 and a slope of −2 at pH 6.5–7.49, (3) from pH 7.62 as the pH is further raised the competitive inhibition of urease by the buffer was not observed, (4) the true competitive inhibitor of urease is H2PO4 ion, and (5) pH 6.5 and 7.6 correspond to the ionization constants of the active site groups of urease responsible for the inhibitory strength of H2PO4 ion.  相似文献   

15.
GadC, a central component of the Escherichia coli acid resistance system, is a Glu/GABA antiporter. A previous structural study and biochemical characterization showed that GadC exhibits a stringent pH dependence for substrate transport, with no detectable activity at pH values above 6.5. However, the substrate selectivity and the mechanism of pH-dependent transport activity of GadC remain enigmatic. In this study, we demonstrate that GadC selectively transports Glu with no net charge and GABA with a positive charge. A C-plug-truncated variant of GadC (residues 1–470) transported Gln (a mimic of Glu with no net charge), but not Glu, even at pH 8.0. The pH-dependent transport of Gln by this GadC variant was shifted ∼1 unit toward a higher pH compared with Glu transport. Taken together, the results identify the substrate selectivity for GadC and show that the protonation states of substrates are crucial for transport.  相似文献   

16.
《Insect Biochemistry》1986,16(5):825-834
Three major larval serum proteins (MLSP-1,2 and 3) of the Dipteran species Ceratitis capitata have been isolated and characterized. The structure of these proteins was found to depend on the pH. At acidic pH, they form hexamers which dissociate above pH 6.5. Their dissociation pattern in the pH range 6.5–8.5 was studied by gel filtration analysis. MLSP-3 was found to be the most readily dissociated protein followed by MLSP-1 and 2. Our data suggest that, in vivo, these proteins associate randomly to both homo- and heterohexameric forms. Amino acid analysis and partial peptide mapping, indicated the high degree of homology in the primary structure of these proteins, especially between MLSP-1 and 2. Partial homology of these three proteins with MLSP-4, another major larval serum protein of C. capitata which has been isolated previously in our laboratory (Mintzas and Rebutsicas, 1984) was also found. The amino acid analysis suggested the presence of glucosamine in MLSP-1, 2 and 3 while neutral sugars were identified only in MLSP-1 and MLSP-4.  相似文献   

17.
The DraR/DraK two-component system was found to be involved in the differential regulation of antibiotic biosynthesis in a medium-dependent manner; however, its function and signaling and sensing mechanisms remain unclear. Here, we describe the solution structure of the extracellular sensor domain of DraK and suggest a mechanism for the pH-dependent conformational change of the protein. The structure contains a mixed alpha-beta fold, adopting a fold similar to the ubiquitous sensor domain of histidine kinase. A biophysical study demonstrates that the E83, E105, and E107 residues have abnormally high pKa values and that they drive the pH-dependent conformational change for the extracellular sensor domain of DraK. We found that a triple mutant (E83L/E105L/E107A) is pH independent and mimics the low pH structure. An in vivo study showed that DraK is essential for the recovery of the pH of Streptomyces coelicolor growth medium after acid shock. Our findings suggest that the DraR/DraK two-component system plays an important role in the pH regulation of S. coelicolor growth medium. This study provides a foundation for the regulation and the production of secondary metabolites in Streptomyces.  相似文献   

18.
There is an emerging scientific need for reliable tools for monitoring membrane protein transport. We present a methodology leading to the reconstitution of efflux pumps from the Gram-negative bacteria Pseudomonas aeruginosa in a biomimetic environment that allows for an accurate investigation of their activity of transport. Three prerequisites are fulfilled: compartmentation in a lipidic environment, use of a relevant index for transport, and generation of a proton gradient. The membrane protein transporter is reconstituted into liposomes together with bacteriorhodopsin, a light-activated proton pump that generates a proton gradient that is robust as well as reversible and tunable. The activity of the protein is deduced from the pH variations occurring within the liposome, using pyranin, a pH-dependent fluorescent probe. We describe a step-by-step procedure where membrane protein purification, liposome formation, protein reconstitution, and transport analysis are addressed. Although they were specifically designed for an RND transporter, the described methods could potentially be adapted for use with any other membrane protein transporter energized by a proton gradient.  相似文献   

19.
Conditions were selected which enable a quantitative assay of the ATPase inhibitor protein in submitochondrial particles. It was found that the isolated soluble inhibitor exhibits a marked pH-dependent hysteretic behaviour, i. e., an instant jump of pH for the inhibitor solution from 4.8 to 8.2 induced a slow alteration of its activity as measured by the inhibition of ATP hydrolysis by submitochondrial particles. In acid media (pH less than 6.8), the inhibitor is in the active, whereas in alkaline media (pH greater than 6.8) in the inactive state; the apparent pKa value for the cooperative active/inactive transition is 6.8. Treatment of the inhibitor protein with diethylpyrocarbonate, a specific reagent for histidine, completely abolishes its inhibitory activity. Two types of the inhibitor protein--ATPase interaction were revealed, i.e., reversible (ATP-independent) and irreversible (ATP-dependent) ones. Both reactions, i.e., ATP hydrolysis and ATP inhibition by the inhibitor in the presence of Mg2+ are characterized by a hyperbolic dependence of the reaction rate on ATP concentration; however, for both reactions the apparent KmATP values (50 and 5 microM, respectively) differ significantly (pH 8.0). Thus, the inhibitor--ATPase interaction shows that there exists a specific site for ATP in the ATPase which is different from the catalytic one. A model for the inhibitor protein interaction with ATPase which takes account of a slow pH-dependent conformational transformation of the inhibitor protein is proposed.  相似文献   

20.
The addition of linolenic acid to thylakoids produces various pH-dependent effects. We have demonstrated a binding site near the Photosystem (PS) II center with a pKa of 6.5: when linolenic acid is unprotonated it induces in the dark a rise of the initial fluorescence level, the latter being similar to the maximum fluorescence obtained during illumination of untreated thylakoids. The comparison of the fluorescence lifetimes in the presence and absence of linolenic acid leads us to conclude that the charge stabilisation on the primary acceptor, Q, is prevented by linolenic acid. A second binding site on the protein carrying B, the secondary acceptor of PS II, has also been demonstrated for linolenic acid. It has a 3-(3,4-dichlorophenyl)-1,1-dimethylurea-type effect both in the protonated and unprotonated forms. Finally, measurements of electrophoretic mobility of the thylakoids indicate several other sites of linolenic acid inclusion with an average pKa of 5.7. At alkaline pH the presence of unprotonated linolenic acid increases the charge density on the membrane. As a result a higher concentration of divalent cations is needed to obtain fluorescence and stacking changes than for untreated thylakoids. The presence, at acidic pH values, of the unprotonated form of linolenic acid leads to the inhibition of cation-induced fluorescence changes, probably by preventing the movement of chlorophyll-protein complexes in the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号