首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The atomic force microscope has developed into a powerful tool in structural biology allowing information to be acquired at submolecular resolution on the protruding structures of membrane proteins. It is now a complementary technique to X-ray crystallography and electron microscopy for structure determination of individual membrane proteins after extraction, purification and reconstitution into lipid bilayers. Moving on from the structures of individual components of biological membranes, atomic force microscopy has recently been demonstrated to be a unique tool to identify in situ the individual components of multi-protein assemblies and to study the supramolecular architecture of these components allowing the efficient performance of a complex biological function. Here, recent atomic force microscopy studies of native membranes of different photosynthetic bacteria with different polypeptide contents are reviewed. Technology, advantages, feasibilities, restrictions and limits of atomic force microscopy for the acquisition of highly resolved images of up to 10 A lateral resolution under native conditions are discussed. From a biological point of view, the new insights contributed by the images are analysed and discussed in the context of the strongly debated organisation of the interconnected network of membrane-associated chlorophyll-protein complexes composing the photosynthetic apparatus in different species of purple bacteria.  相似文献   

2.
The atomic force microscope has developed into a powerful tool in structural biology allowing information to be acquired at submolecular resolution on the protruding structures of membrane proteins. It is now a complementary technique to X-ray crystallography and electron microscopy for structure determination of individual membrane proteins after extraction, purification and reconstitution into lipid bilayers. Moving on from the structures of individual components of biological membranes, atomic force microscopy has recently been demonstrated to be a unique tool to identify in situ the individual components of multi-protein assemblies and to study the supramolecular architecture of these components allowing the efficient performance of a complex biological function.Here, recent atomic force microscopy studies of native membranes of different photosynthetic bacteria with different polypeptide contents are reviewed. Technology, advantages, feasibilities, restrictions and limits of atomic force microscopy for the acquisition of highly resolved images of up to 10 Å lateral resolution under native conditions are discussed. From a biological point of view, the new insights contributed by the images are analysed and discussed in the context of the strongly debated organisation of the interconnected network of membrane-associated chlorophyll-protein complexes composing the photosynthetic apparatus in different species of purple bacteria.  相似文献   

3.
生物三维电子显微学主要由三个部分组成——电子晶体学、单颗粒技术和电子断层成像术,其结构解析对象的尺度范围介于x射线晶体学与光学显微镜之间,适合从蛋白质分子结构到细胞和组织结构的解析。以冷冻电镜技术与三维重构技术为基础的低温电子显微学代表了生物电子显微学的前沿。低温单颗粒技术对于高度对称的病毒颗粒的解析最近已达到3.8A分辨率,正在成为解析分子量很大的蛋白质复合体高分辨结构的有效技术手段。低温电子断层成像技术目前对于真核细胞样品的结构解析已达到约40A的分辨率,在今后5年有望达到20A。这样,把x射线晶体学、NMR以及电镜三维重构获得的蛋白质分子及复合体的高分辨率的结构,锚定到较低分辨率的电子断层成像图像中,从而在细胞水平上获得高精确的蛋白质空间定位和原子分辨率的蛋白质相互作用的结构信息。这将成为把分子水平的结构研究与细胞水平的生命活动衔接起来的可行途径。  相似文献   

4.
单颗粒电镜结合其他方法能够在(近)原子水平提供结构模型,已经成为一种研究大蛋白复合物的有效方法。该文将以两个大的蛋白裂解复合物——tripeptidyl peptidaseII(6MDa)和26S蛋白酶体(2.5MDa)举例说明。低温电子层析能进行非重复的超分子结构分析,如多核糖体和全细胞;能够为超分子组织提供前所未有的信息(可视化蛋白质组学)。  相似文献   

5.
Polarizing near-field scanning optical microscopy (NSOM) was applied for visualization of lipid coagel structures. The technique ensures obtaining polarization contrast images at micro- and nanoscale resolution. Comparison to the polarizing light microscopy images revealed that the same fractal structural organization persists also at submicron scale, at the level of primary ordered structures creation. Many long birefringent needle-shaped primary crystallites were imaged in the corn oil:monoglyceride samples, and lower amount of smaller oval-shaped primary crystallites—in the olive oil:monoglyceride samples. Unlike atomic force microscopy, polarizing NSOM brought direct evidence on the physical state of specific features. Compared to the polarizing light microscopy, polarizing NSOM provided additional information on the structural organization of oil–monoglyceride coagels at the micro- and submicron scale.  相似文献   

6.
7.
Detailed close-ups and the big picture of spliceosomes   总被引:1,自引:0,他引:1  
  相似文献   

8.
There are currently at least 53 structures of components of nuclear transport in the Protein Databank. In addition to providing critical insights into molecular mechanisms of nuclear transport, these atomic resolution structures provide a large body of information that could guide biochemical and cell biological analyses involving nuclear transport proteins. This paper catalogs 53 crystal and NMR structures of nuclear transport proteins, with the emphasis on providing information useful for mutagenesis and overexpression of recombinant proteins.  相似文献   

9.
The field of membrane structural biology represents a fast-moving field with exciting developments including native nanodiscs that allow preparation of complexes of post-translationally modified proteins bound to biological lipids. This has led to conceptual advances including biological membrane:protein assemblies or “memteins” as the fundamental functional units of biological membranes. Tools including cryo-electron microscopy and X-ray crystallography are maturing such that it is becoming increasingly feasible to solve structures of large, multicomponent complexes, while complementary methods including nuclear magnetic resonance spectroscopy yield unique insights into interactions and dynamics. Challenges remain, including elucidating exactly how lipids and ligands are recognized at atomic resolution and transduce signals across asymmetric bilayers. In this special volume some of the latest thinking and methods are gathered through the analysis of a range of transmembrane targets. Ongoing work on areas including polymer design, protein labelling and microfluidic technologies will ensure continued progress on improving resolution and throughput, providing deeper understanding of this most important group of targets.  相似文献   

10.
Sticholysin II (StnII) is a pore-forming protein (PFP) produced by the sea anemone Stichodactyla helianthus. We found out that StnII exists in a monomeric soluble state but forms tetramers in the presence of a lipidic interface. Both structures have been independently determined at 1.7 A and 18 A resolution, respectively, by using X-ray crystallography and electron microscopy of two-dimensional crystals. Besides, the structure of soluble StnII complexed with phosphocholine, determined at 2.4 A resolution, reveals a phospholipid headgroup binding site, which is located in a region with an unusually high abundance of aromatic residues. Fitting of the atomic model into the electron microscopy density envelope suggests that while the beta sandwich structure of the protein remains intact upon oligomerization, the N-terminal region and a flexible and highly basic loop undergo significant conformational changes. These results provide the structural basis for the membrane recognition step of actinoporins and unexpected insights into the oligomerization step.  相似文献   

11.
Modern cell biology is reliant on light and fluorescence microscopy for analysis of cells, tissues and protein localisation. However, these powerful techniques are ultimately limited in resolution by the wavelength of light. Electron microscopes offer much greater resolution due to the shorter effective wavelength of electrons, allowing direct imaging of sub-cellular architecture. The harsh environment of the electron microscope chamber and the properties of the electron beam have led to complex chemical and mechanical preparation techniques, which distance biological samples from their native state and complicate data interpretation. Here we describe recent advances in sample preparation and instrumentation, which push the boundaries of high-resolution imaging. Cryopreparation, cryoelectron microscopy and environmental scanning electron microscopy strive to image samples in near native state. Advances in correlative microscopy and markers enable high-resolution localisation of proteins. Innovation in microscope design has pushed the boundaries of resolution to atomic scale, whilst automatic acquisition of high-resolution electron microscopy data through large volumes is finally able to place ultrastructure in biological context.  相似文献   

12.
The combination of cryo-electron microscopy to study large biological assemblies at low resolution with crystallography to determine near atomic structures of assembly fragments is quickly expanding the horizon of structural biology. This technique can be used to advantage in the study of large structures that cannot be crystallized, to follow dynamic processes, and to "purify" samples by visual selection of particles. Factors affecting the quality of cryo-electron microscopy maps and limits of accuracy in fitting known structural fragments are discussed.  相似文献   

13.
The growth processes and defect structures of protein and virus crystals have been studied in situ by atomic force microscopy (AFM), X-ray diffraction topography, and high-resolution reciprocal space scanning. Molecular mechanisms of macromolecular crystallization were visualized and fundamental kinetic and thermodynamic parameters, which govern the crystallization process of a number of macromolecular crystals, have been determined. High-resolution AFM imaging of crystal surfaces provides information on the packing of macromolecules within the unit cell and on the structure of large macromolecular assemblies. X-ray diffraction techniques provide a bulk probe with poorer spatial resolution but excellent sensitivity to mosaicity and strain. Defect structures and disorder created in macromolecular crystals during growth, seeding, and post-growth treatments including flash cooling were characterized and their impacts on the diffraction properties of macromolecular crystals have been analyzed. The diverse and dramatic effects of impurities on growth and defect formation have also been studied. Practical implications of these fundamental insights into the improvement of macromolecular crystallization protocols are discussed.  相似文献   

14.
Electron microscopy (EM) in combination with image analysis is a powerful technique to study protein structures at low, medium, and high resolution. Since electron micrographs of biological objects are very noisy, improvement of the signal-to-noise ratio by image processing is an integral part of EM, and this is performed by averaging large numbers of individual projections. Averaging procedures can be divided into crystallographic and non-crystallographic methods. The crystallographic averaging method, based on two-dimensional (2D) crystals of (membrane) proteins, yielded in solving atomic protein structures in the last century. More recently, single particle analysis could be extended to solve atomic structures as well. It is a suitable method for large proteins, viruses, and proteins that are difficult to crystallize. Because it is also a fast method to reveal the low-to-medium resolution structures, the impact of its application is growing rapidly. Technical aspects, results, and possibilities are presented.  相似文献   

15.
For many macromolecular assemblies, both a cryo-electron microscopy map and atomic structures of its component proteins are available. Here we describe a method for fitting and refining a component structure within its map at intermediate resolution (<15 A). The atomic positions are optimized with respect to a scoring function that includes the crosscorrelation coefficient between the structure and the map as well as stereochemical and nonbonded interaction terms. A heuristic optimization that relies on a Monte Carlo search, a conjugate-gradients minimization, and simulated annealing molecular dynamics is applied to a series of subdivisions of the structure into progressively smaller rigid bodies. The method was tested on 15 proteins of known structure with 13 simulated maps and 3 experimentally determined maps. At approximately 10 A resolution, Calpha rmsd between the initial and final structures was reduced on average by approximately 53%. The method is automated and can refine both experimental and predicted atomic structures.  相似文献   

16.
High-speed atomic force microscopy (HS-AFM) allows direct observation of biological molecules in dynamic action. However, HS-AFM has no atomic resolution. This article reviews recent progress of computational methods to infer high-resolution information, including the construction of 3D atomistic structures, from experimentally acquired resolution-limited HS-AFM images.  相似文献   

17.
Cryo-electron tomography of cells: connecting structure and function   总被引:3,自引:3,他引:0  
Cryo-electron tomography (cryo-ET) allows the visualization of cellular structures under close-to-life conditions and at molecular resolution. While it is inherently a static approach, yielding structural information about supramolecular organization at a certain time point, it can nevertheless provide insights into function of the structures imaged, in particular, when supplemented by other approaches. Here, we review the use of experimental methods that supplement cryo-ET imaging of whole cells. These include genetic and pharmacological manipulations, as well as correlative light microscopy and cryo-ET. While these methods have mostly been used to detect and identify structures visualized in cryo-ET or to assist the search for a feature of interest, we expect that in the future they will play a more important role in the functional interpretation of cryo-tomograms.  相似文献   

18.
A method for the flexible docking of high-resolution atomic structures into lower resolution densities derived from electron microscopy is presented. The atomic structure is deformed by an iterative process using combinations of normal modes to obtain the best fit of the electron microscopical density. The quality of the computed structures has been evaluated by several techniques borrowed from crystallography. Two atomic structures of the SERCA1 Ca-ATPase corresponding to different conformations were used as a starting point to fit the electron density corresponding to a different conformation. The fitted models have been compared to published models obtained by rigid domain docking, and their relation to the known crystallographic structures are explored by normal mode analysis. We find that only a few number of modes contribute significantly to the transition. The associated motions involve almost exclusively rotation and translation of the cytoplasmic domains as well as displacement of cytoplasmic loops. We suggest that the movements of the cytoplasmic domains are driven by the conformational change that occurs between nonphosphorylated and phosphorylated intermediate, the latter being mimicked by the presence of vanadate at the phosphorylation site in the electron microscopy structure.  相似文献   

19.
The organization of interphase chromatin spans many topics, ranging in scale from the molecular level to the whole nucleus, and its study requires a concomitant range of experimental approaches. In this review, we examine these approaches, the results they have generated, and the interfaces between them. The greatest challenge appears to be the integration of information on whole nuclei obtained by light microscopy with data on nucleosome–nucleosome interactions and chromatin higher-order structures, obtained in vitro using biophysical characterization, atomic force microscopy, and electron microscopy. We consider strategies that may assist in the integration process, and we review emerging technologies that promise to reduce the “resolution gap.” This article is dedicated to the memory of Hans Ris.  相似文献   

20.
原子力显微镜在微生物学领域的应用*   总被引:2,自引:0,他引:2  
石万良  谢志雄  沈萍   《微生物学通报》2004,31(1):109-113
原子力显微镜是揭示微生物表面结构及其与功能相关性的一种新的有力的工具,它具有比传统电子显微镜更高的放大倍数和极高的分辨率,能对从原子到分子尺度的结构进行三维成像和测量,并且可以在生理条件下实时进行。因此,原子力显微镜越来越多地应用到微生物学的各个方面,并且取得了许多令人鼓舞的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号