首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zamzam water is well documented for plenty of medicinal value for curing illness. In the present study, the effects of perinatal consumption of Zamzam and normal drinking water by the pregnant mice on their offspring’s physical parameters, early sensory motor reflexes, locomotor activities, acetylcholinesterase (AChE) activity in the homogenize brain tissue and blood parameters were compared. To achieve that; Zamzam water was given to female Swiss-Webster strain mice as the only source of drinking fluid and the control animals were administered plain tap water. Treatment started from the first day of pregnancy and continued until the postnatal day fifteen of delivery. All offspring were subjected to various tests. The rate of body weight gain remained relatively unaffected until the second week of weaning period, however; in the last week the offspring exposed to Zamzam water gained significant body weight as compared to their control offspring. Furthermore, the opening of eyes and appearance of body hairs in Zamzam exposed pups remained unaffected as compared to the controls. The sensory motor reflexes in Zamzam exposed pups after birth and during the first two weeks of weaning period were significantly increased. Locomotor Activity Test performed in the male and female offspring after weaning period showed a significant decrease in the male and increase in the female on most of the elements of this test due to Zamzam exposure. AChE activity in the homogenized brain tissue and blood parameters were unaffected as compared to the controls, the present Zamzam effects in the offspring are possibly via in utero action and/or via mother’s milk.  相似文献   

2.
The present article briefly summarizes the theoretical studies made by the authors and co-workers on the effect of inborn enzyme deficiencies on oxidative phosphorylation in intact tissues and on the genesis of mitochondrial diseases. The dynamic computer model of oxidative phosphorylation developed previously allowed to extrapolate experimental data (especially: threshold curves describing the dependence of oxygen consumption and ATP turnover on activities/concentrations of particular oxidative phosphorylation enzymes) obtained for isolated muscle mitochondria in state 3 at saturating oxygen concentrations to more physiological conditions prevailing in intact tissues. In particular, theoretical studies demonstrated that the threshold value of the relative activity/concentration of a given mitochondrial complex, below which a significant decrease in the respiration rate takes place, increases with an increase in energy demand. This fact was proposed as a possible explanation of the tissue specificity of mitochondrial diseases. Additionally, a decreased oxygen concentration was shown to increase the threshold value (and flux control coefficient) for cytochrome oxidase. We subsequently developed a model called binary mitochondria heteroplasmy, in which there are only two subpopulations of mitochondria: one wild-type and one containing only defected molecules of a given enzyme. In this model we show that a defect has a pronounced effect on oxidative phosphorylation, significantly increasing the threshold value. It was also proposed that a parallel activation in the ATP supply-demand system during an increased energy demand significantly lessens the effect of enzyme deficiencies on oxidative phosphorylation (decreases the threshold value). Finally, the necessity of substrate activation may lead to an instability in the system and to appearance of a second threshold, below which respiration suddenly drops to zero, which is equivalent to the energetic death of a cell.  相似文献   

3.
Degeneracy is ubiquitous across biological systems where structurally different elements can yield a similar outcome. Degeneracy is of particular interest in neuroscience too. On the one hand, degeneracy confers robustness to the nervous system and facilitates evolvability: Different elements provide a backup plan for the system in response to any perturbation or disturbance. On the other, a difficulty in the treatment of some neurological disorders such as chronic pain is explained in light of different elements all of which contribute to the pathological behavior of the system. Under these circumstances, targeting a specific element is ineffective because other elements can compensate for this modulation. Understanding degeneracy in the physiological context explains its beneficial role in the robustness of neural circuits. Likewise, understanding degeneracy in the pathological context opens new avenues of discovery to find more effective therapies.  相似文献   

4.
We studied the release of [3H]norepinephrine from chicken sympathetic neurons in culture evoked by nicotinic and electrical stimulation with an intention to establish functional identity or nonidentity of the two stimuli in investigations of neurotransmitter release. Nicotinic stimulation evoked extracellular calcium dependent release of [3H]norepinephrine and the rise of intracellular calcium concentration. The release was completely blocked by nicotinic antagonists hexamethonium (100 mol/l) and mecamylamine (10 mol/l), and decreased by tetrodotoxin (0.3 mol/l) and -conotoxin (0.1 mol/l) to 17% and 27%, resp. The intracellular calcium response was decreased by nicotinic antagonists and tetrodotoxin, but not changed by -conotoxin. The electrical stimulation-evoked release was blocked by both tetrodotoxin and -conotoxin, and decreased by previous electrical, but not nicotinic, stimulation. The differential sensitivity to -conotoxin and tetrodotoxin, and the inability of nicotinic stimulation to decrease the liberation by following electrical stimulation may suggest the mobilization of different pools of the transmitter.  相似文献   

5.
The feeling of controlling events through one''s actions is fundamental to human experience, but its neural basis remains unclear. This ‘sense of agency’ (SoA) can be measured quantitatively as a temporal linkage between voluntary actions and their external effects. We investigated the brain areas underlying this aspect of action awareness by using theta-burst stimulation to locally and reversibly disrupt human brain function. Disruption of the pre-supplementary motor area (pre-SMA), a key structure for preparation and initiation of a voluntary action, was shown to reduce the temporal linkage between a voluntary key-press action and a subsequent electrocutaneous stimulus. In contrast, disruption of the sensorimotor cortex, which processes signals more directly related to action execution and sensory feedback, had no significant effect. Our results provide the first direct evidence of a pre-SMA contribution to SoA.  相似文献   

6.
The observation of actions executed by others results in desynchronization of electroencephalogram (EEG) in the alpha and beta frequency bands recorded from the central regions in humans. On the other hand, mirror neurons, which are thought to be responsible for this effect, have been studied only in macaque monkeys, using single-cell recordings. Here, as a first step in a research programme aimed at understanding the parallels between human and monkey mirror neuron systems (MNS), we recorded EEG from the scalp of two monkeys during action observation. The monkeys were trained to fixate on the face of a human agent and subsequently to fixate on a target upon which the agent performed a grasping action. We found that action observation produced desynchronization in the 19–25 Hz band that was strongest over anterior and central electrodes. These results are in line with human data showing that specific frequency bands within the power spectrum of the ongoing EEG may be modulated by observation of actions and therefore might be a specific marker of MNS activity.  相似文献   

7.
The response of the gill of Aplysia calfornica Cooper to weak to moderate tactile stimulation of the siphon, the gill-withdrawal response or GWR, has been an important model system for work aimed at understanding the relationship between neural plasticity and simple forms of non-associative and associative learning. Interest in the GWR has been based largely on the hypothesis that the response could be explained adequately by parallel monosynaptic reflex arcs between six parietovisceral ganglion (PVG) gill motor neurons (GMNs) and a cluster of sensory neurons termed the LE cluster. This hypothesis, the Kupfermann-Kandel model, made clear, falsifiable predictions that have stimulated experimental work for many years. Here, we review tests of three predictions of the Kupfermann-Kandel model: (1) that the GWR is a simple, reflexive behaviour graded with stimulus intensity; (2) that central nervous system (CNS) pathways are necessary and sufficient for the GWR; and (3) that activity in six identified GMNs is sufficient to account for the GWR. The available data suggest that (1) a variety of action patterns occur in the context of the GWR; (2) the PVG is not necessary and the diffuse peripheral nervous system (PNS) is sufficient to mediate these action patterns; and (3) the role of any individual GMN in the behaviour varies. Both the control of gill-withdrawal responses, and plasticity in these responses, are broadly distributed across both PNS and CNS pathways. The Kupfermann-Kandel model is inconsistent with the available data and therefore stands rejected. There is, no known causal connection or correlation between the observed plasticity at the identified synapses in this system and behavioural changes during non-associative and associative learning paradigms. Critical examination of these well-studied central pathways suggests that they represent a 'wetware' neural network, architecturally similar to the neural network models of the widely used 'Perceptron' and/or 'Back-propagation' type. Such models may offer a more biologically realistic representation of nervous system organisation than has been thought. In this model, the six parallel GMNs of the CNS correspond to a hidden layer within one module of the gill-control system. That is, the gill-control system appears to be organised as a distributed system with several parallel modules, some of which are neural networks in their own right. A new model is presented here which predicts that the six GMNs serve as components of a 'push-pull' gain control system, along with known but largely unidentified inhibitory motor neurons from the PVG. This 'push-pull' gain control system sets the responsiveness of the peripheral gill motor system. Neither causal nor correlational links between specific forms of neural plasticity and behavioural plasticity have been demonstrated in the GWR model system. However, the GWR model system does provide an opportunity to observe and describe directly the physiological and biochemical mechanisms of distributed representation and parallel processing in a largely identifiable 'wetware' neural network.  相似文献   

8.
Medermycin shows the same trans (3S,15R) configuration as actinorhodin in the pyran ring crucial for its bioactivity. One medermycin biosynthetic gene, med-ORF12, is assumed to be involved in the stereochemical control at C-3. Functional complementation suggested that it plays a similar role as actVI-ORF1 previously proved to determine the stereospecificity at C-3 in actinorhodin biosynthesis. Co-expression of med-ORF12 with actinorhodin early biosynthetic genes further demonstrated that med-ORF12 encodes a ketoreductase responsible for the enantioselective reduction at C-3 in the formation of the pyran ring.  相似文献   

9.
10.
As a step toward resolving the developmental origin of the ossified skull in adult anurans, we performed a series of cell labeling and grafting studies of the cranial neural crest (CNC) in the clawed frog, Xenopus laevis. We employ an indelible, fixative-stable fluorescent dextran as a cell marker to follow migration of the three embryonic streams of cranial neural crest and to directly assess their contributions to the bony skull vault, which forms weeks after hatching. The three streams maintain distinct boundaries in the developing embryo. Their cells proliferate widely through subsequent larval (tadpole) development, albeit in regionally distinct portions of the head. At metamorphosis, each stream contributes to the large frontoparietal bone, which is the primary constituent of the skull vault in adult anurans. The streams give rise to regionally distinct portions of the bone, thereby preserving their earlier relative position anteroposteriorly within the embryonic neural ridge. These data, when combined with comparable experimental observations from other model species, provide insights into the ancestral pattern of cranial development in tetrapod vertebrates as well as the origin of differences reported between birds and mammals.  相似文献   

11.
The ENS resembles the brain and differs both physiologically and structurally from any other region of the PNS. Recent experiments in which crest cell migration has been studied with DiI, a replication-deficient retrovirus, or antibodies that label cells of neural crest origin, have confirmed that both the avian and mammalian bowel are colonized by émigrés from the sacral as well as the vagal level of the neural crest. Components of the extracellular matrix, such as laminin, may play roles in enteric neural and glial development. The observation that an overabundance of laminin develops in the presumptive aganglionic region of the gut in Is/Is mutant mice and is associated with the inability of crest-derived cells to colonize this region of the bowel has led to the hypothesis that laminin promotes the development of crest-derived cells as enteric neurons. Premature expression of a neuronal phenotype would cause crest-derived cells to cease migrating before they complete the colonization of the gut. The acquisition by crest-derived cells of a nonintegrin, nervespecific, 110 kD laminin-binding protein when they enter the bowel may enable these cells to respond to laminin differently from their pre-enteric migrating predecessors. Crest-derived cells migrating along the vagal pathway to the mammalian gut are transiently catecholaminergic (TC). This phenotype appears to be lost rapidly as the cells enter the bowel and begin to follow their program of terminal differentiation. The appearance and disappearance of TC cells may thus be an example of the effects of the enteric microenvironment on the differentiation of crest-derived cells in situ. Crest-derived cells can be isolated from the enteric microenvironment by immunoselection, a method that takes advantage of the selective expression on the surfaces of crest-derived cells of certain antigens. One neurotrophin, NT-3, promotes the development of enteric neurons and glia in vitro. Because trkC is expressed in the developing and mature gut, it seems likely that NT-3 plays a critical role in the development of the ENS in situ. Although the factors that are responsible for the development of the unique properties of the ENS remain unknown, progress made in understanding enteric neuronal development has recently accelerated. The application of new techniques and recently developed probes suggest that the accelerated pace of discovery in this area can be expected to continue. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
Interactions between dung beetles and vertebrate dung are intimately linked to a suite of ecosystem functions in tropical forests. We show that the trapping method and the type of dung used affect the suite of beetles captured, with the potential to influence the outcome of experiments linking functions to interactions.  相似文献   

13.
Our work aims at the exploration of cortisol secretion in the Bedouin goat, native to the Algerian Sahara desert, to understand the mechanisms of adaptation to extreme hot climates. In the present study, diurnal and seasonal variations of cortisol concentrations were measured in basal conditions, as well as the response to ACTH stimulation tests across seasons in bucks. The plasma concentrations of cortisol showed no diurnal cycle but a large variation across seasons. The highest levels occurred in summer and winter when the environmental conditions are at their extreme levels. The rectal temperature showed nychthemeral and seasonal variations, and BW was also different across seasons with highest values in summer and lowest in winter. The results obtained after administration of two doses (2 or 10 μg/kg BW) of synthetic ACTH to three different age groups (kids, adults and elderly animals) showed a strong increase in plasma cortisol concentrations under all conditions with maximum levels achieved between 15 and 120 min. The analysis of the area under the cortisol curve showed no significant difference between the responses to the two doses of ACTH and between age groups, but showed seasonal variations with the lowest response in autumn than in other seasons. We conclude that season significantly affects secretion of cortisol in both basal state and under ACTH stimulation. However, the variation of adrenal reactivity to ACTH is not sufficient to explain seasonal differences, and in particular the summer peak in basal circulating cortisol concentrations. Further research should focus on the respective contribution of environmental factors (such as day length, temperature, humidity) and the mechanisms involved in cortisol regulation.  相似文献   

14.
A major goal shared by neuroscience and collective behavior is to understand how dynamic interactions between individual elements give rise to behaviors in populations of neurons and animals, respectively. This goal has recently become within reach, thanks to techniques providing access to the connectivity and activity of neuronal ensembles as well as to behaviors among animal collectives. The next challenge using these datasets is to unravel network mechanisms generating population behaviors. This is aided by network theory, a field that studies structure–function relationships in interconnected systems. Here we review studies that have taken a network view on modern datasets to provide unique insights into individual and collective animal behaviors. Specifically, we focus on how analyzing signal propagation, controllability, symmetry, and geometry of networks can tame the complexity of collective system dynamics. These studies illustrate the potential of network theory to accelerate our understanding of behavior across ethological scales.  相似文献   

15.
16.
Proteins are dynamic entities in cellular solution with functions governed essentially by their dynamic personalities. We review several dynamics studies on serine protease proteinase K and HIV-1 gp120 envelope glycoprotein to demonstrate the importance of investigating the dynamic behaviors and molecular motions for a complete understanding of their structure–function relationships. Using computer simulations and essential dynamic (ED) analysis approaches, the dynamics data obtained revealed that: (i) proteinase K has highly flexible substrate-binding site, thus supporting the induced-fit or conformational selection mechanism of substrate binding; (ii) Ca2+ removal from proteinase K increases the global conformational flexibility, decreases the local flexibility of substrate-binding region, and does not influence the thermal motion of catalytic triad, thus explaining the experimentally determined decreased thermal stability, reduced substrate affinity, and almost unchanged catalytic activity upon Ca2+ removal; (iii) substrate binding affects the large concerted motions of proteinase K, and the resulting dynamic pocket can be connected to substrate binding, orientation, and product release; (iv) amino acid mutations 375 S/W and 423 I/P of HIV-1 gp120 have distinct effects on molecular motions of gp120, facilitating 375 S/W mutant to assume the CD4-bound conformation, while 423 I/P mutant to prefer for CD4-unliganded state. The mechanisms underlying protein dynamics and protein–ligand binding, including the concept of the free energy landscape (FEL) of the protein–solvent system, how the ruggedness and variability of FEL determine protein’s dynamics, and how the three ligand-binding models, the lock-and-key, induced-fit, and conformational selection are rationalized based on the FEL theory are discussed in depth.  相似文献   

17.
18.
Biological energy transduction underlies all physiological phenomena in cells. The metabolic systems that support energy transduction have been of great interest due to their association with numerous pathologies including diabetes, cancer, rare genetic diseases, and aberrant cell death. Commercially available bioenergetics technologies (e.g., extracellular flux analysis, high-resolution respirometry, fluorescent dye kits, etc.) have made practical assessment of metabolic parameters widely accessible. This has facilitated an explosion in the number of studies exploring, in particular, the biological implications of oxygen consumption rate (OCR) and substrate level phosphorylation via glycolysis (i.e., via extracellular acidification rate (ECAR)). Though these technologies have demonstrated substantial utility and broad applicability to cell biology research, they are also susceptible to historical assumptions, experimental limitations, and other caveats that have led to premature and/or erroneous interpretations. This review enumerates various important considerations for designing and interpreting cellular and mitochondrial bioenergetics experiments, some common challenges and pitfalls in data interpretation, and some potential “next steps” to be taken that can address these highlighted challenges.  相似文献   

19.
20.
A combination of system-level and cellular—molecular approaches is moving studies of oculomotor learning rapidly toward the goal of linking synaptic plasticity at specific sites in oculomotor circuits with changes in the signal-processing functions of those circuits, and, ultimately, with changes in eye movement behavior. Recent studies of saccadic adaptation illustrate how careful behavioral analysis can provide constraints on the neural loci of plasticity. Studies of vestibulo-ocular adaptation are beginning to examine the molecular pathways contributing to this form of cerebellum-dependent learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号