首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Imai S  Kuroda M  Yamashita R  Ishiura Y 《Uirusu》2005,55(2):239-249
Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1), a latent viral protein consistently expressed in infected proliferating cells, is essentially required in trans to maintain EBV episomes in cells. Thus EBNA1 will be an appropriate target for specific molecular therapy against EBV-associated cancers. We constructed a mutant (mt) EBNA1 lacking the N-terminal-half, relative to wild-type (wt) EBNA1, and demonstrated that it exerted dominant-negative effects on maintenance of the viral episome from cells regardless of viral latency or tissue origin thereby leading to significant suppression of naturally EBV-harboring Burkitt's lymphoma cell growth in vitro and in vivo. Our mutant can act as dominant-negative (dn) EBNA1 and will afford an additional therapeutic strategy specifically targeting EBV-associated malignancies. The similar approach can be applicable to exploit novel remedial protocols against uncontrollable diseases caused by other persistently-infected viruses. In addition, dnEBNA1 may also provide a useful analytical tool for the possible oncogenic function(s) of wtEBNA1.  相似文献   

4.
Epstein-Barr virus (EBV) is a strict human pathogen for which no small animal models exist. Plasmids that contain the EBV plasmid origin of replication, oriP, and express EBV nuclear antigen 1 (EBNA1) are stably maintained extrachromosomally in human cells, whereas these plasmids replicate poorly in rodent cells. However, the ability of oriP and EBNA1 to maintain the entire EBV episome in proliferating rodent cells has not been determined. Expression of the two human B-cell receptors for EBV on the surfaces of murine B cells allows efficient viral entry that leads to the establishment of latent EBV infection and long-term persistence of the viral genome. Latent gene expression in these cells resembles the latency II profile in that EBNA1 and LMP1 can be detected whereas EBNA2 and the EBNA3s are not expressed.  相似文献   

5.
6.
D J Hsieh  S M Camiolo    J L Yates 《The EMBO journal》1993,12(13):4933-4944
Replication of the circular, 170 kb genome of Epstein-Barr virus (EBV) during latent infection is performed by the cellular replication machinery under cell-cycle control. A single viral protein, EBNA1, directs the cellular replication apparatus to initiate replication within the genetically defined replication origin, oriP, at a cluster of four EBNA1 binding sites, referred to here as the physical origin of bidirectional replication, or OBR. A second cluster of EBNA1 binding sites within oriP, the 30 bp repeats, serves an essential role as a replication enhancer and also provides a distinct episome maintenance function that is unrelated to replication. We examined the functional elements of oriP for binding by EBNA1 and possibly other proteins in proliferating Raji cells by generating in vivo footprints using two reagents, dimethylsulfate (DMS) and KMnO4. We also employed deoxyribonuclease I (DNase I) with permeabilized cells. The in vivo and permeabilized cell footprints at the EBNA1 binding sites, particularly those obtained using DMS, gave strong evidence that all of these sites are bound by EBNA1 in asynchronously dividing cells. No consistent evidence was found to suggest binding by other proteins at any other sites within the functional regions of oriP. Thymines at symmetrical positions of the OBR within oriP were oxidized when cells were treated with permanganate, suggestive of bends or other distortions of DNA structure at these positions; binding of EBNA1 in vitro to total DNA from Raji cells induced reactivity to permanganate at identical positions. The simplest interpretation of the results, which were obtained using asynchronously dividing cells, is that EBNA1 binds to its sites at oriP and holds the OBR in a distorted conformation throughout most of the cell cycle, implying that replication is initiated by a cellular mechanism and is not limited by an availability of EBNA1 for binding to oriP.  相似文献   

7.
LANA is the KSHV-encoded terminal repeat binding protein essential for viral replication and episome maintenance during latency. We have determined the X-ray crystal structure of LANA C-terminal DNA binding domain (LANADBD) to reveal its capacity to form a decameric ring with an exterior DNA binding surface. The dimeric core is structurally similar to EBV EBNA1 with an N-terminal arm that regulates DNA binding and is required for replication function. The oligomeric interface between LANA dimers is dispensable for single site DNA binding, but is required for cooperative DNA binding, replication function, and episome maintenance. We also identify a basic patch opposite of the DNA binding surface that is responsible for the interaction with BRD proteins and contributes to episome maintenance function. The structural features of LANADBD suggest a novel mechanism of episome maintenance through DNA-binding induced oligomeric assembly.  相似文献   

8.
基于EBNA1和oriP的载体在基因治疗中的应用研究进展   总被引:2,自引:0,他引:2  
何婕  张智清   《生物工程学报》2005,21(3):507-510
非病毒载体用于基因治疗的主要问题是导入靶细胞的效率较低,目的基因表达水平低,疗效持续时间也较短。EBNA1和oriP元件使引入该元件的质粒在真核细胞内保持为游离体、转运入核、转录增强。质粒携带的目的基因能够获得较高的转染效率,高水平、持续的表达。基于EBNA1/oriP的质粒在肿瘤、单基因缺陷先天性疾病、TNF相关的炎性疾病的基因治疗中显示了良好的应用前景。EBNA1/oriP元件用于构建人工染色体,携带目的基因的调控序列,可望实现可调控的基因治疗。  相似文献   

9.
The latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus can associate with mitotic chromosomes and promote latent episome maintenance and segregation. Here we report that LANA also mediates the replication of plasmid DNAs bearing viral terminal repeats. The predicted secondary structure of LANA's C terminus reveals striking similarity to the known structure of the DNA-binding domain of Epstein-Barr virus EBNA1, despite the absence of primary sequence homology between these proteins, suggesting conservation of the key mechanistic features of latent gammaherpesvirus DNA replication.  相似文献   

10.
Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen (LANA) tethers viral terminal repeat (TR) DNA to mitotic chromosomes to mediate episome persistence. The 1,162-amino-acid LANA protein contains both N- and C-terminal chromosome attachment regions. The LANA C-terminal domain self-associates to specifically bind TR DNA and mitotic chromosomes. Here, we used alanine scanning substitutions spanning residues 1023 to 1145 to investigate LANA self-association, DNA binding, and C-terminal chromosome association. No residues were essential for LANA oligomerization, as assayed by coimmunoprecipitation experiments, consistent with redundant roles for amino acids in self-association. Different subsets of amino acids were important for DNA binding, as assayed by electrophoretic mobility shift assay, and mitotic chromosome association, indicating that distinct C-terminal LANA subdomains effect DNA and chromosome binding. The DNA binding domains of LANA and EBNA1 are predicted to be structurally homologous; certain LANA residues important for DNA binding correspond to those with roles in EBNA1 DNA binding, providing genetic support for at least partial structural homology. In contrast to the essential role of N-terminal LANA chromosome targeting residues in DNA replication, deficient C-terminal chromosome association did not reduce LANA-mediated DNA replication.  相似文献   

11.
Herpesvirus saimiri (HVS) establishes a persistent infection in squirrel monkeys by maintaining its episome within T lymphocytes. The product of open reading frame 73 (ORF73) plays a key role in episomal maintenance and is the functional homologue of Epstein-Barr virus EBNA1 and Kaposi's sarcoma-associated herpesvirus LANA1 proteins. There is little sequence homology among these proteins, although all contain a central domain of repeating amino acids. The repeat domains of EBNA1 and LANA1 enhance the stability of these proteins and cause a retardation in self-protein synthesis, leading to poor recognition by CD8+ cytotoxic T lymphocytes (CTL). The HVS ORF73 repeat domain is composed of a glutamic acid and glycine repeat linked to a glutamic acid and alanine repeat (EG-EA repeat). Here we show that the EG-EA repeat similarly causes a reduction in the recognition of ORF73 by CD8+ CTL. However, deletion of the EG-EA repeat from HVS ORF73 had no affect on the stability of the protein or its rate of translation. In contrast, the presence of the EG-EA repeat was found to decrease the steady-state levels of ORF73 mRNA. The inhibitory properties of the EG-EA repeat were maintained when transferred to a heterologous protein, and manipulation of the repeat revealed that the motif EEAEEAEEE was sufficient to cause a reduction in recognition of ORF73 by CD8+ CTL. Thus, the EG-EA repeat of HVS ORF73 plays a role in immune evasion but utilizes a mechanism distinct from that of the EBNA1 and LANA1 repeats.  相似文献   

12.
本文用EB病毒转化自体淋巴细胞所建立的类淋巴母细胞系(LCL),以及用EB病毒潜伏感染膜蛋白(LMP)基因和核蛋白-2(EBNA2)基因与痘苗病毒重组的重组病毒(Vac-LMP和Vac-EBNA2)感染的自身纤维母细胞,同时作为刺激细胞和靶细胞,以~(51)Cr释放法检测5例血清中EB病毒VCA—IgA抗体阳性者及1例阴性健康者外周血单个核细胞(PBMC)的特异性T细胞杀伤效应。结果表明,用自身LCL激活的EB病毒特异性T细胞杀伤效应高峰出现在第14~28天;参与杀伤性细胞免疫反应的T细胞亚群主要是T3、T8阳性的细胞毒性T细胞,其对靶细胞的识别及杀伤受HLA-I的限制。用重组牛痘病毒感染的纤维母细胞作靶细胞或刺激细胞,有1例供者可接受LMP,另1例可接受EBNA2的刺激,并对相应的靶细胞产生特异性T细胞杀伤反应,表明EB病毒-LMP和EBNA2可能既是EB病毒特异性T细胞的刺激抗原,又是其识别的靶抗原。  相似文献   

13.
The Epstein-Barr nuclear antigen 1 (EBNA1) is essential for DNA replication and episome segregation of the viral genome, and participates in other gene regulatory processes of the Epstein-Barr virus in benign and malignant diseases related to this virus. Despite the participation of other regions of the protein in evading immune response, its DNA binding, dimeric beta-barrel domain (residues 452-641) is necessary and sufficient for the main functions. This domain has an unusual topology only shared by another viral origin binding protein (OBP), the E2 DNA binding domain of papillomaviruses. Both the amino acid and DNA target sequences are completely different for these two proteins, indicating a link between fold conservation and function. In this work we investigated the folding and stability of the DNA binding domain of EBNA1 OBP and found it is extremely resistant to chemical, temperature, and pH denaturation. The thiocyanate salt of guanidine is required for obtaining a complete transition to a monomeric unfolded state. The unfolding reaction is extremely slow and shows a marked uncoupling between tertiary and secondary structure, indicating the presence of intermediate species. The Gdm.SCN unfolded protein refolds to fully soluble and spherical oligomeric species of 1.2 MDa molecular weight, with identical fluorescence centre of spectral mass but different intensity and different secondary structure. The refolded spherical oligomers are substantially less stable than the native recombinant dimer. In keeping with the substantial structural rearrangement in the oligomers, the spherical oligomers do not bind DNA, indicating that the DNA binding site is either disrupted or participates in the oligomerization interface. The puzzling extreme stability of a dimeric DNA binding domain from a protein from a human infecting virus in addition to a remarkable kinetically driven folding where all molecules do not return to the most stable original species suggests a co-translational and directional folding of EBNA1 in vivo, possibly assisted by folding accessory proteins. Finally, the oligomers bind Congo red and thioflavin-T, both characteristic of repetitive beta-sheet elements of structure found in amyloids and their soluble precursors. The stable nature of the "kinetically trapped" oligomers suggest their value as models for understanding amyloid intermediates, their toxic nature, and the progress to amyloid fibers in misfolding diseases. The possible role of the EBNA1 spherical oligomers in the virus biology is discussed.  相似文献   

14.
Coren JS  Sternberg N 《Gene》2001,264(1):11-18
The BAC and PAC cloning systems allow investigators to propagate large genomic DNA fragments up to 300 kb in size in E. colicells.We describe a new PAC shuttle vector that can be propagated in both bacterial and human cells. Specifically, the P1 cloning vector pAd10sacBII was modified by the insertion of a puromycin-resistance gene (pac), the Epstein-Barr Virus (EBV) latent replication origin oriP,and the EBV EBNA1 gene. Transfection studies in HEK 293 cells demonstrated that the modified vector was stably maintained as an episome for at least 30 generations. And since pJCPAC-Mam1 contains a loxP site, genomic DNA cloned into this vector can be subjected to loxP-Cre -mediated deletion events. The transposon vector pTnPGKpuro/loxP was modified to make this system amenable to propagation in human cells by inserting pac, oriP, and EBNA1 elements into the vector (Chatterjee, P.K., Coren, J.C., 1997. Isolating large nested deletions in PACs and BACs by in vivo selection of P1 headful-packaged products of Cre-catalyzed recombination between the loxP site in PAC and BAC and one introduced in transposition. NAR 25, 2205-2212.). pTnPGKpuro/loxP-EBV was then used to generate deletions in an individual library member to demonstrate that all of the deletions still contain the required eukaryotic elements and that they were nested. All library members constructed in pJCPAC-Mam1 can be directly transformed into human cells to assess function. And the deletion technology can be used to aid in delineating the boundaries of genes and other cis-acting elements.  相似文献   

15.
Epstein-Barr nuclear antigen 1 (EBNA1) activates DNA replication from the Epstein-Barr virus latent origin, oriP. This activation involves the direct interaction of EBNA1 dimers with multiple sites within the two noncontiguous functional elements of the origin, the family of repeats (FR) element and the dyad symmetry (DS) element. The efficient interaction of EBNA1 dimers bound to these two elements in oriP results in the formation of DNA loops in which the FR and DS elements are bound together through EBNA1. In order to elucidate the mechanism by which EBNA1 induces oriP DNA looping, we have investigated the DNA sequences and EBNA1 amino acids required for EBNA1-mediated DNA looping. Using a series of truncation mutants of EBNA1 produced in baculovirus and purified to apparent homogeneity, we have demonstrated that the EBNA1 DNA binding and dimerization domain is not sufficient to mediate oriP DNA looping and that an additional region(s) located between amino acids 346 and 450 is required. Single EBNA1-binding sites, separated by 930 bp of plasmid DNA, were also shown to support EBNA1-mediated looping, indicating that the formation of large EBNA1 complexes, such as those observed on oriP FR and DS elements, is not a requirement for looping.  相似文献   

16.
17.
18.
19.
EBNA1 is the only nuclear Epstein-Barr virus (EBV) protein expressed in both latent and lytic modes of infection. While EBNA1 is known to play several important roles in latent infection, the reason for its continued expression in lytic infection is unknown. Here we identified two roles for EBNA1 in the reactivation of latent EBV to the lytic cycle in epithelial cells. First, EBNA1 depletion in latently infected cells was shown to positively contribute to spontaneous EBV reactivation, showing that EBNA1 has a role in suppressing reactivation. Second, when the lytic cycle was induced, EBNA1 depletion decreased lytic gene expression and DNA amplification, showing that it positively contributed to lytic infection. Since we have previously shown that EBNA1 disrupts promyelocytic leukemia (PML) nuclear bodies, we investigated whether this function could account for the effects of EBNA1 on lytic infection by repeating the experiments with cells lacking PML proteins. In the absence of PML, EBNA1 did not promote lytic infection, indicating that the EBNA1-mediated PML disruption is responsible for promoting lytic infection. In keeping with this conclusion, PML silencing was found to be sufficient to induce the EBV lytic cycle. Finally, by generating cells with single PML isoforms, we showed that individual PML isoforms were sufficient to suppress EBV lytic reactivation, although PML isoform IV (PML IV) was ineffective because it was most efficiently degraded by EBNA1. Our results provide the first function for EBNA1 in lytic infection and show that EBNA1 interactions with PML IV lead to a loss of PML nuclear bodies (NBs) that promotes lytic infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号