首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sexually antagonistic selection generates intralocus sexual conflict, an evolutionary tug-of-war between males and females over optimal trait values [1-4]. Although the potential for this conflict is universal, the evolutionary importance of intralocus conflict is controversial because conflicts are typically thought to be resolvable through the evolution of sex-specific trait development [1-8]. However, whether sex-specific trait expression always resolves intralocus conflict has not been established. We assessed this with beetle populations subjected to bidirectional selection on an exaggerated sexually selected trait, the mandible. Mandibles are only ever developed in males for use in male-male combat, and larger mandibles increase male fitness (fighting [9, 10] and mating success, as we show here). We find that females from populations selected for larger male mandibles have lower fitness, whereas females in small-mandible populations have highest fitness, even though females never develop exaggerated mandibles. This is because mandible development changes genetically correlated characters, resulting in a negative intersexual fitness correlation across these populations, which is the unmistakable signature of intralocus sexual conflict [1]. Our results show that sex-limited trait development need not resolve intralocus sexual conflict, because traits are rarely, if ever, genetically independent of other characters [11]. Hence, intralocus conflict resolution is not as easy as currently thought.  相似文献   

2.
In accordance with the consensus that sexual selection is responsible for the rapid evolution of display traits on macroevolutionary scales, microevolutionary studies suggest sexual selection is a widespread and often strong form of directional selection in nature. However, empirical evidence for the contemporary evolution of sexually selected traits via sexual rather than natural selection remains weak. In this study, we used a novel application of quantitative genetic breeding designs to test for a genetic response to sexual selection on eight chemical display traits from a field population of the fly, Drosophila serrata. Using our quantitative genetic approach, we were able to detect a genetically based difference in means between groups of males descended from fathers who had either successfully sired offspring or were randomly collected from the same wild population for one of these display traits, the diene (Z,Z)‐5,9‐C27 : 2. Our experimental results, in combination with previous laboratory studies on this system, suggest that both natural and sexual selection may be influencing the evolutionary trajectories of these traits in nature, limiting the capacity for a contemporary evolutionary response.  相似文献   

3.
The relative strength of different types of directional selection has seldom been compared directly in natural populations. A recent meta-analysis of phenotypic selection studies in natural populations suggested that directional sexual selection may be stronger in magnitude than directional natural selection, although this pattern may have partly been confounded by the different time scales over which selection was estimated. Knowledge about the strength of different types of selection is of general interest for understanding how selective forces affect adaptive population divergence and how they may influence speciation. We studied divergent selection on morphology in parapatric, natural damselfly (Calopteryx splendens) populations. Sexual selection was stronger than natural selection measured on the same traits, irrespective of the time scale over which sexual selection was measured. Visualization of the fitness surfaces indicated that population divergence in overall morphology is more strongly influenced by divergent sexual selection rather than natural selection. Courtship success of experimental immigrant males was lower than that of resident males, indicating incipient sexual isolation between these populations. We conclude that current and strong sexual selection promotes adaptive population divergence in this species and that premating sexual isolation may have arisen as a correlated response to divergent sexual selection. Our results highlight the importance of sexual selection, rather than natural selection in the adaptive radiation of odonates, and supports previous suggestions that divergent sexual selection promotes speciation in this group.  相似文献   

4.
Extrapair paternity has been suggested to represent a potentially important source of sexual selection on male secondary sexual characters, particularly in birds with predominantly socially monogamous mating systems. However, relatively few studies have demonstrated sexual selection within single species by this mechanism, and there have been few attempts to assess the importance of extrapair paternity in relation to other mechanisms of sexual selection. We report estimates of sexual selection gradients on male secondary sexual plumage characters resulting from extrapair paternity in the collared flycatcher Ficedula albicollis, and compare the importance of this form of sexual selection with that resulting from variation in mate fecundity. Microsatellite genotyping revealed that 15% of nestlings, distributed nonrandomly among 33% of broods (N=79), were the result of extrapair copulations. Multivariate selection analyses revealed significant positive directional sexual selection on two uncorrelated secondary sexual characters in males (forehead and wing patch size) when fledgling number was used as the measure of fitness. When number of offspring recruiting to the breeding population was used as the measure of male fitness, selection on these traits appeared to be directional and stabilizing, respectively. Pairwise comparisons of cuckolded and cuckolding males revealed that males that sired young through extrapair copulations had wider forehead patches, and were paired to females that bred earlier, than the males that they cuckolded. Path analysis was used to partition selection on these traits into pathways via mate fecundity and sperm competition, and suggested that the sperm competition pathway accounted for between 64 and 90% of the total sexual selection via the two paths. The selection revealed in these analyses is relatively weak in comparison with many other measures of selection in natural populations. We offer some explanations for the relatively weak selection detected. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

5.
Seasonal change in the opportunity for sexual selection   总被引:1,自引:0,他引:1  
Environmental and population parameters that influence the strength of sexual selection may vary considerably over the course of the reproductive season. However, the potential for sexual selection frequently fails to translate into variation in reproductive success among individuals. We investigated seasonal changes in variation in reproductive success, measured as the opportunity for sexual selection, using parentage analysis in 20 experimental populations of the European bitterling (Rhodeus amarus, Cyprinidae), a small freshwater fish with a promiscuous, resource-based mating system. We showed that although the largest males sired most offspring over the entire reproductive season, variation in reproductive success and hence the opportunity for sexual selection was low at the start of the season but increased significantly at its end. This seasonal difference probably arose from the superior competitive endurance of large males and from a higher temporal clustering of reproductively active females at the start of the breeding season than later in the season. The spatial distribution of oviposition sites had a negligible effect on the variation in reproductive success. We discuss the potential implications of our results for the importance and strength of sexual selection in natural populations.  相似文献   

6.
Sexual antagonism, whereby mutations are favourable in one sex and disfavourable in the other, is common in natural populations, yet the root causes of sexual antagonism are rarely considered in evolutionary theories of adaptation. Here, we explore the evolutionary consequences of sex-differential selection and genotype-by-sex interactions for adaptation in species with separate sexes. We show that sexual antagonism emerges naturally from sex differences in the direction of selection on phenotypes expressed by both sexes or from sex-by-genotype interactions affecting the expression of such phenotypes. Moreover, modest sex differences in selection or genotype-by-sex effects profoundly influence the long-term evolutionary trajectories of populations with separate sexes, as these conditions trigger the evolution of strong sexual antagonism as a by-product of adaptively driven evolutionary change. The theory demonstrates that sexual antagonism is an inescapable by-product of adaptation in species with separate sexes, whether or not selection favours evolutionary divergence between males and females.  相似文献   

7.
Demonstrating relationships between sexual selection mechanisms and trait evolution is central to testing evolutionary theory. Using zebrafish, we found that wild‐type males possessed a significant advantage in mate competition over transgenic RFP Glofish® males. In mating trials, wild‐type males were aggressively superior to transgenic males in male–male chases and male–female chases; as a result, wild‐type males sired 2.5× as many young as did transgenic males. In contrast, an earlier study demonstrated that female zebrafish preferred transgenic males as mates when mate competition was excluded experimentally. We tested the evolutionary consequence of this conflict between sexual selection mechanisms in a long‐term study. The predicted loss of the transgenic phenotype was confirmed. More than 18,500 adults collected from 18 populations across 15 generations revealed that the frequency of the transgenic phenotype declined rapidly and was eliminated entirely in all but one population. Fitness component data for both sexes indicated that only male mating success differed between wild‐type and transgenic individuals. Our predictive demographic model based on fitness components closely matched the rate of transgenic phenotype loss observed in the long‐term study, thereby supporting its utility for studies assessing evolutionary outcomes of escaped or released genetically modified animals.  相似文献   

8.
A challenge in evolutionary biology is to understand the operation of sexual selection on males in polyandrous groups, where sexual selection occurs before and after mating. Here, we combine fine‐grained behavioral information (>41,000 interactions) with molecular parentage data to study sexual selection in replicated, age‐structured groups of polyandrous red junglefowl, Gallus gallus. Male reproductive success was determined by the number of females mated (precopulatory sexual selection) and his paternity share, which was driven by the polyandry of his female partners (postcopulatory sexual selection). Pre‐ and postcopulatory components of male reproductive success covaried positively; males with high mating success also had high paternity share. Two male phenotypes affected male pre‐ and postcopulatory performance: average aggressiveness toward rival males and age. Aggressive males mated with more females and more often with individual females, resulting in higher sexual exclusivity. Similarly, younger males mated with more females and more often with individual females, suffering less intense sperm competition than older males. Older males had a lower paternity share even allowing for their limited sexual exclusivity, indicating they may produce less competitive ejaculates. These results show that—in these populations—postcopulatory sexual selection reinforces precopulatory sexual selection, consistently promoting younger and more aggressive males.  相似文献   

9.
The relative contribution of sexual and natural selection to evolution of sexual ornaments has rarely been quantified under natural conditions. In this study we used a long-term dataset of house sparrows in which parents and offspring were matched genetically to estimate the within- and across-sex genetic basis for variation and covariation among morphological traits. By applying two-sex multivariate "animal models" to estimate genetic parameters, we estimated evolutionary changes in a male sexual ornament, badge size, from the contribution of direct and indirect selection on correlated traits within males and females, after accounting for overlapping generations and age-structure. Indirect natural selection on genetically correlated traits in males and females was the major force causing evolutionary change in the male ornament. Thus, natural selection on female morphology may cause indirect evolutionary changes in male ornaments. We observed however no directional phenotypic change in the ornament size of one-year-old males during the study period. On the other hand, changes were recorded in other morphological characters of both sexes. Our analyses of evolutionary dynamics in sexual characters require application of appropriate two-sex models to account for how selection on correlated traits in both sexes affects the evolutionary outcome of sexual selection.  相似文献   

10.
The interaction between natural and sexual selection is central to many theories of how mate choice and reproductive isolation evolve, but their joint effect on the evolution of mate recognition has not, to my knowledge, been investigated in an evolutionary experiment. Natural and sexual selection were manipulated in interspecific hybrid populations of Drosophila to determine their effects on the evolution of a mate recognition system comprised of cuticular hydrocarbons (CHCs). The effect of natural selection in isolation indicated that CHCs were costly for males and females to produce. The effect of sexual selection in isolation indicated that females preferred males with a particular CHC composition. However, the interaction between natural and sexual selection had a greater effect on the evolution of the mate recognition system than either process in isolation. When natural and sexual selection were permitted to operate in combination, male CHCs became exaggerated to a greater extent than in the presence of sexual selection alone, and female CHCs evolved against the direction of natural selection. This experiment demonstrated that the interaction between natural and sexual selection is critical in determining the direction and magnitude of the evolutionary response of the mate recognition system.  相似文献   

11.
Sex and clonality in the little fire ant   总被引:2,自引:0,他引:2  
Reproduction systems are controlling the creation of new genetic variants as well as how natural selection can operate on these variants. Therefore, they had historically been one of the main foci of evolutionary biology studies. The little fire ant, Wasmannia auropunctata, has been found to display an extraordinary reproduction system, in which both males and female queens are produced clonally. So far, native sexual populations of W. auropunctata have not been identified. Our goals were to identify such sexual populations and investigate the origins of female parthenogenesis and male clonality. Using mitochondrial DNA and microsatellite markers in 17 native populations, we found that traditional sexual populations occurred in W. auropunctata and are likely the recent source of neighboring clonal populations. Queen parthenogenesis has probably evolved several times through mutational events. Male clonality is tightly linked to queen parthenogenesis and thus appears to be female controlled. Its origin could be accounted for by 2 mutually exclusive hypotheses: either by the expected coevolution of the 2 sexes (i.e., a variant of the maternal genome elimination hypothesis) or by a shared mechanistic origin (i.e., by the production of anucleate ovules by parthenogenetic queens). Our results also show that W. auropunctata males and females do not form separate evolutionary units and are unlikely to be engaged in an all-out battle of sexes. This work opens up new perspectives for studies on the adaptive significance and evolutionary stability of mixed sexual and clonal reproduction systems in living organisms.  相似文献   

12.
Polyandry is a common phenomenon and challenges the traditional view of stronger sexual selection in males than in females. In simultaneous hermaphrodites, the physical proximity of both sex functions was long thought to preclude the operation of sexual selection. Laboratory studies suggest that multiple mating and polyandry in hermaphrodites may actually be common, but data from natural populations are sparse. We therefore estimated the rate of multiple paternity and its seasonal variability in the annual, sperm‐storing, simultaneously hermaphroditic freshwater snail Radix balthica for the entire duration of the reproductive lifespan. We also tested whether multiple paternity was associated with clutch size or embryonic development. To obtain these data, we measured and genotyped 60 field‐collected egg clutches using nine highly polymorphic microsatellite markers. Overall, 50% of the clutches had multiple fathers, and both the frequency (20–93% of clutches) and magnitude of multiple paternity (mean 1.3–3.8 fathers per clutch) substantially increased over time, probably because of extensive sperm storage. Most multiply sired clutches (83%) had a dominant father, but neither clutch size nor the proportion of developed embryos per clutch was associated with levels of multiple paternity. Both the evident promiscuity and the frequent skew of paternity shares suggest that sexual selection may be an important evolutionary force in the study population.  相似文献   

13.
Males and females can be under different evolutionary pressures if sexual and natural selection is differentially operating in each sex. As a result, many species have evolved sexual dichromatism, or differences in coloration between sexes. Although sexual dichromatism is often used as an index of the magnitude of sexual selection, sexual dichromatism is a composite trait. Here, we examine the evolution of sexual dichromatism in one of the largest and most ecologically diverse families of birds, the tanagers, using the avian visual perspective and a species‐level phylogeny. Our results demonstrate that the evolutionary decreases of sexual dichromatism are more often associated with larger and more frequent changes in male plumage coloration, and evolutionary increases are not more often associated with larger changes in either sex. Furthermore, we show that the crown and ventral plumage regions are correlated with sexual dichromatism in males, and that only male plumage complexity is positively correlated with sexual dichromatism. Finally, we demonstrate that light environment is important in shaping both plumage brilliance and complexity. By conducting a multilevel analysis of plumage evolution in males and females, we show that sexual dichromatism evolves via a mosaic of sexual and natural selection in both sexes.  相似文献   

14.
1. Sexual selection is a powerful evolutionary force that is hypothesised to play an important role in the evolution of lifespan. Here we test for the potential contribution of sexual selection to the rapid evolution of male lifespan in replicated laboratory populations of the seed beetle, Callosobruchus maculatus. 2. For 35 generations, newly hatched virgin male beetles from eight different populations were allowed to mate for 24 h and then discarded. Sexual selection was removed in half of these populations by enforcing random monogamy. 3. Classic theory predicts that because of sexual competition, males from sexually selected lines would have higher age‐specific mortality rates and shorter lifespan than males from monogamous lines. 4. Alternatively, condition‐dependent sexual selection may also favour genes that have positive pleiotropic effects on lifespan and ageing. 5. Males from all eight populations evolved shorter lifespans compared with the source population. However, there was no difference in lifespan between males from populations with or without sexual selection. Thus, sexual selection did not contribute to the evolution of male lifespan despite the fact that such evolution did occur in our study populations.  相似文献   

15.
Evolutionary biologists commonly seek explanations for how selection drives the emergence of novel traits. Although trait loss is also predicted to occur frequently, few contemporary examples exist. In Hawaii, the Pacific field cricket (Teleogryllus oceanicus) is undergoing adaptive sexual signal loss due to natural selection imposed by eavesdropping parasitoids. Mutant male crickets (“flatwings”) cannot sing. We measured the intensity of sexual selection on wing phenotype in a wild population. First, we surveyed the relative abundance of flatwings and “normal‐wings” (nonmutants) on Oahu. Then, we bred wild‐mated females’ offspring to determine both female genotype with respect to the flatwing mutation and the proportion of flatwing males that sired their offspring. We found evidence of strong sexual selection favoring the production of song: females were predominantly homozygous normal‐wing, their offspring were sired disproportionately by singing males, and at the population level, flatwing males became less common following a single sexual selection event. We report a selection coefficient describing the total (pre‐ and postcopulatory) sexual selection favoring normal‐wing males in nature. Given the maintenance of the flatwing phenotype in Hawaii in recent years, this substantial sexual selection additionally suggests an approximate strength of opposing natural selection that favors silent males.  相似文献   

16.
Guppies (Poecilia reticulata) are models for understanding the interplay between natural and sexual selection. In particular, predation has been implicated as a major force affecting female sexual preferences, male mating tactics and the level of sperm competition. When predation is high, females typically reduce their preferences for showy males and engage more in antipredator behaviours, whereas males exploit these changes by switching from sexual displays to forced matings. These patterns are thought to account for the relatively high levels of multiple paternity in high‐predation populations compared to low‐predation populations. Here, we assess the possible evolutionary consequences of these patterns by asking whether variation in sperm traits reflect differences in predation intensity among four pairs of Trinidadian populations: four that experience relatively low levels of predation from a gape‐limited predator and four that experience relatively high levels of predation from a variety of piscivores. We found that males in high‐predation populations had faster swimming sperm with longer midpieces compared to males in low‐predation populations. However, we found no differences among males in high‐ and low‐predation populations with respect to sperm number, sperm head length, flagellum length and total sperm length.  相似文献   

17.
Earth's biodiversity is undergoing mass extinction due to anthropogenic compounding of environmental, demographic and genetic stresses. These different stresses can trap populations within a reinforcing feedback loop known as the extinction vortex, in which synergistic pressures build upon one another through time, driving down population viability. Sexual selection, the widespread evolutionary force arising from competition, choice and reproductive variance within animal mating patterns could have vital consequences for population viability and the extinction vortex: (a) if sexual selection reinforces natural selection to fix ‘good genes’ and purge ‘bad genes’, then mating patterns encouraging competition and choice may help protect populations from extinction; (b) by contrast, if mating patterns create load through evolutionary or ecological conflict, then population viability could be further reduced by sexual selection. We test between these opposing theories using replicate populations of the model insect Tribolium castaneum exposed to over 10 years of experimental evolution under monogamous versus polyandrous mating patterns. After a 95‐generation history of divergence in sexual selection, we compared fitness and extinction of monogamous versus polyandrous populations through an experimental extinction vortex comprising 15 generations of cycling environmental and genetic stresses. Results showed that lineages from monogamous evolutionary backgrounds, with limited opportunities for sexual selection, showed rapid declines in fitness and complete extinction through the vortex. By contrast, fitness of populations from the history of polyandry, with stronger opportunities for sexual selection, declined slowly, with 60% of populations surviving by the study end. The three vortex stresses of (a) nutritional deprivation, (b) thermal stress and (c) genetic bottlenecking had similar impacts on fitness declines and extinction risk, with an overall sigmoid decline in survival through time. We therefore reveal sexual selection as an important force behind lineages facing extinction threats, identifying the relevance of natural mating patterns for conservation management.  相似文献   

18.
When females mate with multiple males, they set the stage for postcopulatory sexual selection via sperm competition and/or cryptic female choice. Surprisingly little is known about the rates of multiple mating by females in the wild, despite the importance of this information in understanding the potential for postcopulatory sexual selection to drive the evolution of reproductive behaviour, morphology and physiology. Dung beetles in the genus Onthophagus have become a laboratory model for studying pre‐ and postcopulatory sexual selection, yet we still lack information about the reproductive behaviour of female dung beetles in natural populations. Here, we develop microsatellite markers for Onthophagus taurus and use them to genotype the offspring of wild‐caught females and to estimate natural rates of multiple mating and patterns of sperm utilization. We found that O. taurus females are highly polyandrous: 88% of females produced clutches sired by at least two males, and 5% produced clutches with as many as five sires. Several females (23%) produced clutches with significant paternity skew, indicating the potential for strong postcopulatory sexual selection in natural populations. There were also strong positive correlations between the number of offspring produced and both number of fathers and paternity skew, which suggests that females benefit from mating polyandrously by inciting postcopulatory mechanisms that bias paternity towards males that can sire more viable offspring. This study evaluates the fitness consequences of polyandry for an insect in the wild and provides strong evidence that female dung beetles benefit from multiple mating under natural conditions.  相似文献   

19.
Previous researchers found positive scaling of body size and sexual size dimorphism (SSD) in primates, known as Rensch's rule. The pattern is present in Haplorhini, but absent in Strepsirhini. I found that positive evolutionary correlations between size and SSD drive positive scaling relationships within Haplorhini as a whole and Platyrrhini, Cercopithecinae, Colobinae, and Hominoidea individually at the generic level and higher, but that evolutionary correlations within genera in these clades are often nonsignificant or negative. I suggest that positive evolutionary correlations result from greater change in male than in female size, usually because of sexual selection acting on polygynous populations. I suggest that negative evolutionary correlations result from greater change in female size, owing to either natural selection or, in Callitrichidae, sexual selection acting on polyandrous populations. The high incidence of negative evolutionary correlations within Haplorhini suggests a relatively large influence of natural selection on SSD, at least with regard to differences in SSD between congeners. I propose two possible explanations for the difference in intrageneric and supergeneric evolutionary patterns: 1) natural selection is a relatively weak force for modifying SSD and has a noticeable effect only when one compares related species experiencing similar levels of sexual selection, and 2) natural selection is a relatively strong force for modifying SSD but is less likely than sexual selection to affect higher level taxonomic comparisons noticeably because of the cumulative effect over time of marginal differences in mortality rates of these two types of selection. I discuss types of data required to test these explanations and implications for reconstructing fossil behavior.  相似文献   

20.
The impact of climatic variation on the opportunity for sexual selection   总被引:1,自引:0,他引:1  
Many studies have demonstrated influences of climatic variation on a variety of ecological processes, however, its impact on the potent evolutionary force of sexual selection has largely been ignored. The intensity of sexual selection is a fundamental parameter in animal populations, which depends upon the degree of polygamy and will probably be influenced by the impact of local climatic variation upon 'environmental potential for polygamy'. Here, we provide evidence of a direct effect of local climatic variation on the intensity of sexual selection, by showing a clear correlation between local weather conditions and inter-annual changes in the degree of polygamy in a long-term study of colonially breeding grey seals (Halichoerus grypus). Our results show that changes in local weather conditions alter the annual proportion of males contributing to the effective population size (Ne) by up to 61%. Consequently, over the 'lifetime' of a cohort, a broader range of individuals will contribute genetically to the next generation if local weather conditions are variable. In the context of predicted future changes in climatic variation, these findings have broad implications for population genetics of socially structured animal systems through the major influence that the degree of polygamy has upon Ne.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号