首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
A single bout of exercise increases glucose uptake and fatty acid oxidation in skeletal muscle, with a corresponding activation of AMP-activated protein kinase (AMPK). While the exercise-induced increase in glucose uptake is partly due to activation of AMPK, it is unclear whether the increase of fatty acid oxidation is dependent on activation of AMPK. To examine this, transgenic mice were produced expressing a dominant-negative (DN) mutant of alpha(1)-AMPK (alpha(1)-AMPK-DN) in skeletal muscle and subjected to treadmill running. alpha(1)-AMPK-DN mice exhibited a 50% reduction in alpha(1)-AMPK activity and almost complete loss of alpha(2)-AMPK activity in skeletal muscle compared with wild-type littermates (WT). The fasting-induced decrease in respiratory quotient (RQ) ratio and reduced body weight were similar in both groups. In contrast with WT mice, alpha(1)-AMPK-DN mice could not perform high-intensity (30 m/min) treadmill exercise, although their response to low-intensity (10 m/min) treadmill exercise was not compromised. Changes in oxygen consumption and the RQ ratio during sedentary and low-intensity exercise were not different between alpha(1)-AMPK-DN and WT. Importantly, at low-intensity exercise, increased fatty acid oxidation in response to exercise in soleus (type I, slow twitch muscle) or extensor digitorum longus muscle (type II, fast twitch muscle) was not impaired in alpha(1)-AMPK-DN mice, indicating that alpha(1)-AMPK-DN mice utilize fatty acid in the same manner as WT mice during low-intensity exercise. These findings suggest that an increased alpha(2)-AMPK activity is not essential for increased skeletal muscle fatty acid oxidation during endurance exercise.  相似文献   

2.
Salicylate (SAL) has been recently implicated in the antidiabetic effect in humans. We assessed whether 5′-AMP-activated protein kinase (AMPK) in skeletal muscle is involved in the effect of SAL on glucose homeostasis. Rat fast-twitch epitrochlearis and slow-twitch soleus muscles were incubated in buffer containing SAL. Intracellular concentrations of SAL increased rapidly (<5 min) in both skeletal muscles, and the Thr172 phosphorylation of the α subunit of AMPK increased in a dose- and time-dependent manner. SAL increased both AMPKα1 and AMPKα2 activities. These increases in enzyme activity were accompanied by an increase in the activity of 3-O-methyl-d-glucose transport, and decreases in ATP, phosphocreatine, and glycogen contents. SAL did not change the phosphorylation of insulin receptor signaling including insulin receptor substrate 1, Akt, and p70 ribosomal protein S6 kinase. These results suggest that SAL may be transported into skeletal muscle and may stimulate AMPK and glucose transport via energy deprivation in multiple muscle types. Skeletal muscle AMPK might be part of the mechanism responsible for the metabolic improvement induced by SAL.  相似文献   

3.
Skeletal muscle expresses two catalytic subunits, alpha1 and alpha2, of the 5'-AMP-activated protein kinase (AMPK), which has been implicated in contraction-stimulated glucose transport and fatty acid oxidation. Muscle contraction activates the alpha2-containing AMPK complex (AMPKalpha2), but this activation may occur with or without activation of the alpha1-containing AMPK complex (AMPKalpha1), suggesting that AMPKalpha2 is the major isoform responsible for contraction-induced metabolic events in skeletal muscle. We report for the first time that AMPKalpha1, but not AMPKalpha2, can be activated in contracting skeletal muscle. Rat epitrochlearis muscles were isolated and incubated in Krebs-Ringer bicarbonate buffer containing pyruvate. In muscles stimulated to contract at a frequency of 1 and 2 Hz during the last 2 min of incubation, AMPKalpha1 activity increased twofold and AMPKalpha2 activity remained unchanged. Muscle stimulation did not change the muscle AMP concentration or the AMP-to-ATP ratio. AMPK activation was associated with increased phosphorylation of Thr(172) of the alpha-subunit, the primary activation site. Muscle stimulation increased the phosphorylation of acetyl-CoA carboxylase (ACC), a downstream target of AMPK, and the rate of 3-O-methyl-d-glucose transport. In contrast, increasing the frequency (>or=5 Hz) or duration (>or=5 min) of contraction activated AMPKalpha1 and AMPKalpha2 and increased AMP concentration and the AMP/ATP ratio. These results suggest that 1) AMPKalpha1 is the predominant isoform activated by AMP-independent phosphorylation in low-intensity contracting muscle, 2) AMPKalpha2 is activated by an AMP-dependent mechanism in high-intensity contracting muscle, and 3) activation of each isoform enhances glucose transport and ACC phosphorylation in skeletal muscle.  相似文献   

4.
Ong KW  Hsu A  Tan BK 《PloS one》2012,7(3):e32718
Chlorogenic acid (CGA) has been shown to delay intestinal glucose absorption and inhibit gluconeogenesis. Our aim was to investigate the role of CGA in the regulation of glucose transport in skeletal muscle isolated from db/db mice and L6 skeletal muscle cells. Oral glucose tolerance test was performed on db/db mice treated with CGA and soleus muscle was isolated for 2-deoxyglucose transport study. 2DG transport was also examined in L6 myotubes with or without inhibitors such as wortmannin or compound c. AMPK was knocked down with AMPKα1/2 siRNA to study its effect on CGA-stimulated glucose transport. GLUT 4 translocation, phosphorylation of AMPK and Akt, AMPK activity, and association of IRS-1 and PI3K were investigated in the presence of CGA. In db/db mice, a significant decrease in fasting blood sugar was observed 10 minutes after the intraperitoneal administration of 250 mg/kg CGA and the effect persisted for another 30 minutes after the glucose challenge. Besides, CGA stimulated and enhanced both basal and insulin-mediated 2DG transports in soleus muscle. In L6 myotubes, CGA caused a dose- and time-dependent increase in glucose transport. Compound c and AMPKα1/2 siRNA abrogated the CGA-stimulated glucose transport. Consistent with these results, CGA was found to phosphorylate AMPK and ACC, consistent with the result of increased AMPK activities. CGA did not appear to enhance association of IRS-1 with p85. However, we observed activation of Akt by CGA. These parallel activations in turn increased translocation of GLUT 4 to plasma membrane. At 2 mmol/l, CGA did not cause any significant changes in viability or proliferation of L6 myotubes. Our data demonstrated for the first time that CGA stimulates glucose transport in skeletal muscle via the activation of AMPK. It appears that CGA may contribute to the beneficial effects of coffee on Type 2 diabetes mellitus.  相似文献   

5.
AMP-activated protein kinase (AMPK) is viewed as an energy sensor that acts to modulate glucose uptake and fatty acid oxidation in skeletal muscle. Given that protein synthesis is a high energy-consuming process, it may be transiently depressed during cellular energy stress. Thus, the intent of this investigation was to examine whether AMPK activation modulates the translational control of protein synthesis in skeletal muscle. Injections of 5-aminoimidazole-4-carboxamide 1-beta-d-ribonucleoside (AICAR) were used to activate AMPK in male rats. The activity of alpha1 AMPK remained unchanged in gastrocnemius muscle from AICAR-treated animals compared with controls, whereas alpha2 AMPK activity was significantly increased (51%). AICAR treatment resulted in a reduction in protein synthesis to 45% of the control value. This depression was associated with decreased activation of protein kinases in the mammalian target of rapamycin (mTOR) signal transduction pathway as evidenced by reduced phosphorylation of protein kinase B on Ser(473), mTOR on Ser(2448), ribosomal protein S6 kinase on Thr(389), and eukaryotic initiation factor eIF4E-binding protein on Thr(37). A reduction in eIF4E associated with eIF4G to 10% of the control value was also noted. In contrast, eIF2B activity remained unchanged in response to AICAR treatment and therefore would not appear to contribute to the depression in protein synthesis. This is the first investigation to demonstrate changes in translation initiation and skeletal muscle protein synthesis in response to AMPK activation.  相似文献   

6.
Intramyocellular triacylglycerol provides fatty acid substrate for ATP generation in contracting muscle. The protein adipose triglyceride lipase (ATGL) is a key regulator of triacylglycerol lipolysis and whole body energy metabolism at rest and during exercise, and ATGL activity is reported to be enhanced by 5'-AMP-activated protein kinase (AMPK)-mediated phosphorylation at Ser(406) in mice. This is a curious observation, because AMPK activation reduces lipolysis in several cell types. We investigated whether the phosphorylation of ATGL Ser(404) (corresponding to murine Ser(406)) was increased during exercise in human skeletal muscle and with pharmacological AMPK activation in myotubes in vitro. In human experiments, skeletal muscle and venous blood samples were obtained from recreationally active male subjects before and at 5 and 60 min during exercise. ATGL Ser(404) phosphorylation was not increased from rest during exercise, but ATGL Ser(404) phosphorylation correlated with myosin heavy chain 1 expression, suggesting a possible fiber type dependency. ATGL Ser(404) phosphorylation was not related to increases in AMPK activity, and immunoprecipitation experiments indicated no interaction between AMPK and ATGL. Rather, ATGL Ser(404) phosphorylation was associated with protein kinase A (PKA) signaling. ATGL Ser(406) phosphorylation in C(2)C(12) myotubes was unaffected by 5-aminoimidazole-4-carboxaminde-1-β-d-ribofuranoside, an AMPK activator, and the PKA activator forskolin. Our results demonstrate that ATGL Ser(404) phosphorylation is not increased in mixed skeletal muscle during moderate-intensity exercise and that AMPK does not appear to be an activating kinase for ATGL Ser(404/406) in skeletal muscle.  相似文献   

7.
5'-AMP-activated protein kinase (AMPK), by way of its inhibition of acetyl-CoA carboxylase (ACC), plays an important role in regulating malonyl-CoA levels and the rate of fatty acid oxidation in skeletal and cardiac muscle. In these tissues, LKB1 is the major AMPK kinase and is therefore critical for AMPK activation. The purpose of this study was to determine how the lack of muscle LKB1 would affect malonyl-CoA levels and/or fatty-acid oxidation. Comparing wild-type (WT) and skeletal/cardiac muscle-specific LKB1 knockout (KO) mice, we found that the 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR)-stimulated decrease in malonyl-CoA levels in WT heart and quadriceps muscles was entirely dependent on the presence of LKB1, as was the AICAR-induced increase in fatty-acid oxidation in EDL muscles in vitro, since these responses were not observed in KO mice. Likewise, the decrease in malonyl-CoA levels after muscle contraction was attenuated in KO gastrocnemius muscles, suggesting that LKB1 plays an important role in promoting the inhibition of ACC, likely by activation of AMPK. However, since ACC phosphorylation still increased and malonyl-CoA levels decreased in KO muscles (albeit not to the levels observed in WT mice), whereas AMPK phosphorylation was entirely unresponsive, LKB1/AMPK signaling cannot be considered the sole mechanism for inhibiting ACC during and after muscle activity. Regardless, our results suggest that LKB1 is an important regulator of malonyl-CoA levels and fatty acid oxidation in skeletal muscle.  相似文献   

8.
alpha-Lipoic acid (ALA) widely exists in foods and is an antidiabetic agent. ALA stimulates glucose uptake and increases insulin sensitivity by the activation of AMP-activated protein kinase (AMPK) in skeletal muscle, but the underlying mechanism for AMPK activation is unknown. Here, we investigated the mechanism through which ALA activates AMPK in C2C12 myotubes. Incubation of C2C12 myotubes with 200 and 500 microM ALA increased the activity and phosphorylation of the AMPK alpha-subunit at Thr(172). Phosphorylation of the AMPK substrate, acetyl CoA carboxylase (ACC), at Ser(79) was also increased. No difference in ATP, AMP, and the calculated AMP-to-ATP ratio was observed among the different treatment groups. Since the upstream AMPK kinase, LKB1, requires an alteration of the AMP-to-ATP ratio to activate AMPK, this data showed that LKB1 might not be involved in the activation of AMPK induced by ALA. Treatment of ALA increased the intracellular Ca(2+) concentration measured by fura-2 fluorescent microscopy (P < 0.05), showing that ALA may activate AMPK through enhancing Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK) signaling. Indeed, chelation of intracellular free Ca(2+) by loading cells with 25 microM BAPTA-AM for 30 min abolished the ALA-induced activation of AMPK and, in turn, phosphorylation of ACC at Ser(79). Furthermore, inhibition of CaMKK using its selective inhibitor, STO-609, abolished ALA-stimulated AMPK activation, with an accompanied reduction of ACC phosphorylation at Ser(79). In addition, ALA treatment increased the association of AMPK with CaMKK. To further show the role of CaMKK in AMPK activation, short interfering RNA was used to silence CaMKK, which abolished the ALA-induced AMPK activation. These data show that CaMKK is the kinase responsible for ALA-induced AMPK activation in C2C12 myotubes.  相似文献   

9.
10.
Triglyceride accumulation in skeletal muscle contributes to insulin resistance in obesity. We recently showed that alpha-lipoic acid (ALA) reduces body weight and prevents the development of diabetes in diabetes-prone obese rats by reducing triglyceride accumulation in non-adipose tissues. AMP-activated protein kinase (AMPK) is a major regulator of cellular energy metabolism. We examined whether ALA lowers triglyceride accumulation in skeletal muscle by activating AMPK. Alpha2-AMPK activity was decreased in obese rats compared to control rats. Administration of ALA to obese rats increased insulin-stimulated glucose disposal in whole body and in skeletal muscle. ALA also increased fatty acid oxidation and activated AMPK in skeletal muscle. Adenovirus-mediated administration of dominant negative AMPK into skeletal muscle prevented the ALA-induced increases in fatty acid oxidation and insulin-stimulated glucose uptake. These results suggest that ALA-induced improvement of insulin sensitivity is mediated by activation of AMPK and reduced triglyceride accumulation in skeletal muscle.  相似文献   

11.
Nutrition and physical activity have profound effects on skeletal muscle metabolism and growth. Regulation of muscle mass depends on a thin balance between growth-promoting and growth-suppressing factors. Over the past decade, the mammalian target of rapamycin (mTOR) kinase has emerged as an essential factor for muscle growth by mediating the anabolic response to nutrients, insulin, insulin-like growth factors and resistance exercise. As opposed to the mTOR signaling pathway, the AMP-activated protein kinase (AMPK) is switched on during starvation and endurance exercise to upregulate energy-conserving processes. Recent evidence indicates that mTORC1 (mTOR Complex 1) and AMPK represent two antagonistic forces governing muscle adaption to nutrition, starvation and growth stimulation. Animal knockout models with impaired mTORC1 signaling showed decreased muscle mass correlated with increased AMPK activation. Interestingly, AMPK inhibition in p70S6K-deficient muscle cells restores cell growth and sensitivity to nutrients. Conversely, muscle cells lacking AMPK have increased mTORC1 activation with increased cell size and protein synthesis rate. We also demonstrated that the hypertrophic action of MyrAkt is enhanced in AMPK-deficient muscle, indicating that AMPK acts as a negative feedback control to restrain muscle hypertrophy. Our recent results extend this notion by showing that AMPKα1, but not AMPKα2, regulates muscle cell size through the control of mTORC1 signaling. These results reveal the diverse functions of the two catalytic isoforms of AMPK, with AMPKα1 playing a predominant role in the control of muscle cell size and AMPKα2 mediating muscle metabolic adaptation. Thus, the crosstalk between AMPK and mTORC1 signaling is a highly regulated way to control changes in muscle growth and metabolic rate imposed by external cues.  相似文献   

12.
Skeletal muscle contraction results in the phosphorylation and activation of the AMP-activated protein kinase (AMPK) by an upstream kinase (AMPKK). The LKB1-STE-related adaptor (STRAD)-mouse protein 25 (MO25) complex is the major AMPKK in skeletal muscle; however, LKB1-STRAD-MO25 activity is not increased by muscle contraction. This relationship suggests that phosphorylation of AMPK by LKB1-STRAD-MO25 during skeletal muscle contraction may be regulated by allosteric mechanisms. In this study, we tested an array of metabolites including, glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate, 3-phosphoglycerate (3-PG), glucose 1-phosphate, glucose 1,6-bisphosphate, ADP, carnitine, acetylcarnitine, IMP, inosine, and ammonia for allosteric regulation. ADP inhibited both AMPK and LKB1-STRAD-MO25 actions, but probably is not important physiologically because of the low free ADP inside the muscle fiber. We found that 3-PG stimulated LKB1-STRAD-MO25 activity and allowed for increased AMPK phosphorylation. 3-PG did not stimulate LKB1-STRAD-MO25 activity toward the peptide substrate LKB1tide. These results have identified 3-PG as an AMPK-specific regulator of AMPK phosphorylation and activation by LKB1-STRAD-MO25.  相似文献   

13.
AMP-activated protein kinase and the regulation of glucose transport   总被引:1,自引:0,他引:1  
The AMP-activated protein kinase (AMPK) is an energy-sensing enzyme that is activated by acute increases in the cellular [AMP]/[ATP] ratio. In skeletal and/or cardiac muscle, AMPK activity is increased by stimuli such as exercise, hypoxia, ischemia, and osmotic stress. There are many lines of evidence that increasing AMPK activity in skeletal muscle results in increased rates of glucose transport. Although similar to the effects of insulin to increase glucose transport in muscle, it is clear that the underlying mechanisms for AMPK-mediated glucose transport involve proximal signals that are distinct from that of insulin. Here, we discuss the evidence for AMPK regulation of glucose transport in skeletal and cardiac muscle and describe research investigating putative signaling mechanisms mediating this effect. We also discuss evidence that AMPK may play a role in enhancing muscle and whole body insulin sensitivity for glucose transport under conditions such as exercise, as well as the use of the AMPK activator AICAR to reverse insulin-resistant conditions. The identification of AMPK as a novel glucose transport mediator in skeletal muscle is providing important insights for the treatment and prevention of type 2 diabetes.  相似文献   

14.
5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR) reportedly activates AMP-activated protein kinase (AMPK) and stimulates glucose uptake by skeletal muscle cells. In this study, we investigated the role of AMPK in AICAR-induced glucose uptake by 3T3-L1 adipocytes and rat soleus muscle cells by overexpressing wild-type and dominant negative forms of the AMPKalpha2 subunit by use of adenovirus-mediated gene transfer. Overexpression of the dominant negative mutant had no effect on AICAR-induced glucose transport in adipocytes, although AMPK activation was almost completely abolished. This suggests that AICAR-induced glucose uptake by 3T3-L1 adipocytes is independent of AMPK activation. By contrast, overexpression of the dominant negative AMPKalpha2 mutant in muscle markedly suppressed both AICAR-induced glucose uptake and AMPK activation, although insulin-induced uptake was unaffected. Overexpression of the wild-type AMPKalpha2 subunit significantly increased AMPK activity in muscle but did not enhance glucose uptake. Thus, although AMPK activation may not, by itself, be sufficient to increase glucose transport, it appears essential for AICAR-induced glucose uptake in muscle.  相似文献   

15.
The objective of this study was to investigate the effects of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR)-induced AMP-activated protein kinase (AMPK) activation on basal and insulin-stimulated glucose and fatty acid metabolism in isolated rat adipocytes. AICAR-induced AMPK activation profoundly inhibited basal and insulin-stimulated glucose uptake, lipogenesis, glucose oxidation, and lactate production in fat cells. We also describe the novel findings that AICAR-induced AMPK phosphorylation significantly reduced palmitate (32%) and oleate uptake (41%), which was followed by a 50% reduction in palmitate oxidation despite a marked increase in AMPK and acetyl-CoA carboxylase phosphorylation. Compound C, a selective inhibitor of AMPK, not only completely prevented the inhibitory effect of AICAR on palmitate oxidation but actually caused a 2.2-fold increase in this variable. Compound C also significantly increased palmitate oxidation in the presence of inhibitory concentrations of malonyl-CoA and etomoxir indicating an increase in CPT1 activity. In contrast to skeletal muscle in which AMPK stimulates fatty acid oxidation to provide ATP as a fuel, we propose that AMPK activation inhibits lipogenesis and fatty acid oxidation in adipocytes. Inhibition of lipogenesis would conserve ATP under conditions of cellular stress, although suppression of intra-adipocyte oxidation would spare fatty acids for exportation to other tissues where their utilization is crucial for energy production. Additionally, the stimulatory effect of compound C on long chain fatty acid oxidation provides a novel pharmacological approach to promote energy dissipation in adipocytes, which may be of therapeutic importance for obesity and type II diabetes.  相似文献   

16.
Stearoyl-CoA desaturase 1 (SCD1) deficiency partitions fatty acids away from lipid synthesis towards fatty acid oxidation in liver and skeletal muscle in part due to activation of AMP-activated protein kinase (AMPK) pathway. The mechanism of AMPK activation by SCD1 mutation is unknown, however since SCD1-/- animals have increased relative amounts of polyunsaturated fatty acids (PUFA), we hypothesized that the increased levels of PUFA might be responsible for the activation of AMPK in SCD1 deficient mice. Therefore, the present study was undertaken to analyze the effect of PUFA on AMPK in liver, skeletal muscle, and heart. We fed mice ad libitum for 14 days with diet supplemented with fish oil (5% fat). As expected, fish oil supplementation significantly increased n-3 PUFA content in each of the analyzed tissues. Hepatic mRNA levels of fatty acid synthase and acyl-CoA oxidase decreased by 92% and increased by 60%, respectively, consistent with known PUFA effects. However, after 14 days of PUFA feeding, we did not find any changes in AMPK phosphorylation and protein content in mouse liver, skeletal muscle, and heart. The data suggest that PUFA are not involved in AMPK activation in mouse tissues and that the increased activity of AMPK in SCD1-/- mice is probably PUFA-independent.  相似文献   

17.
Previous studies have proposed that caffeine-induced activation of glucose transport in skeletal muscle is independent of AMP-activated protein kinase (AMPK) because alpha-AMPK Thr172 phosphorylation was not increased by caffeine. However, our previous studies, as well as the present, show that AMPK phosphorylation measured in whole muscle lysate is not a good indicator of AMPK activation in rodent skeletal muscle. In lysates from incubated rat soleus muscle, a predominant model in previous caffeine-studies, both acetyl-CoA carboxylase-beta (ACCbeta) Ser221 and immunoprecipitated alpha(1)-AMPK activity increased with caffeine incubation, without changes in AMPK phosphorylation or immunoprecipitated alpha(2)-AMPK activity. This pattern was also observed in mouse soleus muscle, where only ACCbeta and alpha(1)-AMPK phosphorylation were increased following caffeine treatment. Preincubation with the selective CaMKK inhibitor STO-609 (5 microM), the CaM-competitive inhibitor KN-93 (10 microM), or the SR Ca(2+) release blocking agent dantrolene (10 microM) all inhibited ACCbeta phosphorylation and alpha(1)-AMPK phosphorylation, suggesting that SR Ca(2+) release may work through a CaMKK-AMPK pathway. Caffeine-stimulated 2-deoxyglucose (2DG) uptake reflected the AMPK activation pattern, being increased with caffeine and inhibited by STO-609, KN-93, or dantrolene. The inhibition of 2DG uptake is likely causally linked to AMPK activation, since muscle-specific expression of a kinase-dead AMPK construct greatly reduced caffeine-stimulated 2DG uptake in mouse soleus. We conclude that a SR Ca(2+)-activated CaMKK may control alpha(1)-AMPK activation and be necessary for caffeine-stimulated glucose uptake in mouse soleus muscle.  相似文献   

18.
5'-AMP-activated protein kinase (AMPK) has been implicated in glycogen metabolism in skeletal muscle. However, the physiological relevance of increased AMPK activity during exercise has not been fully clarified. This study was performed to determine the direct effects of acute AMPK activation on muscle glycogen regulation. For this purpose, we used an isolated rat muscle preparation and pharmacologically activated AMPK with 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR). Tetanic contraction in vitro markedly activated the alpha(1)- and alpha(2)-isoforms of AMPK, with a corresponding increase in the rate of 3-O-methylglucose uptake. Incubation with AICAR elicited similar enhancement of AMPK activity and 3-O-methylglucose uptake in rat epitrochlearis muscle. In contrast, whereas contraction stimulated glycogen synthase (GS), AICAR treatment decreased GS activity. Insulin-stimulated GS activity also decreased after AICAR treatment. Whereas contraction activated glycogen phosphorylase (GP), AICAR did not alter GP activity. The muscle glycogen content decreased in response to contraction but was unchanged by AICAR. Lactate release was markedly increased when muscles were stimulated with AICAR in buffer containing glucose, indicating that the glucose taken up into the muscle was catabolized via glycolysis. Our results suggest that AMPK does not mediate contraction-stimulated glycogen synthesis or glycogenolysis in skeletal muscle and also that acute AMPK activation leads to an increased glycolytic flux by antagonizing contraction-stimulated glycogen synthesis.  相似文献   

19.
Muscle contraction results in phosphorylation and activation of the AMP-activated protein kinase (AMPK) by an AMPK kinase (AMPKK). LKB1/STRAD/MO25 (LKB1) is the major AMPKK in skeletal muscle; however, the activity of LKB1 is not increased by muscle contraction. This finding suggests that phosphorylation of AMPK by LKB1 is regulated by allosteric mechanisms. Creatine phosphate is depleted during skeletal muscle contraction to replenish ATP. Thus the concentration of creatine phosphate is an indicator of cellular energy status. A previous report found that creatine phosphate inhibits AMPK activity. The purpose of this study was to determine whether creatine phosphate would inhibit 1) phosphorylation of AMPK by LKB1 and 2) AMPK activity after phosphorylation by LKB1. We found that creatine phosphate did not inhibit phosphorylation of either recombinant or purified rat liver AMPK by LKB1. We also found that creatine phosphate did not inhibit 1) active recombinant alpha1beta1gamma1 or alpha2beta2gamma2 AMPK, 2) AMPK immunoprecipitated from rat liver extracts by either the alpha1 or alpha2 subunit, or 3) AMPK chromatographically purified from rat liver. Inhibition of skeletal muscle AMPK by creatine phosphate was greatly reduced or eliminated with increased AMPK purity. In conclusion, these results suggest that creatine phosphate is not a direct regulator of LKB1 or AMPK activity. Creatine phosphate may indirectly modulate AMPK activity by replenishing ATP at the onset of muscle contraction.  相似文献   

20.
Caffeine decreases insulin sensitivity and insulin-stimulated glucose transport in skeletal muscle; however, the precise mechanism responsible for this deleterious effect is not understood fully. We investigated the effects of incubation with caffeine on insulin signaling in rat epitrochlearis muscle. Caffeine (≥1 mM, ≥15 min) suppressed insulin-stimulated insulin receptor substrate (IRS)-1 Tyr(612) phosphorylation in a dose- and time-dependent manner. These responses were associated with inhibition of the insulin-stimulated phosphorylation of phosphatidylinositol 3-kinase (PI3K) Tyr(458), Akt Ser(473), and glycogen synthase kinase-3β Ser(9) and with inhibition of insulin-stimulated 3-O-methyl-d-glucose (3MG) transport but not with inhibition of the phosphorylation of insulin receptor-β Tyr(1158/62/63). Furthermore, caffeine enhanced phosphorylation of IRS-1 Ser(307) and an IRS-1 Ser(307) kinase, inhibitor-κB kinase (IKK)-α/β Ser(176/180). Blockade of IKK/IRS-1 Ser(307) by caffeic acid ameliorated the caffeine-induced downregulation of IRS-1 Tyr(612) phosphorylation and 3MG transport. Caffeine also increased the phosphorylation of IRS-1 Ser(789) and an IRS-1 Ser(789) kinase, 5'-AMP-activated protein kinase (AMPK). However, inhibition of IRS-1 Ser(789) and AMPK phosphorylation by dantrolene did not rescue the caffeine-induced downregulation of IRS-1 Tyr(612) phosphorylation or 3MG transport. In addition, caffeine suppressed the phosphorylation of insulin-stimulated IRS-1 Ser(636/639) and upstream kinases, including the mammalian target of rapamycin and p70S6 kinase. Intravenous injection of caffeine at a physiological dose (5 mg/kg) in rats inhibited the phosphorylation of insulin-stimulated IRS-1 Tyr(612) and Akt Ser(473) in epitrochlearis muscle. Our results indicate that caffeine inhibits insulin signaling partly through the IKK/IRS-1 Ser(307) pathway, via a Ca(2+)- and AMPK-independent mechanism in skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号