首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
目的:观察三氧化二砷(As2O3)对血管内皮细胞增殖、凋亡及VCAM-1/ICAM-1表达的影响,探讨As2O3对血管内皮细胞增殖生长以及炎症反应的影响。方法:人脐静脉内皮细胞(HUVEC)体外培养,以不同As2O3浓度及时间对其进行干预。采用CCK-8测定细胞增殖活性,流式细胞仪AnnexinⅤ/PI双染法检测细胞的凋亡率,实时荧光定量PCR检测VCAM-1mRNA表达,酶联免疫吸附试验(ELISA)检测细胞间黏附分子(VCAM-1)及血管细胞黏附分子(ICAM-1)的表达情况。结果:当As2O3浓度在3μmol.L-1时HUVEC培养24 h的的凋亡率为(0.134±0.03)%,48 h为(3.305±0.53)%,72 h为(3.748±0.84)%(P<0.05),凋亡率均在一较低水平。当As2O3浓度>3μmol.L-1时HUVEC凋亡率明显增加(P<0.01)。不同浓度As2O3作用HUVEC48 h后检测上清液中ICAM-1与VCAM-1浓度时发现1μmol.L-1时VCAM-1表达即开始增加(123.32±3.78 mmol.L-1,P<0.01),而HUVEC表达ICAM-1含量与对照组相比差异并不明显(38.94±2.59 mmol.L-1,P>0.05),随着As2O3浓度的增加,HUVEC表达ICAM-1/VCAM-1的量均增加但敏感性不同。对照组及(1.0、2.0、3.0、4.0、5.0)μmol.L-1As2O3作用于HUVEC 48 h实时荧光定量PCR法检测VCAM-1mRNA表达量明显增加,与对照组相比实验组的表达量分别为(1.657±0.287,1.858±0.241,2.321±0.280,3.012±0.235,3.508±0.342)(P<0.01)。结论:As2O3可直接降低细胞活性,诱导细胞凋亡,并且呈一定的时间-浓度依赖性。在较低浓度时VCAM-1/ICAM-1的表达在一个相对较低的水平,随着As2O3浓度的逐渐升高,内皮细胞凋亡率增高,VCAM-1/ICAM-1表达增加,并且VCAM-1/ICAM-1对As2O3的敏感性呈现一定的差异性。  相似文献   

3.
Summary Bovine inner cell masses (ICM) cultured on fibronectin give rise to extensive cellular outgrowths containing endoderm. Peptides with the Glu-Ile-Leu-Asp-Val (EILDV) and Arg-Gly-Asp (RGD) sequences inhibit cell migration on fibronectin by binding to the fibronectin-recognition site in several integrins. To identify integrins involved in endodermal cell outgrowth on fibronectin and vitronectin, the effects of the EILDV and RGD peptides were evaluated in vitro. In experiment 1, ICM were cultured on fibronectin in medium containing 0.5 or 1.0 mg/ml EILDV or RGD (or both). Compared with 0 mg/ml, 0.5 mg/ml EILDV suppressed (P<0.10) outgrowth area overall, and 1.0 mg/ml EILDV reduced (P<0.05) outgrowth area after 72 h of culture. Compared with 0 mg/ml, 0.5 and 1.0 mg/ml RGD reduced (P<0.05) outgrowth area after 72 h of culture. Plasminogen activator activity in conditioned medium increased (P<0.05) in 0.5 mg/ml RGD but decreased (P<0.10) in 1.0 mg/ml RGD compared with 0 mg/ml RGD. In experiment 2, bovine ICM were cultured on vitronectin in medium containing 0.5 or 1.0 mg/ml RGD. Neither concentration of RGD (P>0.10) affected the extent of cellular outgrowth on vitronectin. Bovine endodermal cell migration on fibronectin can be modulated by the RGD and EILDV peptides. Despite inhibition, neither peptide completely prevented outgrowth on fibronectin. In contrast, cellular outgrowth on vitronectin was unaffected by RGD. The persistence of cellular outgrowth on fibronectin and the absence of inhibition by RGD for ICM cultured on vitronectin suggests that bovine endodermal cells can use alternative cellular adhesion systems, such as nonintegrin receptors, during outgrowth.  相似文献   

4.
Adhesion and transendothelial migration of leukocytes into the vascular wall is a crucial step in atherogenesis. Expression of cell adhesion molecules by endothelial cells plays a leading role in this process. We investigated the effect of simvastatin, an inhibitor of HMG-CoA reductase administered to reduce plasma levels of LDL-cholesterol, on the expression of vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) by human umbilical vein endothelial cells (HUVEC) stimulated with tumor necrosis factor alpha (TNFalpha). We found the expression to be significantly inhibited by the drug in a time and concentration-dependent manner and to a greater extent in the case of VCAM-1 as compared with ICAM-1. In TNFalpha-stimulated HUVEC, simvastatin decreased VCAM-1 and ICAM-1 mRNA levels, inhibited TNFalpha-induced activation of nuclear factor kappaB (NF-kappaB) and enhanced expression of peroxisome proliferator-activated receptor alpha (PPARalpha). These effects were associated with reduction of adherence of monocytes and lymphocytes to HUVEC. The present findings suggest that the benefits of statins in vascular disease may include the inhibition of expression of VCAM-1 and ICAM-1 through effects on NF-kappaB.  相似文献   

5.
TNF-alpha alters leukocyte adhesion molecule expression of cultured endothelial cells like human umbilical vein endothelial cells (HUVEC). This study was designed to investigate the changes in vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and platelet endothelial cell adhesion molecule-1 (PECAM-1) expression with TNF-alpha stimulation in cultured human neonatal dermal lymphatic endothelial cells (HNDLEC). The real-time quantitative PCR analysis on HNDLEC showed that TNF-alpha treatment leads to increases of VCAM-1 and ICAM-1 mRNAs to the 10.8- and 48.2-fold levels of untreated cells and leads to a reduction of PECAM-1 mRNA to the 0.42-fold level of untreated cells. Western blot and immunohistochemical analysis showed that TNF-alpha leads to VCAM-1 and ICAM-1 expressions that were inhibited by antiserum to human TNF receptor or by AP-1 inhibitor nobiletin. In flow cytometry analysis, the number of VCAM-1- and ICAM-1-positive cells increased, and PECAM-1-positive cells decreased with TNF-alpha treatment. Regarding protein amounts produced in cells and amounts expressed on the cell surface, VCAM-1 and ICAM-1 increased in HNDLEC and HUVEC, and PECAM-1 decreased in HNDLEC in a TNF-alpha concentration-dependent manner. VCAM-1, ICAM-1, and PECAM-1 protein amounts in TNF-alpha-stimulated cells were lower in HNDLEC than in HUVEC. This suggests that the lymphatic endothelium has the TNF-alpha-induced signaling pathway, resulting in increased VCAM-1 and ICAM-1 expression to a weaker extent than blood endothelium and PECAM-1 reduction to a stronger extent than blood endothelium.  相似文献   

6.
Vascular endothelial cell adhesion molecule 1 (VCAM-1) is an adherence molecule that is induced on endothelial cells by cytokine stimulation and can mediate binding of lymphocytes or tumor cells to endothelium. Because these interactions often occur at the level of the microvasculature, we have examined the regulation of expression of VCAM-1 in human dermal microvascular endothelial cells (HDMEC) and compared it to the regulation of VCAM-1 in large vessel human umbilical vein endothelial cells (HUVEC). Both cell populations were judged pure as assessed by expression of von Willebrand factor and uptake of acetylated low density lipoprotein. Expression of VCAM-1 was not detectable on either unstimulated HDMEC or HUVEC when assessed by ELISA or flow cytometry. Stimulation of either HDMEC or HUVEC with TNF-alpha resulted in a time- and dose-dependent induction of VCAM-1. However, although TNF-alpha-induced cell surface and mRNA expression of VCAM-1 in HDMEC was transient, peaking after 16 h of stimulation, TNF stimulation led to persistently elevated cell surface expression of VCAM-1 on HUVEC. IL-1 alpha also induced cell surface expression of VCAM-1 on HUVEC in a time- and dose-dependent manner, but stimulation of HDMEC with IL-1 alpha at doses up to 1000 U/ml failed to induce significant cell surface expression. However, IL-1 alpha induced time- and dose-dependent increases in ICAM-1 on HDMEC. Similarly, IL-4 induced VCAM-1 expression and augmented TNF-alpha-induced expression on HUVEC but did not affect VCAM-1 expression on HDMEC. Binding of Ramos cells to cytokine-stimulated endothelial cell monolayers correlated with VCAM-1 induction. Increased binding was seen after stimulation of HDMEC with TNF-alpha, which was blocked by anti-VCAM-1 mAb, but no increases in binding were noted after stimulation of HDMEC monolayers with IL-1 alpha. These data provide additional evidence for the existence of endothelial cell heterogeneity and differences in cell adhesion molecule regulation on endothelial cells derived from different vascular beds.  相似文献   

7.
Using immunofluorescence and flow cytometry, we studied the surface expression of cell adhesion molecules, E-selectin, VCAM-1 and ICAM-1, in human umbilical vein endothelial cells (HUVEC) co-cultured with human aortic intimal smooth muscle cells (SMC). It was found that inactivated HUVEC constitutively expressed only ICAM-1. After 3-4 h of co-culturing with SMC in the Transwell system we observed the appearance of E-selectin and VCAM-1, and the increase of ICAM-1 content on the cell surface. In all the cases, the maximum expression of these molecules (85-100% of positively stained cells) was detected within 18-24 h after co-culturing. Similar effect was exerted by SMC-conditioned culture medium, whose action well compared with that of a direct addition of interleukin-1 to EC at a concentration of 5-10 u/ml. The obtained data suggest that the cytokines secreted by SMC may participate in the regulation of endothelial cell adhesion molecule expression, and influence cell accumulation in sites of inflammation, immune disorders, etc.  相似文献   

8.
Leukocyte-specific protein 1 (LSP1) is an intracellular filamentous-actin binding protein which modulates cell motility. The cellular process in which LSP1 functions to regulate motility is not yet identified. In this study, we show that LSP1 negatively regulates fMLP-induced polarization and chemotaxis of neutrophils through its function on adhesion via specific integrins. Using LSP1-deficient (Lsp1(-/-)) mice, we show increased neutrophil migration into mouse knee joints during zymosan-induced acute inflammation, an inflammatory model in which the number of resident synoviocytes are not affected by LSP1-deficiency. In vitro chemotaxis experiments performed by time-lapse videomicroscopy showed that purified Lsp1(-/-) bone-marrow neutrophils exhibit an increased migration rate toward a gradient of fMLP as compared with wild-type neutrophils. This difference was observed when cells migrated on fibrinogen, but not fibronectin, suggesting a role for LSP1 in modulating neutrophil adhesion by specific integrins. LSP1 is also a negative regulator of fMLP-induced adhesion to fibrinogen or ICAM-1, but not to ICAM-2, VCAM-1, or fibronectin. These results suggest that LSP1 regulates the function of Mac-1 (CD11b/CD18), which binds only to fibrinogen and ICAM-1 among the substrates we tested. fMLP-induced filamentous actin polarization is also increased in the absence of LSP1 when cells were layered on fibrinogen, but not on fibronectin. Our findings suggest that the increased neutrophil recruitment in Lsp1(-/-) mice during acute inflammation derives from the negative regulatory role of LSP1 on neutrophil adhesion, polarization, and migration via specific integrins, such as Mac-1, which mediate neutrophil responses to chemotactic stimuli.  相似文献   

9.
Effects of extracellular matrix proteins and tissue inhibitor of matrix metalloproteinases-2 (TIMP-2) on bovine inner cell mass (ICM) outgrowth and proteinase production in vitro were determined. Inner cell masses were isolated immunosurgically from day 7 embryos (day 0 = onset of estrus) and cultured for 96 h. In experiment 1, cellular outgrowth and gelatinase production were evaluated for ICM cultured on collagen IV, fibronectin, or laminin. More (P < 0.05) ICM generated cellular outgrowth on fibronectin (71%). compared with collagen IV (0%) or laminin (15%). Inner cell mass and outgrowth areas were greatest (P < 0.05) on fibronectin after 96 h of culture, compared with laminin. Although the incidence of cellular outgrowth on laminin was limited, numbers of cells in outgrowths supported by laminin were similar (P > 0.10) to fibronectin except at 72 h of culture, where more (P < 0.05) cells were in laminin than in fibronectin outgrowths. Gelatinase activity was not detected in conditioned medium. In experiment 2, cellular outgrowth and plasminogen activator production by ICM cultured on fibronectin in medium containing 0 or 10 microg/ml TIMP-2 were evaluated. Inner cell mass and outgrowth areas, and numbers of cells in outgrowths were greater (P < 0.05) in 10 compared with 0 microg/ml TIMP-2 at 96 h of culture. Mean plasminogen activator activity in conditioned medium from ICM cultured in 10 microg/ml TIMP-2 was greater (P < 0.05) compared with 0 microg/ml TIMP-2 (16.2 +/- 4.8 versus 6.7 +/- 1.4 x 10(-3) IU/ml, respectively). These results demonstrate that cellular outgrowth from bovine ICM is supported by fibronectin and is stimulated by TIMP-2.  相似文献   

10.
Adherence to endothelium and then to the extracellular matrix is a prerequisite for extravasation of monocytes into injured tissues. There, monocytes differentiate into macrophages and express heparin binding epidermal growth factor-like growth factor (HB-EGF), a key growth factor involved in normal wound healing. We investigated whether the interaction of human monocytic THP-1 cells with the endothelial cell adhesion molecules (vascular CAM-1, VCAM-1; intercellular adhesion molecule-1 ICAM-1 and endothelial-selectin, E-selectin), or the extracellular matrix (ECM) proteins (fibronectin, FN; laminin, LN and fibrinogen, FG) regulate HB-EGF expression. We have shown that adherence of THP-1 cells via VCAM-1, E-selectin or FN, which are all overexpressed at sites of inflammation, potentiates HB-EGF mRNA expression. In contrast, adhesion of THP-1 cells via ICAM-1 or FG, has no significant effect. Since THP-1 cells interact with ICAM-1 and FG through beta2 integrins, and with VCAM-1 and FN via beta1 integrins, regulation of HB-EGF expression appears to be specific to beta1 integrin ligation. In addition, we demonstrate that THP-1 binding to LN, through the beta1 integrin VLA-6, down regulates HB-EGF expression. Thus physiologically, transient destruction of LN and expression of VCAM-1, E-selectin and fibronectin at sites of inflammation, may locally induce HB-EGF overexpression.  相似文献   

11.
Adhesion and migration of leukocytes into the surrounding tissues is a crucial step in inflammation, immunity, and atherogenesis. Expression of cell adhesion molecules by endothelial cells plays a leading role in this process. Butyrate, a natural short-chain fatty acid produced by bacterial fermentation of dietary fiber, has been attributed with anti-inflammatory activity in inflammatory bowel disease. Butyrate in vitro is active in colonocytes and several other cell types. We have studied the effect of butyrate on expression of endothelial leukocyte adhesion molecules by cytokine-stimulated human umbilical vein endothelial cells (HUVEC). Pretreatment of HUVEC with butyrate-inhibited tumor necrosis factor-alpha (TNFalpha)-induced expression of vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) in a time and concentration-dependent manner. Butyrate at 10 mM/L inhibited interleukin-1 (IL-1)-stimulated VCAM-1 and ICAM-1 expression. The effect of butyrate on cytokine-stimulated VCAM-1 expression was more pronounced than in the case of ICAM-1. Butyrate decreased TNFalpha-induced expression of mRNA for VCAM-1 and ICAM-1. Suppressed expression of VCAM-1 and ICAM-1 was associated with reduced adherence of monocytes and lymphocytes to cytokine-stimulated HUVEC. Butyrate inhibited TNFalpha-induced activation of nuclear factor-kappaB (NF-kappaB) in HUVEC. Finally, butyrate enhanced peroxisome proliferator-activated receptor-alpha (PPARalpha) expression in HUVEC. These results demonstrate that butyrate may have anti-inflammatory properties not only in colonocytes but also in endothelial cells. The anti-inflammatory and (perhaps) antiatherogenic properties of butyrate may partly be attributed to an effect on activation of NF-kappaB and PPARalpha and to the associated expression of VCAM-1 and ICAM-1. The present findings support further investigations on the therapeutic benefits of butyrate in several pathological events involving leukocyte recruitment.  相似文献   

12.
To investigate the possible role of mast cells (MC) in regulating leukocyte adhesion to vascular endothelial cells (EC), microvascular and macrovascular EC were exposed to activated MC or MC conditioned medium (MCCM). Expression of intercellular and vascular adhesion molecules (ICAM-1 and VCAM-1) on EC was monitored. Incubation of human dermal microvascular endothelial cells (HDMEC) and human umbilical vein endothelial cells (HUVEC) with activated MC or MCCM markedly increased ICAM-1 and VCAM-1 surface expression, noted as éarly as 4 hr. Maximal levels were observed at 16 hr followed by a general decline over 48 hr. A dose-dependent response was noted using incremental dilutions of MCCM or by varying the number of MC in coculture with EC. At a ratio as low as 1:1,000 of MC:EC, increased ICAM-1 was observed. The ICAM-1 upregulation by MCCM was >90% neutralized by antibody to tumor necrosis factor alpha (TNF-α), suggesting that MC release of this cytokine contributes significantly to inducing EC adhesiveness. VCAM-1 expression enhanced by MCCM was partly neutralized (70%) by antibody to TNF-α; thus other substances released by MC may contribute to VCAM-1 expression. Northern blot analysis demonstrated MCCM upregulated ICAM-1 and VCAM-1 mRNA in both HDMEC and HUVEC. To evaluate the function of MCCM-enhanced EC adhesion molecules, T cells isolated from normal human donors were used in a cell adhesion assay. T-cell binding to EC was increased significantly after exposure of EC to MCCM, and inhibited by antibodies to ICAM-1 or VCAM-1. Intradermal injection of allergen in human atopic volunteers known to develop late-phase allergic reactions led to marked expression of both ICAM-1 and VCAM-1 at 6 hr, as demonstrated by immunohistochemistry. These studies indicate that MC play a critical role in regulating the expression of EC adhesion molecules, ICAM-1 and VCAM-1, and thus augment inflammatory responses by upregulating leukocyte binding. © 1995 Wiley-Liss Inc.  相似文献   

13.
14.
The tumor necrosis factor-alpha (TNF-alpha) inhibitor thalidomide is known to be a potent modulator of host immunity, a potential treatment for autoimmune disorders such as rheumatoid arthritis (RA) and a treatment for complications of HIV-1 infection. RA is an autoimmune disease of the joints that has been associated with hyperactivity of lymphocytes and other leukocytes, over-expression of pro-inflammatory cytokines (TNF-alpha and IL-1) and chronic debilitating inflammation. Thalidomide may play a role in RA treatment by altering leukocyte function through down-modulation of cell adhesion molecules necessary for leukocyte migration to inflammatory sites. The present study investigates down-regulation of cell adhesion molecules (ICAM-1 and LFA-1) and decreases in cell-cell contacts between human T leukemic (CEM) cells and human umbilical vein endothelial cells (HUVEC) after thalidomide exposure. CEM cells were cultured in RPMI 1640 medium with 0, 10 or 50 microg/ml thalidomide, stained with fluorescent monoclonal antibodies specific to ICAM-1 and LFA-1 and expression was measured with flow cytometry. For cell-cell adhesion measurements, monolayers of HUVEC cultured in Kaign's F-12 medium were incubated with thalidomide treated CEM cells stained with calcein AM. Specific cell adhesion between the two cell types was visualized with fluorescence microscopy. Thalidomide treatment significantly reduced cell adhesion molecule expression in a dose-dependent fashion and inhibited HUVEC/CEM cell adhesion. These data support the hypothesis that thalidomide has modulatory actions on leukocyte functions through expression of cell adhesion molecules.  相似文献   

15.
Granulocyte colony-stimulating factor (G-CSF) is a lineage-restricted hematopoietic growth factor that stimulates proliferation and maturation of hematopoietic progenitors and is a known powerful mobilizer of bone marrow-derived stem cells. Very little has been reported on G-CSF expression and modulation of vascular smooth muscle cell (VSMC) activation. The purpose of this study was to characterize the expression and effects of G-CSF on primary human VSMC and balloon angioplasty-injured rat carotid arteries. In cultured human VSMC, G-CSF mRNA and protein expression are induced by several cytokines, with the most potent being fetal calf serum and T-lymphocyte-conditioned media. G-CSF is not expressed in naive rat carotid arteries but is induced in neointimal SMC in carotid arteries subject to balloon angioplasty. G-CSF is chemotactic for human VSMC. There is a significant difference between unstimulated cells and those treated with G-CSF at 100 and 1,000 pg/ml (P < 0.01 and 0.05 for 3 experiments). G-CSF also activates the GTPase Rac1, a regulator of cellular migration in VSMC. Inhibition of Rac1 inhibits G-CSF-driven VSMC migration. Important signal transduction protein kinases, including p44/42 MAPK, Akt, and S6 kinase, are also activated in response to G-CSF. This is the first report describing the expression of G-CSF in injured arteries and the multiple effects of G-CSF on VSMC activation. Together, our data suggest that G-CSF is an important mediator of inflammatory cell-VSMC communication and VSMC autocrine activation and may be an important mediator of the VSMC response to injury.  相似文献   

16.
We examined the role of prostaglandin D(2) (PGD(2)) in the expression of vascular cell adhesion molecule-1 (VCAM)-1 following interleukin-1beta (IL-1) stimulation in human umbilical vein endothelial cells (HUVEC) transfected with lipocaline-type PGD(2) synthase (L-PGDS) genes. HUVEC were isolated from human umbilical vein and incubated with 20 U/ml IL-1 and various concentrations of authentic PGD(2). The isolated HUVEC were also transfected with L-PGDS genes by electroporation. The L-PGDS-transfected HUVEC were used to investigate the role of endogenous PGD(2) in IL-1-stimulated VCAM-1 biosynthesis. We also used an anti-PGD(2) antibody to examine whether an intracrine mechanism was involved in VCAM-1 production. PGD(2) and VCAM-1 levels were determined by radio- and cell surface enzyme-immunoassay, respectively. VCAM-1 mRNA was assessed by RT-PCR. IL-1-stimulated VCAM-1 expression by HUVEC was dose-dependently inhibited by authentic PGD(2). L-PGDS gene-transfected HUVEC produced more PGD(2) than HUVEC transfected with the reporter gene alone. IL-1 induced increases in VCAM-1 expression in HUVEC transfected with reporter genes alone. However, this effect was significantly attenuated in the case of IL-1 stimulation of HUVEC transfected with L-PGDS genes, and accompanied by an apparent suppression of VCAM-1 mRNA expression. Neutralization of extracellular PGD(2) by anti-PGD(2)-specific antibody influenced neither VCAM-1 mRNA expression nor VCAM-1 biosynthesis. In conclusion, HUVEC transfected with L-PGDS genes showed increased PGD(2) synthesis. This increase was associated with attenuation of both VCAM-1 expression and VCAM-1 mRNA expression. The results suggest that endogenous PGD(2) decreases VCAM-1 expression and VCAM-1 mRNA expression, probably through an intracrine mechanism.  相似文献   

17.
Vessel wall remodeling is a complex phenomenon in which the loss of differentiation of vascular smooth muscle cells (VSMCs) occurs. We investigated the role of rat macrophage chemoattractant protein (MCP)-1 on rat VSMC proliferation and migration to identify the mechanism(s) involved in this kind of activity. Exposure to very low concentrations (1-100 pg/ml) of rat MCP-1 induced a significant proliferation of cultured rat VSMCs assessed as cell duplication by the counting of total cells after exposure to test substances. MCP-1 stimulated VSMC proliferation and migration in a two-dimensional lateral sheet migration of adherent cells in culture. Endogenous vascular endothelial growth factor-A (VEGF-A) was responsible for the mitogenic activity of MCP-1, because neutralizing anti-VEGF-A antibody inhibited cell proliferation in response to MCP-1. On the contrary, neutralizing anti-fibroblast growth factor-2 and anti-platelet-derived growth factor-bb antibodies did not affect VSMC proliferation induced by MCP-1. RT-PCR and Western blot analyses showed an increased expression of either mRNA or VEGF-A protein after MCP-1 activation (10-100 pg/ml), whereas no fms-like tyrosine kinase (Flt)-1 receptor upregulation was observed. Because we have previously demonstrated that hypoxia (3% O2) can enhance VSMC proliferation induced by VEGF-A through Flt-1 receptor upregulation, the effects of hypoxia on the response of VSMCs to MCP-1 were investigated. Severe hypoxia (3% O2) potentiated the growth-promoting effect of MCP-1, which was able to significantly induce cell proliferation even at a concentration as low as 0.1 pg/ml. These findings demonstrate that low concentrations of rat MCP-1 can directly promote rat VSMC proliferation and migration through the autocrine production of VEGF-A.  相似文献   

18.
Inflammation plays an important role in both the initiation of atherosclerosis and development of atherothrombotic events. The adherence of leukocytes/monocytes to the endothelium is an early event in atherogenesis. Phytotherapeutica as garlic and garlic extracts were shown to have beneficial modulating effects in patients with atherosclerotic disease. The aim of this study was to evaluate in vitro the influence of water-soluble garlic (Allium sativum) extract on the cytokine-induced expression of endothelial leukocyte adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1, CD54) and vascular cell adhesion molecule-1 (VCAM-1, CD106). Cytokine-induced expression of cellular adhesion molecules was measured on primary human coronary artery endothelial cell (HCAEC) cultures. HCAEC were cultured in microvascular endothelial cell growth medium and preincubated with garlic extract at various concentrations (0.25-4.0 mg/ml), after which human interleukin-1alpha (IL-1alpha, 10 ng/ml) was added for 1 day. Fluorescein isothiocyanate (FITC)-labeled anti-ICAM-1 and FITC-labeled anti-VCAM-1 were used to analyze the IL-1alpha-induced expression of ICAM-1 and VCAM-1 by flow cytometry. Incubation of HCAEC with garlic extract significantly decreased ICAM-1 and VCAM-1 expression induced by IL-1alpha. In addition, we examined the effects of garlic extract on the adhesion of monocytes to endothelial cells, using the monocytic U937 cell line. The presence of garlic extract significantly inhibited the adhesion of monocytes to IL-1alpha-stimulated endothelial cells. These results indicate that garlic extract modulates the expression of ICAM-1 and VCAM-1, thus potentially contributing to the beneficial effects traditionally attributed to garlic.  相似文献   

19.
Altered expression of cell adhesion molecule expression has been implicated in a variety of chronic inflammatory conditions. Regulation of adhesion molecule expression by specific redox sensitive mechanisms has been reported. Grape seed proanthocyanidins have been reported to have potent antioxidant properties. We evaluated the effects of grape seed proanthocyanidin extract (GSPE) on the expression of TNF-induced ICAM-1 and VCAM-1 expression in primary human umbilical vein endothelial cells (HUVEC). GSPE at low concentrations (1-5 g/ml), down-regulated TNF-induced VCAM-1 expression but not ICAM-1 expression in HUVEC. Such regulation of inducible VCAM-1 by GSPE was also observed at the mRNA expression level. A cell-cell co-culture assay was performed to verify whether the inhibitory effect of GSPE on the expression of VCAM-1 was also effective in down-regulating actual endothelial cell/leukocyte interaction. GSPE treatment significantly decreased TNF-induced adherence of T-cells to HUVEC. Although several studies have postulated NF-B as the molecular site where redox active substances act to regulate agonist-induced ICAM-1 and VCAM-1 gene expression, inhibition of inducible VCAM-1 gene expression by GSPE was not through a NF-B-dependent pathway as detected by a NF-B reporter assay. The potent inhibitory effect of low concentrations of GSPE on agonist-induced VCAM-1 expression suggests therapeutic potential of this extract in inflammatory conditions and other pathologies involving altered expression of VCAM-1.  相似文献   

20.
We have studied culture conditions which facilitate the growth of stable, non-proliferating, human umbilical vein endothelial cell (HUVEC) monolayers. Gelatin and fibronectin coatings, with or without glutaraldehyde cross-linking, on both plastic and glass were investigated for initial attachment of HUVEC and growth characteristics. The presence during culture of intercellular (IC) junctions demonstrated by silver staining, expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) and maintenance of a cobblestone appearance of HUVEC monolayers were assessed over time.

Glutaraldehyde cross-linked fibronectin and gelatin coatings on glass and glutaraldehyde cross-linked gelatin or untreated fibronectin coatings on plastic served as good substrates for short term culture. Long term (20 days) cultures of HUVEC which maintained silver and PECAM-1 staining of IC junctions and a cobblestone appearance could be achieved if glutaraldehyde cross-linked gelatin coatings on glass were used as substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号