首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
3.
Epidermal stem cells residing in different locations in the skin continuously self-renew and differentiate into distinct cell lineages to maintain skin homeostasis during postnatal life. Murine epidermal stem cells located at the bulge region are responsible for replenishing the hair lineage, while the stem cells at the isthmus regenerate interfollicular epidermis and sebaceous glands. In vitro cell culture and in vivo animal studies have implicated TGF-β signaling in the maintenance of epidermal and hair cycle homeostasis. Here, we employed a triple transgenic animal model that utilizes a combined Cre/loxP and rtTA/TRE system to allow inducible and reversible inhibition of TGF-β signaling in hair follicle lineages and suprabasal layer of the epidermis. Using this animal model, we have analyzed the role of TGF-β signaling in distinct phases of the hair cycle. Transient abrogation of TGF-β signaling does not prevent catagen progression; however, it induces aberrant proliferation and differentiation of isthmus stem cells to epidermis and sebocyte lineages and a blockade in anagen re-entry as well as results in an incomplete hair shaft development. Moreover, ablation of TGF-β signaling during anagen leads to increased apoptosis in the secondary hair germ and bulb matrix cells. Blocking of TGF-β signaling in bulge stem cell cultures abolishes their colony-forming ability, suggesting that TGF-β signaling is required for the maintenance of bulge stem cells. At the molecular level, inhibition of TGF-β signaling results in a decrease in both Lrig1-expressing isthmus stem cells and Lrg5-expressing bulge stem cells, which may account for the phenotypes seen in our animal model. These data strongly suggest that TGF-β signaling plays an important role in regulating the proliferation, differentiation, and apoptosis of distinct epithelial stem cell populations in hair follicles.  相似文献   

4.
5.
During embryonic development, hair follicles (HFs) develop from an epidermal–mesenchymal cross talk between the ectoderm progenitor layer and the underlying dermis. Epidermal stem cell activation represents a crucial point both for HF morphogenesis and for hair regeneration. miR-24 is an anti-proliferative microRNA (miRNA), which is induced during differentiation of several cellular systems including the epidermis. Here, we show that miR-24 is expressed in the HF and has a role in hair morphogenesis. We generated transgenic mice ectopically expressing miR-24 under the K5 promoter. The K5::miR-24 animals display a marked defect in HF morphogenesis, with thinning of hair coat and altered HF structure. Expression of miR-24 alters the normal process of hair keratinocyte differentiation, leading to altered expression of differentiation markers. MiR-24 directly represses the hair keratinocyte stemness regulator Tcf-3. These results support the notion that microRNAs, and among them miR-24, have an important role in postnatal epidermal homeostasis.  相似文献   

6.
Proper balance between self-renewal and differentiation of lung-specific progenitors is absolutely required for normal lung morphogenesis/regeneration. Therefore, understanding the behavior of lung epithelial stem/progenitor cells could identify innovative solutions for restoring normal lung morphogenesis and/or regeneration. The Notch inhibitor Numb is a key determinant of asymmetric or symmetric cell division and hence cell fate. Yet Numb proximal-distal expression pattern and symmetric versus asymmetric division are uncharacterized during lung epithelial development. Herein, the authors find that the cell fate determinant Numb is highly expressed and asymmetrically distributed at the apical side of distal epithelial progenitors and segregated to one daughter cell in most mitotic cells. Knocking down Numb in MLE15 epithelial cells significantly increased the number of cells expressing the progenitor cell markers Sox9/Id2. Furthermore, cadherin hole analysis revealed that most distal epithelial stem/progenitor cells in embryonic lungs divide asymmetrically; with their cleavage, planes are predicted to bypass the cadherin hole, resulting in asymmetric distribution of the cadherin hole to the daughter cells. These novel findings provide evidence for asymmetric cell division in distal epithelial stem/progenitor cells of embryonic lungs and a framework for future translationally oriented studies in this area.  相似文献   

7.
Aging is characterized by a gradual functional decline of tissues with age. Adult stem and progenitor cells are responsible for tissue maintenance, repair, and regeneration, but during aging, this population of cells is decreased or its activity is reduced, compromising tissue integrity and causing pathologies that increase vulnerability, and ultimately lead to death. The causes of stem cell exhaustion during aging are not clear, and whether a reduction in stem cell function is a cause or a consequence of aging remains unresolved. Here, we took advantage of a mouse model of induced adult Sox2+ stem cell depletion to address whether accelerated stem cell depletion can promote premature aging. After a short period of partial repetitive depletion of this adult stem cell population in mice, we observed increased kyphosis and hair graying, and reduced fat mass, all of them signs of premature aging. It is interesting that cellular senescence was identified in kidney after this partial repetitive Sox2+ cell depletion. To confirm these observations, we performed a prolonged protocol of partial repetitive depletion of Sox2+ cells, forcing regeneration from the remaining Sox2+ cells, thereby causing their exhaustion. Senescence specific staining and the analysis of the expression of genetic markers clearly corroborated that adult stem cell exhaustion can lead to cellular senescence induction and premature aging.  相似文献   

8.
9.
During the differentiation of the mammalian embryonic testis, two compartments are defined: the testis cords and the interstitium. The testis cords give rise to the adult seminiferous tubules, whereas steroidogenic Leydig cells and other less well characterized cell types differentiate in the interstitium (the space between testis cords). Although the process of testis cord formation is essential for male development, it is not entirely understood. It has been viewed as a Sertoli-cell driven process, but growing evidence suggests that interstitial cells play an essential role during testis formation. However, little is known about the origin of the interstitium or the molecular and cellular diversity within this early stromal compartment. To better understand the process of mammalian gonad differentiation, we have undertaken an analysis of developing interstitial/stromal cells in the early mouse testis and ovary. We have discovered molecular heterogeneity in the interstitium and have characterized new markers of distinct cell types in the gonad: MAFB, C-MAF, and VCAM1. Our results show that at least two distinct progenitor lineages give rise to the interstitial/stromal compartment of the gonad: the coelomic epithelium and specialized cells along the gonad–mesonephros border. We demonstrate that both these populations give rise to interstitial precursors that can differentiate into fetal Leydig cells. Our analysis also reveals that perivascular cells migrate into the gonad from the mesonephric border along with endothelial cells and that these vessel-associated cells likely represent an interstitial precursor lineage. This study highlights the cellular diversity of the interstitial cell population and suggests that complex cell–cell interactions among cells in the interstitium are involved in testis morphogenesis.  相似文献   

10.
11.
12.
13.
Nat Cell Biol 14 4, 401–408 March042012The intestine represents the most vigorously renewing, adult epithelial tissue that makes maintenance of its homeostasis a delicate balance between proliferation, cell cycle arrest, migration, differentiation, and cell death. These processes are precisely controlled by a network of developmental signalling cascades, which include Wnt, Notch, BMP/TGFβ, and Hedgehog pathways. A new, elegant study by Wong et al (2012) now adds Lrig1 as a key player in the control of intestinal homeostasis. As for epidermal stem cells, Lrig1 limits the size of the intestinal progenitor compartment by dampening EGF/ErbB-triggered stem cell expansion.The epithelium of the small intestine is separated into two distinct compartments: a proliferative crypt, containing tissue-specific stem cells, and a villus with differentiated, short-lived cells, which are replenished by a constant stream of cell migration from the underlying crypt (Scoville et al, 2008). In particular, the canonical Wnt pathway in combination with Notch signals control stem cell maintenance and proliferation in the crypt. In addition, both pathways direct differentiation into the Paneth and the absorptive cell lineage, respectively. Intensive cross-talk between the epithelium and the underlying mesenchyme helps to define the crypt–villus boundary. This relies on epithelial-derived Hedgehog and Wnt ligands that trigger stromal BMP production, which in turn signals back to the epithelium to restrict proliferation to the crypt. A gradient of BMP antagonists produced by mesenchymal cells at the bottom of the crypts supports compartmentalization. In addition, a Wnt gradient in the crypt defines EphB expression and establishes repulsion-mediated separation into Paneth cell, proliferative, and differentiation zones along the crypt–villus axis (Figure 1A).Open in a separate windowFigure 1(A) The epithelium of the small intestine contains two populations of multipotent stem cells that reside at the bottom of the crypts. These give rise to transit-amplifying progenitors, which rapidly divide while migrating upwards. Cell cycle arrest and functional differentiation occur when these cells pass from the upper part of the crypt into the villus where they continue their upward movement until they finally undergo apoptosis. Only long-living Paneth cells follow a different path as they migrate downwards to populate the base of the crypt. Control of proliferation and lineage specification of all intestinal epithelial cells is directed in a self-organizing, dynamically regulated process based on cell–cell and cell–environment interactions. Among them, Wnt and Notch signalling have been defined as major determinants for stem cell maintenance, for proliferation of stem cells in the crypt and lineage specification. Epithelial-derived Hedgehog ligands and reciprocal stromal BMP ligands establish a connection between the epithelium and the stroma that regulates the crypt–villus boundary. In addition, repulsive interactions mediated by the Eph/ephrin family allow establishment of stable compartments. Importantly, ErbB signalling, which is partially suppressed by Lrig1 at the base of the crypt, is now shown to be a new key player in the control of stem and progenitor cell expansion. (B) Cross-talk of signalling pathways in intestinal homeostasis with an emphasis on ErbB signalling. A negative feedback loop via Lrig1 helps to fine-tune population size and proliferative activity of intestinal progenitor cells. Lrig1 has been identified as a direct target of Myc and is known to repress ErbB signalling. Myc itself is a main target of the ErbB and Wnt pathways implicated in intestinal stem and progenitor cell expansion. Moreover, Lrig1 has been found to promote BMP signalling, which interferes with intestinal proliferation by restricting AKT activation via PTEN.In the small intestine, two stem cell (SC) populations coexist: Lgr5+crypt base columnar cells (CBCs) that cycle every 24 h and are interspersed between Paneth cells, and slower dividing SCs concentrated above (around position +4 relative to the crypt bottom) the Lgr5+position (Takeda et al, 2011). The localization of these Hopx+mTert+slowly cycling SCs partly overlaps with that of quiescent cells, which show long-term label retention upon irradiation damage and pulse labelling with BrdU. Lgr5+CBCs are, however, dispensable (Tian et al, 2008) and can be replaced by the second stem cell population, which also shows greater activity during damage repair. The relationship between these two stem cell populations, which can reciprocally generate each other, and the mechanisms that govern quiescence are being elucidated. Importantly, leucine-rich repeats and Ig-like domains 1 (Lrig1), a transmembrane protein that interacts with ErbBs and promotes its degradation, has now been found to be enriched at the crypt base and in the progenitor compartment of the small intestine and colon (Wong et al, 2012). Lrig1 is highly expressed in Lgr5+, Musashi1+, Ascl2+, and Olfm4+CBCs, and shows an inverse relation to the pattern of activated, phosphorylated EGFR above the crypt base (Figure 1A). In line with these patterns, deletion of Lrig1 in the mouse causes a dramatic crypt expansion and increased numbers of CBCs, transit-amplifying and Paneth cells. Whether the increase of Paneth cells, which actually do not express Lrig1, is a secondary effect due to the progenitor expansion remains open. Importantly, reduction of EGFR signalling by pharmacological (Gefitinib) and genetic modulation (Egfrwa-2 mice) is able to partially normalize all Lrig1 phenotypes. These data establish EGF/ErbB signalling, as an important regulator of the crypt compartment, and suggest Lrig1 as a central control that dampens the expansion of stem cells during normal intestinal homeostasis.Lrig1 was initially identified in the skin and proposed to maintain epidermal stem cells in a quiescent state (Watt and Jensen, 2009). Lrig1 marks human interfollicular epidermal stem cells, which can give rise to all epithelial lineages including hair follicle cells in skin reconstitution assays. However, during normal homeostasis, these cells are only bipotent, contributing to the sebaceous gland and the interfollicular epidermis. In contrast to quiescent Lrig1+SCs in the skin, Lrig1+ intestinal SCs are rapidly dividing and Lrig1 appears to only reduce their proliferative capacity. However, similar to the situation in the skin, Lrig1 and EGF signalling may play an important role during damage repair. Earlier experiments analysed the phenotype of mice lacking major EGF family members (Egger et al, 1997; Troyer et al, 2001). While these mice display some duodenal lesions during normal homeostasis, further experiments established EGF signalling as a key protective component that ameliorates mucosal damage. It remains to be seen whether activation of intestinal SCs during damage repair involves mitigation of Lrig1 dampening.Lrig1 is known to repress ErbB signalling by mediating ubiquitinylation and degradation of activated receptors, thereby limiting the amplitude of EGF signalling (Watt and Jensen, 2009). Consequently, Lrig1 deletion in the intestine induced upregulation of EGFR, ErbB2, and ErbB3, promoting downstream activation of c-Myc within intestinal stem and progenitor cells (Wong et al, 2012). Importantly, Lrig1 is a direct Myc target gene, and thereby part of a negative feedback loop that helps to fine-tune the population size and proliferative activity of intestinal progenitor cells (Figure 1B).Since the rescue of the Lrig1−/− phenotype by EGFR deficiency was only partial (Wong et al, 2012), other mechanisms may contribute. Intriguingly, Lrig1 has been shown to promote BMP signalling by direct binding to Type I (ALK6) and Type II (ALK1, ALK2, ALK3, and ActRIB) BMP receptors (Gumienny et al, 2010). BMPR1A inactivation, deficiency of its downstream effector PTEN, and transgenic overexpression of the BMP inhibitor Noggin display crypt expansion and increased SC numbers. Inhibition of BMP signalling in these genetic models enhanced AKT activation and increased Wnt signalling, promoting proliferation and adenoma formation (Figure 1B; Scoville et al, 2008). Future work will reveal a potential involvement of BMP and Wnt signalling in the Lrig1 knockout phenotype.The ErbB pathway has been linked to inflammatory bowel disease, and progression and metastatic potential of colorectal cancer. EGFR inhibition blocks adenoma formation in preclinical models, and ErbB pathway inhibition is currently being evaluated in clinical trials with colorectal cancer patients, where promising results have been reported (Cunningham et al, 2004). In contrast, Lrig1 is expressed at low levels in several cancer types but is overexpressed in some prostate and colorectal tumours (Hedman and Henriksson, 2007). Given this heterogeneity, the Lrig1 function in tumours appears to be cell- and context-dependent. Due to early postnatal lethality of Lrig1 knockout mice, the exciting possibility that Lrig1 may act as an intestinal tumour suppressor could not be answered by the current study but clearly deserves further attention.  相似文献   

14.
Human hair dermal papilla (DP) cells are specialized mesenchymal cells that play a pivotal role in hair regeneration and hair cycle activation. The current study aimed to first develop three‐dimensional (3D) DP spheroids (DPS) with or without a silk–gelatin (SG) microenvironment, which showed enhanced DP‐specific gene expression, resulting in enhanced extracellular matrix (ECM) production compared with a monolayer culture. We tested the feasibility of using this DPS model for drug screening by using minoxidil, which is a standard drug for androgenic alopecia. Minoxidil‐treated DPS showed enhanced expression of growth factors and ECM proteins. Further, an attempt has been made to establish an in vitro 3D organoid model consisting of DPS encapsulated by SG hydrogel and hair follicle (HF) keratinocytes and stem cells. This HF organoid model showed the importance of structural features, cell–cell interaction, and hypoxia akin to in vivo HF. The study helped to elucidate the molecular mechanisms to stimulate cell proliferation, cell viability, and elevated expression of HF markers as well as epithelial–mesenchymal crosstalks, demonstrating high relevance to human HF biology. This simple in vitro DP organoid model system has the potential to provide significant insights into the underlying mechanisms of HF morphogenesis, distinct molecular signals relevant to different stages of the hair cycle, and hence can be used for controlled evaluation of the efficacy of new drug molecules.  相似文献   

15.
Autophagy is a highly regulated and evolutionarily conserved process of cellular self-digestion. Recent evidence suggests that this process plays an important role in regulating T cell homeostasis. In this study, we used Rag1(-/-) (recombination activating gene 1(-/-)) blastocyst complementation and in vitro embryonic stem cell differentiation to address the role of Beclin 1, one of the key autophagic proteins, in lymphocyte development. Beclin 1-deficient Rag1(-/-) chimeras displayed a dramatic reduction in thymic cellularity compared with control mice. Using embryonic stem cell differentiation in vitro, we found that the inability to maintain normal thymic cellularity is likely caused by impaired maintenance of thymocyte progenitors. Interestingly, despite drastically reduced thymocyte numbers, the peripheral T cell compartment of Beclin 1-deficient Rag1(-/-) chimeras is largely normal. Peripheral T cells displayed normal in vitro proliferation despite significantly reduced numbers of autophagosomes. In addition, these chimeras had greatly reduced numbers of early B cells in the bone marrow compared with controls. However, the peripheral B cell compartment was not dramatically impacted by Beclin 1 deficiency. Collectively, our results suggest that Beclin 1 is required for maintenance of undifferentiated/early lymphocyte progenitor populations. In contrast, Beclin 1 is largely dispensable for the initial generation and function of the peripheral T and B cell compartments. This indicates that normal lymphocyte development involves Beclin 1-dependent, early-stage and distinct, Beclin 1-independent, late-stage processes.  相似文献   

16.
SOX2 functions to maintain neural progenitor identity   总被引:30,自引:0,他引:30  
Graham V  Khudyakov J  Ellis P  Pevny L 《Neuron》2003,39(5):749-765
  相似文献   

17.
18.

Background

The Lrig genes encode a family of transmembrane proteins that have been implicated in tumorigenesis, psoriasis, neural crest development, and complex tissue morphogenesis. Whether these diverse phenotypes reflect a single underlying cellular mechanism is not known. However, Lrig proteins contain evolutionarily conserved ectodomains harboring both leucine-rich repeats and immunoglobulin domains, suggesting an ability to bind to common partners. Previous studies revealed that Lrig1 binds to and inhibits members of the ErbB family of receptor tyrosine kinases by inducing receptor internalization and degradation. In addition, other receptor tyrosine kinase binding partners have been identified for both Lrig1 and Lrig3, leaving open the question of whether defective ErbB signaling is responsible for the observed mouse phenotypes.

Methodology/Principal Findings

Here, we report that Lrig3, like Lrig1, is able to interact with ErbB receptors in vitro. We examined the in vivo significance of these interactions in the inner ear, where Lrig3 controls semicircular canal formation by determining the timing and extent of Netrin1 expression in the otic vesicle epithelium. We find that ErbB2 and ErbB3 are present in the early otic epithelium, and that Lrig3 acts cell-autonomously here, as would be predicted if Lrig3 regulates ErbB2/B3 activity. However, inhibition of ErbB activation in the chick otic vesicle has no detectable effect on Netrin gene expression or canal morphogenesis.

Conclusions/Significance

Our results suggest that although both Lrig1 and Lrig3 can interact with ErbB receptors in vitro, modulation of Neuregulin signaling is unlikely to contribute to Lrig3-dependent processes of inner ear morphogenesis. These results highlight the similar binding properties of Lrig1 and Lrig3 and underscore the need to determine how these two family members bind to and regulate different receptors to affect diverse aspects of cell behavior in vivo.  相似文献   

19.
Lrig proteins are conserved transmembrane proteins that modulate a variety of signaling pathways from worm to humans. In mammals, there are three family members – Lrig1, Lrig2, and Lrig3 – that are defined by closely related extracellular domains with a similar arrangement of leucine rich repeats and immunoglobulin domains. However, the intracellular domains show little homology. Lrig1 inhibits EGF signaling through internalization and degradation of ErbB receptors. Although Lrig3 can also bind ErbB receptors in vitro, it is unclear whether Lrig2 and Lrig3 exhibit similar functions to Lrig1. To gain insights into Lrig gene functions in vivo, we compared the expression and function of the Lrigs in the inner ear, which offers a sensitive system for detecting effects on morphogenesis and function. We find that all three family members are expressed in the inner ear throughout development, with Lrig1 and Lrig3 restricted to subsets of cells and Lrig2 expressed more broadly. Lrig1 and Lrig3 overlap prominently in the developing vestibular apparatus and simultaneous removal of both genes disrupts inner ear morphogenesis. This suggests that these two family members act redundantly in the otic epithelium. In contrast, although Lrig1 and Lrig2 are frequently co-expressed, Lrig1−/−;Lrig2−/− double mutant ears show no enhanced structural abnormalities. At later stages, Lrig1 expression is sustained in non-sensory tissues, whereas Lrig2 levels are enhanced in neurons and sensory epithelia. Consistent with these distinct expression patterns, Lrig1 and Lrig2 mutant mice exhibit different forms of impaired auditory responsiveness. Notably, Lrig1−/−;Lrig2−/− double mutant mice display vestibular deficits and suffer from a more severe auditory defect that is accompanied by a cochlear innervation phenotype not present in single mutants. Thus, Lrig genes appear to act both redundantly and independently, with Lrig2 emerging as the most functionally distinct family member.  相似文献   

20.
Injury in adult tissue generally reactivates developmental programs to foster regeneration, but it is not known whether this paradigm applies to growing tissue. Here, by employing blisters, we show that epidermal wounds heal at the expense of skin development. The regenerated epidermis suppresses the expression of tissue morphogenesis genes accompanied by delayed hair follicle (HF) growth. Lineage tracing experiments, cell proliferation dynamics, and mathematical modeling reveal that the progeny of HF junctional zone stem cells, which undergo a morphological transformation, repair the blisters while not promoting HF development. In contrast, the contribution of interfollicular stem cell progeny to blister healing is small. These findings demonstrate that HF development can be sacrificed for the sake of epidermal wound regeneration. Our study elucidates the key cellular mechanism of wound healing in skin blistering diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号