首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ju XF  An TZ  Teng CB 《生理科学进展》2007,38(3):213-218
干细胞巢即干细胞周围的微环境构成,一般包括干细胞的相邻细胞、粘附分子及基质等,但不同的干细胞有不同的巢结构。干细胞巢通过不同信号途径调控着干细胞的行为,使干细胞的自我更新和分化处于平衡状态。根据近年来有关干细胞巢的研究,本文从果蝇生殖系干细胞巢、哺乳动物造血干细胞巢、肠干细胞巢、毛囊表皮干细胞巢和神经干细胞巢等五个系统分别综述了干细胞巢的构成及其对干细胞的调节作用,探讨了干细胞巢作用于干细胞的内在机制。  相似文献   

2.
ORGANIZATION OF HAEMOPOIETIC STEM CELLS: THE GENERATION-AGE HYPOTHESIS   总被引:2,自引:0,他引:2  
This paper proposes that the previous division history of each stem cell is one determinant of the functional organization of the haemopoietic stem cell population. Stem cells from a lineage of stem cells which have generated many stem cells (older stem cells) are used in the animal to form blood before stem cells which have generated few stem cells (younger stem cells). The stem cell generating capacity of a lineage of stem cells is finite. After a given number of generations a stem cell is lost to the stem cell compartment by forming two committed precursors of the cell lines. Its part in blood formation is taken by the next oldest stem cell. We have called this proposal the generation-age hypothesis. Experimental evidence in support of the proposal is presented. We stripped away older stem cells from normal bone marrow and 12 day foetal liver with phase-specific drugs and revealed a younger population of stem cells whose capacity for stem cell generation was three- to four-fold greater than that of the average normal, untreated population. We aged normal stem cells by continuous irradiation and serial retransplantation and found that their stem cell generative capacity had declined eight-fold. We measured the stem cell generative capacity of stem cells in the bloodstream. It was a half, to a quarter that of normal bone marrow stem cells and we found a subpopulation of circulating stem cells whose capacity for stem cell generation was an eighth to a fortieth that of normal femoral stem cells. This subpopulation was identified by its failure to express the brain-associated antigen which was present on 75% of normal femoral stem cells but was not found on their progeny, the committed precursors of granulocytes.  相似文献   

3.
果蝇干细胞研究进展   总被引:1,自引:0,他引:1  
本文主要介绍了果蝇五种干细胞,包括生殖干细胞、神经干细胞、造血干细胞、小肠干细胞、肾干细胞及其微环境(niche)的组成成份;简述了五种干细胞系统对应的分子标记;最后重点介绍了调控每种干细胞系统的信号通路。  相似文献   

4.
Organization of haemopoietic stem cells: the generation-age hypothesis.   总被引:3,自引:0,他引:3  
This paper proposes that the previous division history of each stem cell is one determinant of the functional organization of the haemopoietic stem cell population. Stem cells from a lineage of stem cells which have generated many stem cells (older stem cells) are used in the animal to form blood before stem cells which have generated few stem cells (younger stem cells). The stem cell generating capacity of a lineage of stem cells is finite. After a given number of generations a stem cell is lost to the stem cell compartment by forming two committed precursors of the cell lines. Its part in blood formation is taken by the next oldest stem cell. We have called this proposal the generation-age hypothesis. Experimental evidence in support of the proposal is presented. We stripped away older stem cells from normal bone marrow and 13 day foetal liver with phase-specific drugs and revealed a younger population of stem cells whose capacity for stem cell generation was three- to four-fold greater than that of the average normal, untreated population. We aged normal stem cells by continuous irradiation and serial retransplantation and found that their stem cell generative capacity had declined eight-fold. We measured the stem cell generative capacity of stem cells in the bloodstream. It was a half to a quarter that of normal bone marrow stem cells and we found a subpopulation of circulating stem cells whose capacity for stem cell generation was an eighth to a fortieth that of normal femoral stem cells. This subpopulation was identified by its failure to express the brain-associated antigen which was present on 75% of normal femoral stem cells but was not found on their progeny, the committed precursors of granulocytes.  相似文献   

5.
We propose two major evolutionary origins of stem cell systems in the animal kingdom. Adult pluripotent stem cell systems are found in many invertebrates and probably evolved as components of asexual reproduction. Lineage-specific stem cell systems probably evolved later and include neural and hematopoietic stem cell types. We propose that these two types of stem cell systems evolved independently. The vasa-like genes regulate reproductive stem cells, but not lineage-specific stem cells, which may be regulated by gcm genes. Here, we review the evidence for the molecular basis for the evolutionary origin of these two different stem cell systems.  相似文献   

6.
7.
干细胞生物学研究概况与展望   总被引:5,自引:0,他引:5  
干细胞生物学近年来取得了比较大的突破,并且具有巨大的潜在应用价值,也越来越受到人们的关注和重视。对干细胞的基本特征,以及国际上在胚胎干细胞,造血干细胞,神经干细胞,间质干细胞等方面的研究进展,分别作一概述,另外,对国内干细胞研究现状也作简要介绍。  相似文献   

8.
干细胞研究和蛋白质组研究同属于21世纪生命科学的热点领域。将蛋白质组学技术应用于干细胞的研究,能够为了解干细胞提供蛋白质水平的信息,揭示干细胞的增殖、定向分化和迁移的机制,为人们更好地将干细胞技术应用于组织工程、基因治疗及药物开发等领域奠定基础。  相似文献   

9.
干细胞具有分化成为体内所有类型细胞的能力,因此,其在再生医学治疗、体外疾病模拟、药物筛选等方面具有广阔的应用前景。干细胞技术在近些年取得了突飞猛进的发展,特别是诱导多能性干细胞的出现使干细胞领域经历了一场巨大的变革。我国干细胞研究在这场干细胞技术变革中取得了多项重大成果,逐渐成为了世界干细胞研究领域中的重要力量。本综述着重介绍近几年来,主要是诱导多能性干细胞技术出现之后,我国在干细胞和再生医学领域取得的重要进展,主要涵盖诱导多能性干细胞、转分化、单倍体干细胞以及基因修饰动物模型和基因治疗等方面。  相似文献   

10.
"Stem cell aging" is a novel concept that developed together with the advances of stem cell biology, especially the sophisticated prospectively isolation and characterization of multipotent somatic tissue stem cells. Although being immortal in principle, stem cells can also undergo aging processes and potentially contribute to organismal aging. The impact of an age-dependent decline of stem cell function weighs differently in organs with high or low rates of cell turnover. Nonetheless, most of the organ systems undergo age-dependent loss of homeostasis and functionality, and emerging evidence showed that this has to do with the aging of resident stem cells in the organ systems. The mechanisms of stem cell aging and its real contribution to human aging remain to be defined. Many antitumor mechanisms protect potential malignant transformation of stem cell by inducing apoptosis or senescence but simultaneously provoke stem cell aging. In this review, we try to discuss several concept of stem cell aging and summarize recent progression on the molecular mechanisms of stem cell aging.  相似文献   

11.
12.
Stem cell niches, the discrete microenvironments in which the stem cells reside, play a dominant part in regulating stem cell activity and behaviours. Recent studies suggest that committed stem cell progeny become indispensable components of the niche in a wide range of stem cell systems. These unexpected niche inhabitants provide versatile feedback signals to their stem cell parents. Together with other heterologous cell types that constitute the niche, they contribute to the dynamics of the microenvironment. As progeny are often located in close proximity to stem cell niches, similar feedback regulations may be the underlying principles shared by different stem cell systems.  相似文献   

13.
Adult stem cells maintain tissue homeostasis by their ability to both self-renew and differentiate to distinct cell types. Multiple signaling pathways have been shown to play essential roles as extrinsic cues in maintaining adult stem cell identity and activity. Recent studies also show dynamic regulation by epigenetic mechanisms as intrinsic factors in multiple adult stem cell lineages. Emerging evidence demonstrates intimate crosstalk between these two mechanisms. Misregulation of adult stem cell activity could lead to tumorigenesis, and it has been proposed that cancer stem cells may be responsible for tumor growth and metastasis. However, it is unclear whether cancer stem cells share commonalities with normal adult stem cells. In this review, we will focus on recent discoveries of epigenetic regulation in multiple adult stem cell lineages. We will also discuss how epigenetic mechanisms regulate cancer stem cell activity and probe the common and different features between cancer stem cells and normal adult stem cells.  相似文献   

14.
How has the development of human induced pluripotent stem cells (hiPSCs) modified the trajectory of stem cell research? Here, coauthorship networks of stem cell research articles and analysis of cell lines used in stem cell research indicate that hiPSCs are not replacing human embryonic stem cells, but instead, the two cell types are complementary, interdependent research tools. Thus, we conclude that a ban on funding for embryonic stem cell research could have unexpected negative ramifications on the nascent field of hiPSCs.  相似文献   

15.
The characterisation of normal stem cells and cancer stem cells uses the same paradigm. These cells are isolated by a fluorescence‐activated cell sorting step and their stemness is assayed following implantation into animals. However, differences exist between these two kinds of stem cells. Therefore, the translation of the experimental procedures used for normal stem cell isolation into the research field of cancer stem cells is a potential source of artefacts. In addition, normal stem cell therapy has the objective of regenerating a tissue, while cancer stem cell‐centred therapy seeks the destruction of the cancer tissue. Taking these differences into account is critical for anticipating problems that might arise in cancer stem cell‐centred therapy and for upgrading the cancer stem cell paradigm accordingly.  相似文献   

16.
成体干细胞的可塑性:横向分化还是细胞融合?   总被引:1,自引:0,他引:1  
钱晖  黄淑帧 《生命科学》2005,17(1):25-29
近年来研究显示成体干细胞(adult stem cells)具有可塑性(plasticity),不仅可以生成它们所在组织的成熟细胞,而且在特定环境下能分化成其他组织类型细胞,这种跨系或跨胚层分化现象称为横向分化或转分化(transdifferentiation)。横向分化已为成体干细胞的研究和临床应用包括组织器官损伤的修复提供了新的思路和应用前景。然而,最近的一些研究进展又引出不同的解释,即成体干细胞的可塑性是由于细胞融合(cellfusion)的结果。在此,就成体干细胞的可塑性、横向分化、细胞融合等方面研究作一综述。  相似文献   

17.
The regulation of stem cell behavior and maintenance typically involves the integration of both intrinsic and extrinsic cues. One such external cue, integrin-mediated cell adhesion to the extracellular matrix, plays an important part in regulating stem cell function and maintenance. In particular, integrins help define and shape the microenvironment in which stem cells are found: the stem cell niche. Integrins have a diverse array of roles in this context including homing of stem cells to their niche, maintaining stem cells in the niche, developing stem-cell-niche architecture, regulating stem cell proliferation and self renewal, and finally, controlling the orientation of dividing stem cells. Because of their various roles in directing stem cell behavior, integrin-mediated adhesion and signaling in the niche have been implicated in processes that underlie cancer progression and metastasis.  相似文献   

18.
Stem cells present a vast, new terrain of cell biology. A central question in stem cell research is how stem cells achieve asymmetric divisions to replicate themselves while producing differentiated daughter cells. This hallmark of stem cells is manifested either strictly during each mitosis or loosely among several divisions. Current research has revealed the crucial roles of niche signaling, intrinsic cell polarity, subcellular localization mechanism, asymmetric centrosomes and spindles, as well as cell cycle regulators in establishing self-renewing asymmetry during stem cell division. Much of this progress has benefited from studies in model stem cell systems such as Drosophila melanogaster neuroblasts and germline stem cells and mammalian skin stem cells. Further investigations of these questions in diverse types of stem cells will significantly advance our knowledge of cell biology and allow us to effectively harness stem cells for therapeutic applications.  相似文献   

19.
20.
Chou YF  Chen HH  Eijpe M  Yabuuchi A  Chenoweth JG  Tesar P  Lu J  McKay RD  Geijsen N 《Cell》2008,135(3):449-461
Pluripotent stem cell lines can be derived from blastocyst embryos, which yield embryonic stem cell lines (ES cells), as well as the postimplantation epiblast, which gives rise to epiblast stem cell lines (EpiSCs). Remarkably, ES cells and EpiSCs display profound differences in the combination of growth factors that maintain their pluripotent state. Molecular and functional differences between these two stem cell types demonstrate that the tissue of origin and/or the growth factor milieu may be important determinants of the stem cell identity. We explored how developmental stage of the tissue of origin and culture growth factor conditions affect the stem cell pluripotent state. Our findings indicate that novel stem cell lines, with unique functional and molecular properties, can be generated from murine blastocyst embryos. We demonstrate that the culture growth factor environment and cell-cell interaction play a critical role in defining several unique and stable stem cell ground states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号