首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Redox biochemistry plays an important role in a wide range of cellular events. However, investigation of cellular redox processes is complicated by the large number of cellular redox couples, which are often not in equilibrium with one another and can vary significantly between subcellular compartments and cell types. Further, it is becoming increasingly clear that different redox systems convey different biological information; thus it makes little sense to talk of an overall "cellular redox state". To gain a more differentiated understanding of cellular redox biology, quantitative, redox couple-specific, in vivo measurements are necessary. Unfortunately our ability to investigate specific redox couples or redox-reactive molecules with the necessary degree of spatiotemporal resolution is very limited. The development of genetically encoded redox biosensors offers a promising new way to investigate redox biology. Recently developed redox-sensitive green fluorescent proteins (roGFPs), genetically fused to redox-active proteins, allow rapid equilibration of the roGFP moiety with a specific redox couple. Two probes based on this principle are now available: Grx1-roGFP2 for the measurement of glutathione redox potential (E(GSH)) and roGFP2-Orp1 for measuring changes in H(2)O(2) concentration. Here we provide a detailed protocol for the use of these probes in both yeast and mammalian systems using either plate-reader- or microscopy-based measurements.  相似文献   

2.
Changes in the redox equilibrium of cells influence a host of cell functions. Alterations in the redox equilibrium are precipitated by changing either the glutathione/glutathione-disulfide ratio (GSH/GSSG) and/or the reduced/oxidized thioredoxin ratio. Redox-sensitive green fluorescent proteins (GFP) allow real time visualization of the oxidation state of the indicator. Ratios of fluorescence from excitation at 400 and 490 nm indicate the extent of oxidation and thus the redox potential while canceling out the amount of indicator and the absolute optical sensitivity. Because the indicator is genetically encoded, it can be targeted to specific proteins or organelles of interest and expressed in a wide variety of cells and organisms. We evaluated roGFP1 (GFP with mutations C48S, S147C, and Q204C) and roGFP2 (the same plus S65T) with physiologically or toxicologically relevant oxidants both in vitro and in living mammalian cells. Furthermore, we investigated the response of the redox probes under physiological redox changes during superoxide bursts in macrophage cells, hyperoxic and hypoxic conditions, and in responses to H(2)O(2)-stimulating agents, e.g. epidermal growth factor and lysophosphatidic acid.  相似文献   

3.
The integration of glutathione homeostasis and redox signaling   总被引:2,自引:0,他引:2  
Formation of reactive oxygen species (ROS) is a common feature of abiotic and biotic stress reactions. ROS need to be detoxified to avoid deleterious reactions, but at the same time, the increased formation of ROS can also be exploited for redox signaling. Glutathione, as the most abundant low-molecular weight thiol in the cellular redox system, is used for both detoxification of ROS and transmission of redox signals. Detoxification of H(2)O(2) through the glutathione-ascorbate cycle leads to a transient change in the degree of oxidation of the cellular glutathione pool, and thus a change in the glutathione redox potential. The shift in the glutathione redox potential can be sensed by glutaredoxins (GRXs), small ubiquitous oxidoreductases, which reversibly transfer electrons between the glutathione redox buffer and thiol groups of target proteins. While very little is known about native GRX target proteins and their behavior in vivo, it is shown here that reduction-oxidation-sensitive GFP (roGFP), when expressed in plants, is an artificial target protein of GRXs. The specific interaction of roGFP with GRX results in continuous formation and release of the roGFP disulfide bridge depending on the actual redox potential of the cellular glutathione buffer. Ratiometric analysis of redox-dependent fluorescence allows dynamic imaging of the glutathione redox potential. It was hypothesized that a similar equilibration occurs between the glutathione buffer and native target proteins of GRXs. As a consequence, even minor deviations in the glutathione redox potential due to either depletion of reduced glutathione (GSH) or increasing oxidation can be exploited for fine tuning the activity of target proteins. The integration of the glutathione buffer with redox-active target proteins is a local reaction in specific subcellular compartments. This observation emphasizes the importance of subcellular compartmentalization in understanding the biology of the cellular redox system in plants.  相似文献   

4.
The glutathione redox couple (GSH/GSSG) and hydrogen peroxide (H2O2) are central to redox homeostasis and redox signaling, yet their distribution within an organism is difficult to measure. Using genetically encoded redox probes in Drosophila, we establish quantitative in vivo mapping of the glutathione redox potential (EGSH) and H2O2 in defined subcellular compartments (cytosol and mitochondria) across the whole animal during development and aging. A chemical strategy to trap the in vivo redox state of the transgenic biosensor during specimen dissection and fixation expands the scope of fluorescence redox imaging to include the deep tissues of the adult fly. We find that development and aging are associated with redox changes that are distinctly redox couple-, subcellular compartment-, and tissue-specific. Midgut enterocytes are identified as prominent sites of age-dependent cytosolic H2O2 accumulation. A longer life span correlated with increased formation of oxidants in the gut, rather than a decrease.  相似文献   

5.
Biological processes are highly dynamic, and during plant growth, development, and environmental interactions, they occur and influence each other on diverse spatiotemporal scales. Understanding plant physiology on an organismic scale requires analyzing biological processes from various perspectives, down to the cellular and molecular levels. Ideally, such analyses should be conducted on intact and living plant tissues. Fluorescent protein (FP)-based in vivo biosensing using genetically encoded fluorescent indicators (GEFIs) is a state-of-the-art methodology for directly monitoring cellular ion, redox, sugar, hormone, ATP and phosphatidic acid dynamics, and protein kinase activities in plants. The steadily growing number of diverse but technically compatible genetically encoded biosensors, the development of dual-reporting indicators, and recent achievements in plate-reader-based analyses now allow for GEFI multiplexing: the simultaneous recording of multiple GEFIs in a single experiment. This in turn enables in vivo multiparameter analyses: the simultaneous recording of various biological processes in living organisms. Here, we provide an update on currently established direct FP-based biosensors in plants, discuss their functional principles, and highlight important biological findings accomplished by employing various approaches of GEFI-based multiplexing. We also discuss challenges and provide advice for FP-based biosensor analyses in plants.

Recent progress in genetically encoded fluorescent indicator multiplexing toward multiparametric monitoring of physiological and signal transduction processes in plants.  相似文献   

6.
Dynamic analysis of redox-based processes in living cells is now restricted by the lack of appropriate redox biosensors. Conventional redox-sensitive GFPs (roGFPs) are limited by undefined specificity and slow response to changes in redox potential. In this study we demonstrate that the fusion of human glutaredoxin-1 (Grx1) to roGFP2 facilitates specific real-time equilibration between the sensor protein and the glutathione redox couple. The Grx1-roGFP2 fusion protein allowed dynamic live imaging of the glutathione redox potential (E(GSH)) in different cellular compartments with high sensitivity and temporal resolution. The biosensor detected nanomolar changes in oxidized glutathione (GSSG) against a backdrop of millimolar reduced glutathione (GSH) on a scale of seconds to minutes. It facilitated the observation of redox changes associated with growth factor availability, cell density, mitochondrial depolarization, respiratory burst activity and immune receptor stimulation.  相似文献   

7.
Metabolic fluctuations in chloroplasts and mitochondria can trigger retrograde signals to modify nuclear gene expression. Mobile signals likely to be involved are reactive oxygen species (ROS), which can operate protein redox switches by oxidation of specific cysteine residues. Redox buffers, such as the highly reduced glutathione pool, serve as reservoirs of reducing power for several ROS-scavenging and ROS-induced damage repair pathways. Formation of glutathione disulfide and a shift of the glutathione redox potential (EGSH) toward less negative values is considered as hallmark of several stress conditions. Here we used the herbicide methyl viologen (MV) to generate ROS locally in chloroplasts of intact Arabidopsis (Arabidopsis thaliana) seedlings and recorded dynamic changes in EGSH and H2O2 levels with the genetically encoded biosensors Grx1-roGFP2 (for EGSH) and roGFP2-Orp1 (for H2O2) targeted to chloroplasts, the cytosol, or mitochondria. Treatment of seedlings with MV caused rapid oxidation in chloroplasts and, subsequently, in the cytosol and mitochondria. MV-induced oxidation was significantly boosted by illumination with actinic light, and largely abolished by inhibitors of photosynthetic electron transport. MV also induced autonomous oxidation in the mitochondrial matrix in an electron transport chain activity-dependent manner that was milder than the oxidation triggered in chloroplasts by the combination of MV and light. In vivo redox biosensing resolves the spatiotemporal dynamics of compartmental responses to local ROS generation and provides a basis for understanding how compartment-specific redox dynamics might operate in retrograde signaling and stress acclimation in plants.

Methyl viologen-induced photo-oxidative stress increases hydrogen peroxide and oxidation of glutathione in chloroplasts, cytosol, and mitochondria, as well as autonomous oxidation in mitochondria.  相似文献   

8.
Genetically coded fluorescent protein (FP)-based biosensors are powerful tools for the non-invasive tracking of molecular events in living cells. Although a variety of FP biosensors are available, the simultaneous imaging of multiple biosensors (multi-parameter imaging) in single living cells remains a challenge and is far from routinely used to elucidate the intricate networks of molecular events. In this study, we established a novel combination of FP biosensors for dual-parameter ratiometric imaging, consisting of a new fluorescence resonance energy transfer (FRET) pair mVenus (yellow FP)/mKOκ (orange FP)-based (abbreviated as YO) biosensor and a single FP-based biosensor Grx1-roGFP2. Under our imaging condition, 1.4±0.05% of Grx1-roGFP2 signal contributes to the mVenus channel and 5.2±0.12% of the mVenus signal contributes to the Grx1-roGFP2 channel. We demonstrate that such low degree of cross-talk causes negligible distortion of the ratiometric signal of the YO-based FRET biosensor and Grx1-roGFP2. By using this dual-parameter ratiometric imaging approach, we achieved simultaneous imaging of Src/Ca(2+) signaling and glutathione (GSH) redox potential in a single cell, which was previously unattainable. Furthermore, we provided direct evidence that epidermal growth factor (EGF)-induced Src signaling was negatively regulated by H(2)O(2) via its effect on GSH-based redox system, demonstrating the power of this dual-parameter imaging approach for elucidating new connections between different molecular events that occur in a single cell. More importantly, the dual-parameter imaging approach described in this study is highly extendable.  相似文献   

9.
10.
During normal cellular activities, various processes inside of cells produce reactive oxygen species (ROS). Some of the most common ROS are hydrogen peroxide (H(2)O(2)), superoxide ion (O(2)(-)), and hydroxide radical (OH(-)). These compounds, when present in a high enough concentration, can damage cellular proteins and lipids or form DNA adducts that may promote carcinogenic activity. The purpose of antioxidants in a physiological setting is to prevent ROS concentrations from reaching a high-enough level within a cell that damage may occur. Cellular antioxidants may be enzymatic (catalase, glutathione peroxidase, superoxide dismutase) or nonenzymatic (glutathione, thiols, some vitamins and metals, or phytochemicals such as isoflavones, polyphenols, and flavanoids). Reactive oxygen species are a potential double-edged sword in disease prevention and promotion. Whereas generation of ROS once was viewed as detrimental to the overall health of the organism, advances in research have shown that ROS play crucial roles in normal physiological processes including response to growth factors, the immune response, and apoptotic elimination of damaged cells. Notwithstanding these beneficial functions, aberrant production or regulation of ROS activity has been demonstrated to contribute to the development of some prevalent diseases and conditions, including cancer and cardiovascular disease (CVD). The topic of antioxidant usage and ROS is currently receiving much attention because of studies linking the use of some antioxidants with increased mortality in primarily higher-risk populations and the lack of strong efficacy data for protection against cancer and heart disease, at least in populations with adequate baseline dietary consumption. In normal physiological processes, antioxidants effect signal transduction and regulation of proliferation and the immune response. Reactive oxygen species have been linked to cancer and CVD, and antioxidants have been considered promising therapy for prevention and treatment of these diseases, especially given the tantalizing links observed between diets high in fruits and vegetables (and presumably antioxidants) and decreased risks for cancer.  相似文献   

11.
We have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real time intracellular glutathione redox potentials of mammalian cells. This probe enabled detection of media-dependent oxidation of the cytosol triggered by short wavelength excitation. The transient nature of light-induced oxidation was revealed by time-lapse live cell imaging when time intervals of less than 30 s were implemented. In contrast, transient ROS generation was not observed with the parental roGFP2 probe without Grx1, which exhibits slower thiol-disulfide exchange. These data demonstrate that the enhanced sensitivity of the Grx1-roGFP2 fusion protein enables the detection of short-lived ROS in living cells. The superior sensitivity of Grx1-roGFP2, however, also enhances responsiveness to environmental cues introducing a greater likelihood of false positive results during image acquisition.  相似文献   

12.
Two current hypotheses of O2 sensing in the carotid body (CB) chemoreceptors suggest participation of oxygen reactive (ROS) species, but they are mechanistically opposed. One postulates that hypoxia decreases ROS levels; the other that hypoxia increases them. Yet, both propose that the ensuing alteration in the cellular redox environment is the key signal triggering hypoxic chemoreception. Since the glutathione redox pair is the main cellular buffer for ROS and the main determinant of the general redox environment of the cells, a way to test whether ROS participate in chemoreception is to determine glutathione levels and to correlate them with the activity of CB chemoreceptor cells. We found that hypoxia does not alter the glutathione reduction potential but that it activates chemoreceptor cell neurosecretion. Incubation of tissues with reduced glutathione increases the glutathione-reducing potential but does not activate chemoreceptor cells in normoxia nor does it modify hypoxic activation. Like reduced glutathione, N-acetylcysteine promoted a general reducing environment in the cells without alteration of chemoreceptor cell activity. N-(mercaptopropionyl)-glycine, like the two previous agents, increases the reduction potential of glutathione. In contrast, the compound activated chemoreceptor cells in normoxia, promoting a dose- and Ca(2+)-dependent neurosecretion and a potentiation of the hypoxic responses. The existence of multiple relationships between glutathione reduction potential in the cells and their activity indicates that the general cellular redox environment is not a factor determining chemoreceptor cell activation. It cannot be excluded that the local redox environments of restricted microdomain(s) in the cells with specific regulating mechanisms are important signals for chemoreceptor cell activity.  相似文献   

13.
Synthetic biology has promoted the development of biosensors as tools for detecting trace substances. In the past, biosensors based on synthetic biology have been designed on living cells, but the development of cell biosensors has been greatly limited by defects such as genetically modified organism problem and the obstruction of cell membrane. However, the advent of cell‐free synthetic biology addresses these limitations. Biosensors based on the cell‐free protein synthesis system have the advantages of higher safety, higher sensitivity, and faster response time over cell biosensors, which make cell‐free biosensors have a broader application prospect. This review summarizes the workflow of various cell‐free biosensors, including the identification of analytes and signal output. The detection range of cell‐free biosensors is greatly enlarged by different recognition mechanisms and output methods. In addition, the review also discusses the applications of cell‐free biosensors in environmental monitoring and health diagnosis, as well as existing deficiencies and aspects that should be improved. In the future, through continuous improvement and optimization, the potential of cell‐free biosensors will be stimulated, and their application fields will be expanded.  相似文献   

14.
Reactive oxygen species (ROS) dictate biological outcomes and are linked with myriad pathologies. However, measuring ROS in vivo remains a major obstacle in the field. Here, Albrecht et al. (2011) demonstrate the efficacy of redox-sensitive GFP in measuring glutathione redox state and H(2)O(2) levels of tissues in Drosophila.  相似文献   

15.
Alvarez S  Galant A  Jez JM  Hicks LM 《Proteomics》2011,11(7):1346-1350
ROS, including hydrogen peroxide (H(2)O(2)), can serve as cellular signaling molecules following oxidative stress. Analysis of the redox state of proteins in Brassica juncea roots by 2-DE proteomics following treatment with either exogenous H(2)O(2) or buthionine sulfoximine, which depletes glutathione to cause accumulation of endogenous H(2)O(2), led to the identification of different sets of proteins. These data suggest that exogenous and endogenous oxidative stresses trigger specialized responses.  相似文献   

16.
Redox characteristics of the eukaryotic cytosol   总被引:2,自引:0,他引:2  
The eukaryotic cytoplasm has long been regarded as a cellular compartment in which the reduced state of protein cysteines is largely favored. Under normal conditions, the cytosolic low-molecular weight redox buffer, comprising primarily of glutathione, is highly reducing and reactive oxygen species (ROS) and glutathionylated proteins are maintained at very low levels. In the present review, recent progress in the understanding of the cytosolic thiol-disulfide redox metabolism and novel analytical approaches to studying cytosolic redox properties are discussed. We will focus on the yeast model organism, Saccharomyces cerevisiae, where the combination of genetic and biochemical approaches has brought us furthest in understanding the mechanisms underlying cellular redox regulation. It has been shown in yeast that, in addition to the enzyme glutathione reductase, other mechanisms may exist for restricting the cytosolic glutathione redox potential to a relatively narrow interval. Several mutations in genes involved in cellular redox regulation cause ROS accumulation but only moderate decreases in the cytosolic glutathione reducing power. The redox regulation in the cytosol depends not only on multiple cytosolic factors but also on the redox homeostasis of other compartments like the secretory pathway and the mitochondria. Possibly, the cytosol is not just a reducing compartment surrounding organelles with high oxidative activity but also a milieu for regulation of the redox status of more than one compartment. Although much has been learned about redox homeostasis and oxidative stress response several important aspects of the redox regulation in the yeast cytosol are still unexplained.  相似文献   

17.
Mitochondrial adaptations to obesity-related oxidant stress   总被引:15,自引:0,他引:15  
It is not known why viable hepatocytes in fatty livers are vulnerable to necrosis, but associated mitochondrial alterations suggest that reactive oxygen species (ROS) production may be increased. Although the mechanisms for ROS-mediated lethality are not well understood, increased mitochondrial ROS generation often precedes cell death, and hence, might promote hepatocyte necrosis. The aim of this study is to determine if liver mitochondria from obese mice with fatty hepatocytes actually produce increased ROS. Secondary objectives are to identify potential mechanisms for ROS increases and to evaluate whether ROS increase uncoupling protein (UCP)-2, a mitochondrial protein that promotes ATP depletion and necrosis. Compared to mitochondria from normal livers, fatty liver mitochondria have a 50% reduction in cytochrome c content and produce superoxide anion at a greater rate. They also contain 25% more GSH and demonstrate 70% greater manganese superoxide dismutase activity and a 35% reduction in glutathione peroxidase activity. Mitochondrial generation of H(2)O(2) is increased by 200% and the activities of enzymes that detoxify H(2)O(2) in other cellular compartments are abnormal. Cytosolic glutathione peroxidase and catalase activities are 42 and 153% of control values, respectively. These changes in the production and detoxification of mitochondrial ROS are associated with a 300% increase in the mitochondrial content of UCP-2, although the content of beta-1 ATP synthase, a constitutive mitochondrial membrane protein, is unaffected. Supporting the possibility that mitochondrial ROS induce UCP-2 in fatty hepatocytes, a mitochondrial redox cycling agent that increases mitochondrial ROS production upregulates UCP-2 mRNAs in primary cultures of normal rat hepatocytes by 300%. Thus, ROS production is increased in fatty liver mitochondria. This may result from chronic apoptotic stress and provoke adaptations, including increases in UCP-2, that potentiate necrosis.  相似文献   

18.
19.
20.
Phosphatidylinositol 4,5-bisphosphate (PtdIns 4,5-P2) is the substrate for phosphoinositide-phospholipase C (PLC) and is required for the function of several cardiac cell plasma membrane (sarcolemma, SL) proteins. PtdIns 4,5-P2 is synthesized in the SL membrane by coordinated and successive actions of PtdIns 4-kinase and PtdIns 4-phosphate 5-kinase. These kinases and the generation of PtdIns 4,5-P2 may be a factor in the cardiac dysfunction during pathophysiological conditions of oxidative stress. Therefore, we examined the effects of different reactive oxygen species (ROS) on the kinases' activities and subsequent generation of PtdIns 4,5-P2. Exposure to the xanthine-xanthine oxidase-ROS generating system significantly reduced both SL kinase activities. Superoxide dismutase did not prevent this inhibition; however, catalase significantly prevented the xanthine-xanthine oxidase induced inhibition. Treatment of SL with hydrogen peroxide (H2O2) resulted in inhibition of both the kinases, which was prevented by catalase and dithiothreitol (DTT). Hypochlorous acid also inhibited both the kinases, which was prevented by DTT. Deferoxamine (an iron chelator) and mannitol (an *OH scavenger) did not modify the H2O2-induced depression of the kinases, eliminating any role of *OH. Furthermore, the IC50 of H2O2 on PtdIns 4-kinase and PtdIns 4-P 5-kinase was 27 and 81 microM, respectively. In addition, inclusion of reduced glutathione in the assay of the kinases in the absence of H2O2 did not affect the activities of the kinases; however, oxidized glutathione induced a significant depression. Also, a significant decline of the PtdIns 4-kinase and PtdIns 4-P 5-kinase activities due to changing of the redox ratio was observed. Thiol modifiers (N-ethylmaleimide, methyl methanethiosulfonate, or p-chloromercuriphenylsulfonic acid) were detected to depress the kinases' activities, which were substantially prevented by DTT. The results suggest that functionally critical thiol groups may be associated with PtdIns 4-kinase and PtdIns 4-P 5-kinase and that changes of their redox state by ROS can impair their activities, which may be an important factor in the oxidant-induced cardiac dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号