首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have isolated a genomic clone encoding tomato TAS14, a dehydrin that accumulates in response to mannitol, NaCl or abscisic acid (ABA) treatment. A fragment of tas14 gene containing the region from –2591 to +162 fused to -glucuronidase gene drives ABA- and osmotic stress-induced GUS expression in transgenic tobacco. Histochemical analysis of salt-, mannitol-and ABA-treated plants showed GUS activity mainly localized to vascular tissues, outer cortex and adventitious root meristems, coinciding with the previously observed distribution of TAS14 protein in salt-stressed tomato plants. In addition, GUS activity was also observed in guard cells, trichomes and leaf axils. Developmentally regulated gus expression was studied in unstressed plants and found to occur not only in embryos, but also in flowers and pollen. Tas14 expression in floral organs was confirmed by northern blots of tomato flowers.  相似文献   

2.

Key message

The overexpression of tomato GDP- l -galactose phosphorylase gene enhanced tolerance to chilling stress and reduced photoinhibition of photosystems I and II in transgenic tobacco.

Abstract

Chilling stress is a crucial factor that limits the geographical distribution and yield of chilling-sensitive plants. Ascorbate (AsA) protects plants by scavenging reactive oxygen species and reduces photoinhibition by promoting the conversion of violaxanthin to zeaxanthin in the xanthophyll cycle to dissipate excess excitation energy. Possible mechanisms of AsA for plant photoprotection under chilling stress were investigated by isolating the tomato GDP-l-galactose phosphorylase gene (SlGGP) and producing transgenic tobacco plants with overexpression of SlGGP. The transgenic plants subjected to chilling stress accumulated less H2O2, demonstrated lower levels of ion leakage and malondialdehyde, and acquired higher net photosynthetic rate, higher maximum photochemical efficiency of PSII, and higher D1 protein content compared with the wild-type (WT) plants. The transgenic plants subjected to chilling stress also showed higher GDP-l-galactose phosphorylase activity, increased AsA content as well as ascorbate peroxidase and oxidizable P700 activities than WT plants. Thus, SlGGP overexpression is crucial in promoting AsA synthesis and alleviating photoinhibition of two photosystems.  相似文献   

3.
Drought and salt are major abiotic stresses that adversely affect crop productivity. Thus, identification of factors that confer resistance to these stresses would pave way to increasing agricultural productivity. When grown on soil in green house longer than 5 weeks, transgenic Arabidopsis plants that overexpress an ATP‐binding cassette (ABC) transporter, AtABCG36/AtPDR8, produced higher shoot biomass and less chlorotic leaves than the wild‐type. We investigated whether the improved growth of AtABCG36‐overexpressing plants was due to their improved resistance to abiotic stresses, and found that AtABCG36‐overexpressing plants were more resistant to drought and salt stress and grew to higher shoot fresh weight (FW) than the wild‐type. On the contrary, T‐DNA insertional knockout lines were more sensitive to drought stress than wild‐type and were reduced in shoot FW. To understand the mechanism of enhanced salt and drought resistance of the AtABCG36 overexpressing plants, we measured sodium contents and found that AtABCG36 overexpressing plants were lower in sodium content than the wild‐type. Our data suggest that AtABCG36 contributes to drought and salt resistance in Arabidopsis by a mechanism that includes reduction of sodium content in plants.  相似文献   

4.
5.
We isolated a dehydrin-like (DHN-like) gene fragment, PpDHNA, from the moss Physcomitrella patens by PCR amplification using degenerate primers directed against conserved amino acid segments of DHNs of higher plants. The full-length cDNA was found to encode a 59.2-kDa glycine-rich protein, DHNA, with typical characteristics of DHNs, including the presence of several Y repeats and one conserved K segment. DHNA had a high sequence similarity with a protein from Tortula ruralis, Tr288, which is thought to be involved in cellular dehydration tolerance/repair in this moss. Northern and Western analysis showed that PpDHNA is upregulated upon treatment of plants with abscisic acid, NaCl or mannitol, indicating a similar expression pattern to DHNs from higher plants. To analyze the contribution of DHNA to osmotic stress tolerance, we generated a knockout mutant (dhnA) by disruption of the gene using homologous recombination. Growth and stress response studies of the mutant showed that dhnA was severely impaired in its capacity to resume growth after salt and osmotic-stress treatments. We provide direct genetic evidence in any plant species for a DHN exerting a protective role during cellular dehydration allowing recovery when returned to optimal growth conditions.  相似文献   

6.
Wang HS  Yu C  Zhu ZJ  Yu XC 《Plant cell reports》2011,30(6):1029-1040
GDP-mannose pyrophosphorylase (GMPase: EC 2.7.7.22) plays a crucial role in the synthesis of l-ascorbate (AsA) and the consequent detoxification of reactive oxygen species (ROS). Herein, a GMPase (accession ID DQ449030) was identified and cloned from tomato. The full-length cDNA sequence of this gene contains 1,498 bp nucleotides encoding a putative protein with 361 amino acid residues of approximate molecular weight 43 kDa. Northern blot analysis revealed that the GMPase was expressed in all examined tomato tissues, but its expression level was up-regulated in tomato plants subjected to abnormal temperatures. We then overexpressed this tomato GMPase in tobacco plants and observed that the activity of GMPase and the content of AsA were significantly increased by two- to fourfold in the leaves of transgenic tobacco plants. The effect of this gene overexpression was superimposed by the treatments of high or low temperature in tobacco, since the activities of both chloroplastic SOD (superoxide dismutase EC 1.15.1.1), APX (ascorbate peroxidase EC 1.11.1.7) and the content of AsA in leaves were significantly higher in transgenic plants than those of WT, while the contents of H2O2 and O2 −· were reduced. Meanwhile, relative electric conductivity increased less in transgenic plants than that in WT, and the net photosynthetic rate (P n) and the maximal photochemical efficiency of PSII (F v/F m) of transgenic plants were notably higher than those of WT under temperature stresses. In conclusion, the overexpression of GMPase increased the content of AsA, thereby leading to the increase in tolerance to temperature stress in transgenic plants.  相似文献   

7.
Sui N  Li M  Zhao SJ  Li F  Liang H  Meng QW 《Planta》2007,226(5):1097-1108
A tomato (Lycopersicon esculentum Mill.) glycerol-3-phosphate acyltransferase gene (LeGPAT) was isolated. The deduced amino acid sequence revealed that LeGPAT contained four acyltransferase domains, showing high identities with GPAT in other plant species. A GFP fusion protein of LeGPAT was targeted to chloroplast in cowpea mesophyll protoplast. RNA gel blot showed that the mRNA accumulation of LeGPAT in the wild type (WT) was induced by chilling temperature. Higher expression levels were observed when tomato leaves were exposed to 4 degrees C for 4 h. RNA gel and western blot analysis confirmed that the sense gene LeGPAT was transferred into the tomato genome and overexpressed under the control of 35S-CaMV. Although tomato is classified as a chilling-sensitive plant, LeGPAT exhibited selectivity to 18:1 over 16:0. Overexpression of LeGPAT increased total activity of LeGPAT and cis-unsaturated fatty acids in PG in thylakoid membrane. Chilling treatment induced less ion leakage from the transgenic plants than from the WT. The photosynthetic rate and the maximal photochemical efficiency of PS II (Fv/Fm) in transgenic plants decreased more slowly during chilling stress and recovered faster than in WT under optimal conditions. The oxidizable P700 in both WT and transgenic plants decreased obviously at chilling temperature under low irradiance, but the oxidizable P700 recovered faster in transgenic plants than in the WT. These results indicate that overexpression of LeGPAT increased the levels of PG cis-unsaturated fatty acids in thylakoid membrane, which was beneficial for the recovery of chilling-induced PS I photoinhibition in tomato.  相似文献   

8.
9.
Progress in freezing tolerance (FT) improvement through plant breeding approaches has met with little success in the last 50 years. Engineering plants for greater FT through plant transformation is one possible way to reduce the damage caused by freezing. Here, we report an improvement of the selection procedure and the transfer of the wheat Wcor410a acidic dehydrin gene in strawberry. The encoded protein has previously been shown to be associated with the plasma membrane, and its level of accumulation has been correlated with the degree of FT in different wheat genotypes. The WCOR410 protein was expressed in transgenic strawberry at a level comparable with that in cold-acclimated wheat. Freezing tests showed that cold-acclimated transgenic strawberry leaves had a 5 degrees C improvement of FT over wild-type or transformed leaves not expressing the WCOR410 protein. However, no difference in FT was found between the different plants under non-acclimated conditions, suggesting that the WCOR410 protein needs to be activated by another factor induced during cold acclimation. These data demonstrate that the WCOR410 protein prevents membrane injury and greatly improves FT in leaves of transgenic strawberry. A better understanding of the limiting factors allowing its activation may open up the way for engineering FT in different plant organs, and may find applications for the cryopreservation of human tissues and organs.  相似文献   

10.
Although plant glutathione transferase (GST) genes are reported to be involved in responses to abiotic stress, few GST genes have been functionally characterized in woody halophytes. In the present study, a GST gene from Tamarix hispida, designated ThGSTZ1, was cloned and functionally characterized. Expression of ThGSTZ1 was downregulated by drought and salinity stress, and abscisic acid. Transgenic Arabidopsis thaliana plants with constitutive expression of ThGSTZ1 showed increased survival rates under drought and salinity stress. These transgenic Arabidopsis plants exhibited increased levels of GST, glutathione peroxidase, superoxide dismutase and peroxidase activity, along with decreased malondialdehyde content, electrolyte leakage rates and reactive oxygen species (ROS) levels under salt and drought stress conditions. Transgenic T. hispida that transiently overexpressed ThGSTZ1 showed increased GST and GPX activities under NaCl and mannitol treatments, as well as improved ROS scavenging ability. These results suggest that ThGSTZ1 can improve drought and salinity tolerance in plants by enhancing their ROS scavenging ability. Therefore, ThGSTZ1 represents a candidate gene with potential applications for molecular breeding to increase stress tolerance in plants.  相似文献   

11.
Yang  Dong-Yue  Zhuang  Kun-Yang  Ma  Na-Na 《Protoplasma》2023,260(2):625-635

Ascorbic acid (AsA) plays an important role in scavenging reactive oxygen species (ROS) and reducing photoinhibition in plants, especially under stress. The function of SlGGP which encodes the key enzyme GDP-L-galactose phosphorylase in AsA synthetic pathway is relatively clear. However, there is another gene SlGGP-LIKE that encodes this enzyme in tomato, and there are few studies on it, especially under salt stress. In this study, we explored the function of this gene in tomato salt stress response using transgenic lines overexpressing SlGGP-LIKE (OE). Under normal conditions, overexpressing SlGGP-LIKE can increase the content of reduced AsA and the ratio of AsA/ DHA (dehydroascorbic acid), as well as the level of xanthophyll cycle. Under salt stress, compared with the wild-type plants (WT), the OE lines can maintain higher levels of reduced AsA. In addition, OE lines also have higher levels of reduced GSH (glutathione) and total GSH, higher ratios of AsA/DHA and GSH/oxidative GSH (GSSR), and higher level of xanthophyll cycle. Therefore, the OE lines are more tolerant to salt stress, with higher photosynthetic activity, higher antioxidative enzyme activities, higher content of D1 protein, lower production rate of ROS, and lighter membrane damage. These results indicate that overexpressing SlGGP-LIKE can enhance tomato resistance to salt stress through promoting the synthesis of AsA.

  相似文献   

12.
13.
14.
15.
An endoplasmic reticulum-localized tomato omega-3 fatty acid desaturase gene (LeFAD3) was isolated and characterized with regard to its sequence, response to various temperatures and function in transgenic tomato plants. Northern blot analysis showed that LeFAD3 was expressed in all organs tested and was markedly abundant in roots. Meanwhile, the expression of LeFAD3 was induced by chilling stress (4 °C), but inhibited by high temperature (40 °C). The transgenic plants were obtained under the control of the cauliflower mosaic virus 35S promoter (35S-CaMV). Northern and western blot analyses confirmed that sense LeFAD3 was transferred into tomato genome and overexpressed. Level of linolenic acids (18:3) increased and correspondingly level of linoleic acid (18:2) decreased in leaves and roots. After chilling stress, the fresh weight of the aerial parts of transgenic plants was higher than that of the wild type (WT) plants, and the membrane system ultrastructure of chloroplast in leaf cell and all the subcellular organelles in root tips of transgenic plants kept more intact than those of WT. Relative electric conductivity increased less in transgenic plants than that in WT, and the respiration rate of the transgenic plants was notably higher than that of WT. The maximal photochemical efficiency of PSII (Fv/Fm) and the O2 evolution rate in WT decreased more than those in transgenic plants under chilling stress. Together with other data, results showed that the overexpression of LeFAD3 led to increased level of 18:3 and alleviated the injuries under chilling stress.  相似文献   

16.
17.
The Arabidopsis gene GF14 lambda that encodes a 14-3-3 protein was introduced into cotton plants to explore the physiological roles that GF14 lambda might play in plants. The expression level of GF14 lambda under the control of the cauliflower mosaic virus 35S promoter varied in transgenic cotton plants, and lines that expressed GF14 lambda demonstrated a "stay-green" phenotype and improved water-stress tolerance. These lines wilted less and maintained higher photosynthesis than segregated non-transgenic control plants under water-deficit conditions. Stomatal conductance appears to be the major factor for the observed higher photosynthetic rates under water-deficit conditions. The stomatal aperture of transgenic plants might be regulated by GF14 lambda through some transporters such as H(+)-ATPase whose activities are controlled by their interaction with 14-3-3 proteins. However, since 14-3-3 proteins interact with numerous proteins in plant cells, many metabolic processes could be affected by the GF14 lambda overexpression. Whatever the mechanisms, the traits observed in the GF14 lambda-expressing cotton plants are beneficial to crops under certain water-deficit conditions.  相似文献   

18.
19.
Divergent abiotic stresses induce osmotic stress on plant cells resulting in an imbalance in water homeostasis which is preserved by aquaporins. Since the plasma membrane aquaporins (PIPs) were shown to be involved in seed development and responses to abiotic stresses, we focused on determining the contribution of mannitol-induced osmotic stress, blue light (BL), and 7B-1 mutation to their gene expression in tomato (Solanum lycopersicum L.) seeds. To assess that, we used a quantitative RT-PCR to determine the expression profiles of genes encoding PIPs. Subsequently, a multiple linear regression analysis was used to evaluate the impact of studied stressors (mannitol and BL) and 7B-1 mutation on PIP gene expressions. We found that mannitol-induced osmotic stress and 7B-1 mutation (conferring the lower responsiveness to osmotic stress- and BL-induced inhibition of seed germination) decreased expression of PIP1;3, PIP2;3 and PIP1;2, PIP2;1 genes, respectively. This might be a way to retain water for radicle elongation and seed germination under the stress conditions. Interestingly, the expression of PIP1;3 gene was downregulated not only by osmotic stress, but also by BL. Altogether, our data indicate the existence of a link between osmotic stress and BL signalling and the involvement of the 7B-1 mutation in this crosstalk.  相似文献   

20.
Journal of Plant Research - The glyoxalase pathway is a check point to monitor the elevation of methylglyoxal (MG) level in plants and is mediated by glyoxalase I (Gly I) and glyoxalase II (Gly II)...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号