首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to identify new protein markers modified in placental diseases, high-throughput analysis of proteins in the plasma of pregnant women was carried out for normal and pathological pregnancies (Preeclampsia and/or Intra-Uterine Growth Restriction) using iTRAQ technology. We could identify 166 proteins that were modified (p < 0.05) and the technique used allowed the detection of previously undetected factors, such as various members of the SERPINA clade. The modifications of two proteins (C reactive protein and antichymotrypsin, SERPINA3) were validated on individual samples. Complement and coagulation cascades proteins were significantly enriched among modified protein clusters in the case of intra-uterine growth restriction (p < 2.6 · 10? 11). Several proteins were specifically enriched in isolated preeclampsia and depleted when preeclampsia was complicated by intra-uterine growth restriction. These findings suggest that the growth restricted foeto-placental unit is able to moderate some changes in maternal plasma composition. Overall, the use of iTRAQ technology, for the first time on this subject, enabled us to provide a new list of proteins modified in placental diseases, among which proteins expressed at a low level that were not accessible by other methods.  相似文献   

2.
Various supplements (abscisic acid (ABA) or sucrose) were added to the initial embryo culture medium (M3) with the aim of improving the vigour of vitroplants deriving from date palm somatic embryogenesis. ABA (20 and 40 μM) and sucrose (90 g/l) applied for 4 and 2 weeks respectively increased embryo thickness, with no apparent difference in length. ABA (5–40 μM) increased embryo proliferation rate. Somatic embryos maintained in modified M3 (M3 supplemented with ABA and an increased sucrose concentration) contained a higher amount of protein than those maintained in initial M3 (no ABA, 30 g/l of sucrose), with a 1.5–1.7-fold increase depending on the compound and concentration assayed. The 1-D and 2-DE protein profiles showed qualitative and quantitative differences between the somatic embryos cultured in initial M3 (control) and in modified M3. Statistical analysis of spot intensity was performed by principal component analysis, yielding two accurate groups of samples and determining the most discriminating spots. Samples were also clustered using Euclidean distance with an average linkage algorithm. Thirty-four variable spots were identified using mass spectrometry analysis. Identified proteins were classified into the following functional categories: energy metabolism (five proteins); protein translation, folding and degradation (9); redox maintenance (5); cytoskeleton (3); storage protein (2); and with no assigned function as (10). While “up-regulation” of stress-related proteins and “down-regulation” of energy metabolism proteins were observed in somatic embryos matured in M3 supplemented with ABA, storage proteins (legumin) were “up-regulated” in somatic embryos matured in M3 supplemented with increased sucrose.  相似文献   

3.
This study is aimed at identifying the proteins that are up-regulated during astaxanthin accumulation in Haematococcus lacustris. For this H. lacustris cells were cultivated in photobioreactors under normal light irradiance of 40 μE m?2 s?1 for 6 days and then induced to accumulate astaxanthin for 3 days further by exposure to continuous high irradiance of 200 μE m?2 s?1 with fluorescent lamps as light source after the cells reached the stationary phase in a nitrogen-depleted condition. Under this condition, the average astaxanthin content per cell increased from 91 mg/l up to 406 mg/l after 3 days of induction. The proteomics data from a two-dimensional electrophoretic comparison demonstrated that a combination of nitrogen source depletion and 1 h high light have significantly changed the pattern of protein expression in H. lacustris. A total of 49 protein spots were picked after 1 h of stress induction. They consisted of 13 down-regulated proteins and 36 up-regulated proteins. Fifteen proteins which had highly up-regulated expression were further analyzed by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The results will point toward interesting proteins that can be pursued for further analysis of astaxanthin biosynthesis pathway.  相似文献   

4.
《Journal of Proteomics》2010,73(1):161-177
Two-dimensional gel electrophoresis coupled to mass spectrometry has been used to compare the proteome of date palm (Phoenix dactylifera L. cv. Deglet Nour) zygotic and somatic embryos. Proteins were trichloroacetic acid–acetone–phenol extracted, quantified, and resolved by 2-DE in the 5 to 8 pH range. Total protein content and number of resolved spots were higher in zygotic (110 ± 14.5 mg/g DW; 349 spots) than in somatic (70.96 ± 4.8 mg/g DW; 210 spots) embryos. The 2-DE map of both systems showed qualitative (263) and quantitative (72) differences. Statistical analysis of spot intensity was performed by PCA, obtaining two accurate groupings of the samples and determining the most discriminating spots. Samples were also clustered using Euclidean distance with average linkage algorithm of the Genesis software package. Sixty-three variable spots were subjected to mass spectrometry analysis, resulting in 23 identifications. Identified proteins were classified in the following functional categories; glycolysis (8 proteins), citrate cycle (1), ATP synthesis (1), carbohydrate biosynthesis (2), amino acids metabolism (1), stress related (4), storage (3), and with no function assigned for three of them. Most of the somatic embryo specific proteins identified belonged to glycolysis pathways, whereas those of the zygotic embryo to storage and stress-related proteins. Differences are discussed in terms of metabolism and biology of both types of embryos.  相似文献   

5.
《Journal of plant physiology》2014,171(3-4):235-242
Boron (B) stress (deficiency and toxicity) is common in plants, but as the functions of this essential micronutrient are incompletely understood, so too are the effects of B stress. To investigate mechanisms underlying B stress, we examined protein profiles in leaves of Arabidopsis thaliana plants grown under normal B (30 μM), compared to plants transferred for 60 and 84 h (i.e., before and after initial visible symptoms) in deficient (0 μM) or toxic (3 mM) levels of B. B-responsive polypeptides were sequenced by mass spectrometry, following 2D gel electrophoresis, and 1D gels and immunoblotting were used to confirm the B-responsiveness of some of these proteins. Fourteen B-responsive proteins were identified, including: 9 chloroplast proteins, 6 proteins of photosynthetic/carbohydrate metabolism (rubisco activase, OEC23, photosystem I reaction center subunit II-1, ATPase δ-subunit, glycolate oxidase, fructose bisphosphate aldolase), 6 stress proteins, and 3 proteins involved in protein synthesis (note that the 14 proteins may fall into multiple categories). Most (8) of the B-responsive proteins decreased under both B deficiency and toxicity; only 3 increased with B stress. Boron stress decreased, or had no effect on, 3 of 4 oxidative stress proteins examined, and did not affect total protein. Hence, our results indicate relatively early specific effects of B stress on chloroplasts and protein synthesis.  相似文献   

6.
We used formalin-fixed paraffin-embedded (FFPE) materials for biomarker discovery in cases of lung cancer using proteomic analysis. We conducted a retrospective global proteomic study in order to characterize protein expression reflecting clinical stages of individual patients with stage I lung adenocarcinoma without lymph node involvement (n = 7). In addition, we studied more advanced stage IIIA with spread to lymph nodes (n = 6), because the degree of lymph node involvement is the most important factor for staging. FFPE sections of cancerous lesions resected surgically from patients with well-characterized clinical history were subjected to laser microdissection (LMD) followed by Liquid Tissue? solubilization and digestion trypsin. Spectral counting was used to measure the amounts of proteins identified by shotgun liquid chromatography (LC)/tandem mass spectrometry (MS/MS). More than 500 proteins were identified from IA and IIIA cases, and non-parametric statistics showed that 81 proteins correlated significantly with stage IA or IIIA. A subset of those proteins were verified by multiple-reaction monitoring mass spectrometric quantitation (MRM assay), described in other paper in this issue. These results demonstrated the technical feasibility of a global proteomic study using clinically well documented FFPE sections, and its possible utility for detailed retrospective disease analyses in order to improve therapeutic strategy.  相似文献   

7.
《Journal of Proteomics》2010,73(2):267-278
This study examines alterations in the plasma proteome in ten adults affected by sepsis caused by Acinetobacter baumannii as compared to paired healthy controls. 2-DE profiles of plasma from patients and paired healthy donors, depleted of the six most abundant proteins, were analysed by the DIGE technique. Protein spot detection and quantification were performed with the Differential In-gel Analysis and Biological Variation Analysis modules of the DeCyder software. Differentially expressed proteins were identified by mass spectrometry (MALDI-TOF/TOF) after colloidal Coomassie blue staining.Almost 900 spots were detected on a unique 2-D gel by the DIGE technique. A total of 269 protein spots of differential abundance were shown to be statistically significant (2.5-fold) with p values of p  0.01 (135 spots) and p  0.05 (134 spots) as determined by the t test. Seventy-one spots were submitted to mass spectrometry and about 30% could be successfully identified.This multiplex approach significantly reduced experimental variability, allowing for the confident detection of small differences in protein levels. Results include differentially expressed lipoproteins as well as proteins belonging to inflammatory/coagulation pathways and the kallikrein–kinin system. These data improves the knowledge for future developments in sepsis diagnosis, staging and therapy.  相似文献   

8.
The protein corona, which immediately is formed after contact of nanoparticles and biological systems, plays a crucial role for the biological fate of nanoparticles. In the here presented study we describe a strategy to control the amount of corona proteins which bind on particle surface and the impact of such a protein corona on particle-cell interactions. For corona formation, polyethyleneimine (PEI) coated magnetic nanoparticles (MNP) were incubated in a medium consisting of fetal calf serum (FCS) and cell culture medium. To modulate the amount of proteins bind to particles, the composition of the incubation medium was varied with regard to the FCS content. The protein corona mass was estimated and the size distribution of the participating proteins was determined by means of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE). Additionally, the zeta potential of incubated particles was measured. Human blood–brain barrier-representing cell line HBMEC was used for in vitro incubation experiments. To investigate the consequences of the FCS dependent protein corona formation on the interaction of MNP and cells flow cytometry and laser scanning microscopy were used. Zeta potential as well as SDS–PAGE clearly reveal an increase in the amount of corona proteins on MNP with increasing amount of FCS in incubation medium. For MNP incubated with lower FCS concentrations especially medium-sized proteins of molecular weights between 30 kDa and 100 kDa could be found within the protein corona, whereas for MNP incubated within higher FCS concentrations the fraction of corona proteins of 30 kDa and less increased. The presence of the protein corona reduces the interaction of PEI-coated MNP with HBMEC cells within a 30 min-incubation.  相似文献   

9.
A wide range of chemical reagents are available to study the protein-protein interactions or protein structures. After reaction with such chemicals, covalently modified proteins are digested, resulting in shorter peptides that are analyzed by mass spectrometry (MS). Used especially when NMR of X-ray data are lacking, this methodology requires the identification of modified species carrying relevant information, among the unmodified peptides. To overcome the drawbacks of existing methods, we propose a more direct strategy relying on the synthesis of solid-supported cleavable monofunctional reagents and cross-linkers that react with proteins and that selectively release, after protein digestion and washings, the modified peptide fragments ready for MS analysis. Using this Solid-Phase Cross-Linking (SPCL) strategy, only modified sequences are analyzed and consistent data can be easily obtained since the signals of interest are not masked or suppressed by over-represented unmodified materials.  相似文献   

10.
《Journal of molecular biology》2019,431(24):4978-4992
In eukaryotes, disordered regions cover up to 50% of proteomes and mediate fundamental cellular processes. In contrast to globular domains, where about half of the amino acids are buried in the protein interior, disordered regions show higher solvent accessibility, which makes them prone to engage in non-functional interactions. Such interactions are exacerbated by the law of mass action, prompting the question of how they are minimized in abundant proteins. We find that interaction propensity or “stickiness” of disordered regions negatively correlates with their cellular abundance, both in yeast and human. Strikingly, considering yeast proteins where a large fraction of the sequence is disordered, the correlation between stickiness and abundance reaches R =  0.55. Beyond this global amino-acid composition bias, we identify three rules by which amino-acid composition of disordered regions adjusts with high abundance. First, lysines are preferred over arginines, consistent with the latter amino acid being stickier than the former. Second, compensatory effects exist, whereby a sticky region can be tolerated if it is compensated by a distal non-sticky region. Third, such compensation requires a lower average stickiness at the same abundance when compared to a scenario where stickiness is homogeneous throughout the sequence. We validate these rules experimentally, employing them as different strategies to rescue an otherwise sticky protein fragment from aggregation. Our results highlight that non-functional interactions represent a significant constraint in cellular systems and reveal simple rules by which protein sequences adapt to that constraint. Data from this work are deposited in Figshare, at https://doi.org/10.6084/m9.figshare.8068937.v3.  相似文献   

11.
The discovery of urinary biomarkers is a main topic in clinical medicine. The development of proteomics has rapidly changed the knowledge on urine protein composition and probably will modify it again. Two-dimensional electrophoresis (2D-PAGE) coupled with mass spectrometry has represented for years the technique of choice for the analysis of urine proteins and it is time to draw some conclusions.This review will focus on major methodological aspects related to urine sample collection, storage and analysis by 2D-PAGE and attempt to define an advanced normal urine protein map.Overall, 1118 spots were reproducibly found in normal urine samples but only 275 were characterized as isoforms of 82 proteins. One-hundred height spots belonging to 30 proteins were also detected in plasma and corresponded to typical plasma components. The identity of most of the proteins found in normal urine by 2D-PAGE remains to be determined, the majority being low-molecular weight proteins (< 30 kDa). Equalization procedures would also enhance sensitivity of the analysis and allow low abundance proteins to be characterized.Therefore, we are still on the way to define the normal urine composition. Technology advancements in concentrating procedure will improve sensitivity and give the possibility to purify proteins for mass spectrometry.  相似文献   

12.
The vast majority of patients with end-stage renal disease are treated with intermittent hemodialysis as a form of renal replacement therapy. To investigate the impact of hemodialysis membrane material on vital protein removal, dialysates from 26 well-characterized hemodialysis patients were collected 5 min after beginning, during 5 h of treatment, as well as 5 min before ending of the dialysis sessions. Dialysis sessions were performed using either modified cellulose (n = 12) (low-flux and high flux) or synthetic Polyflux (n = 14) (low-flux and high-flux) dialyzer. Protein removal during hemodialysis was quantified and the dialysate proteome patterns were analyzed by 2-DE, MS and Western blot. There was a clear correlation between the type of membrane material and the amount of protein removed. Synthetic Polyflux membranes exhibit strong interaction with plasma proteins resulting in a significantly higher protein loss compared to modified cellulosic membrane. Moreover, the proteomics analysis showed that the removed proteins represented different molecular weight range and different functional groups: transport proteins, protease inhibitors, proteins with role in immune response and regulations, constructive proteins and as a part of HLA immune complex. The effect of this protein removal on hemodialysis treatment outcome should be investigated in further studies.  相似文献   

13.
The life cycle of Photosystem II (PSII) is embedded in a network of proteins that guides the complex through biogenesis, damage and repair. Some of these proteins, such as Psb27 and Psb28, are involved in cofactor assembly for which they are only transiently bound to the preassembled complex. In this work we isolated and analyzed PSII from a ΔpsbJ mutant of the thermophilic cyanobacterium Thermosynechococcus elongatus. From the four different PSII complexes that could be separated the most prominent one revealed a monomeric Psb27–Psb28 PSII complex with greatly diminished oxygen-evolving activity. The MALDI-ToF mass spectrometry analysis of intact low molecular weight subunits (< 10 kDa) depicted wild type PSII with the absence of PsbJ. Relative quantification of the PsbA1/PsbA3 ratio by LC-ESI mass spectrometry using 15N labeled PsbA3-specific peptides indicated the complete replacement of PsbA1 by the stress copy PsbA3 in the mutant, even under standard growth conditions (50 μmol photons m? 2 s? 1). This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

14.
Basement membranes (BMs) are physiologically insoluble extracellular matrix sheets present in all multicellular organisms. They play an important role in providing mechanical strength to tissues and regulating cell behavior. Proteomic analysis of BM proteins is challenged by their high molecular weights and extensive post-translational modifications. Here, we describe the direct analysis of an in vivo BM system using a mass spectrometry (MS) based proteomics approach. Retinal BMs were isolated from embryonic chick eyes. The BM macromolecules were deglycosylated and separated by low percentage gradient SDS PAGE, in-gel digested and analyzed by LC-MS/MS. This identified over 27 extracellular matrix proteins in the retinal BM. A semi-quantitative measure of protein abundance distinguished, nidogens-1 and -2, laminin subunits α1, α5, β2, and γ1, agrin, collagen XVIII, perlecan, FRAS1 and FREM2 as the most abundant BM protein components. Laminin subunits α3, β1, γ2, γ3 and collagen IV subunits α5 and α6 were minor constituents. To examine binding interactions that contribute to the stability of the retinal BM, we applied the LC-MS/MS based approach to detect potential BM complexes from the vitreous. Affinity-captured nidogen- and heparin-binding proteins from the vitreous contained > 10 and > 200 proteins respectively. Comparison of these protein lists with the retinal BM proteome reveals that glycosaminoglycan and nidogen binding interactions play a central role in the internal structure and formation of the retinal BM. In addition, we studied the biomechanical qualities of the retinal BM before and after deglycosylation using atomic force microscopy. These results show that the glycosaminoglycan side chains of the proteoglycans play a dominant role in regulating the thickness and elasticity of the BMs by binding water to the extracellular matrix. To our knowledge, this is the first large-scale investigation of an in vivo BM system using MS-based proteomics.  相似文献   

15.
《IRBM》2008,29(2-3):155-161
A multipurpose Love acoustic wave biosensor is described in this article. As mass loading is one of the main effect involved in acoustic wave sensors, a great range of biomolecules could be detected using such sensors. In this way, the antibody/antigen binding property was used to immobilise the target species. We first compared different coupling agents to link the antibodies sensitive layer to the SiO2 sensor surface. Results showed that GPTS monolayer, allowing covalent attachment of antibodies bioreceptors, is better suited than DTSP and protein G. It permits to obtain a dense, stable and reproducible sensitive layer of antibodies. Then, different biological species with different size and shape like proteins, bacteriophages or bacteria were detected using such sensor. Different models have been chosen to validate the effective detection of a large species range: an anti-mouse antibody has been used to simulate small molecules (< 10 nm) like proteins or toxins, bacteriophage M13 for species lower than 1 μm like virus, and Escherichia coli for bacteria which are typically longer than 1 μm. Each kind of species were successfully quickly detected from few seconds for small proteins to one hour for bacteria, with detection threshold down to 4 ng/mm2 for protein and 106 cfu per milliliter for bacteria.  相似文献   

16.
BackgroundWhile a number of reports appear on ionic liquids–proteins interactions, their thermodynamic behaviour using suitable technique like isothermal titration calorimetry is not systematically presented.MethodsIsothermal titration calorimetry (ITC) is a key technique which can directly measure the thermodynamic contribution of IL binding to protein, particularly the enthalpy, heat capacities and binding stoichiometry.Scope of reviewIonic liquids (ILs), owing to their unique and tunable physicochemical properties have been the central area of scientific research besides graphene in the last decade, and growing unabated. Their encounter with proteins in the biological system is inevitable considering their environmental discharge though most of them are recyclable for a number of cycles. In this article we will cover the thermodynamics of proteins upon interaction with ILs as osmolyte and surfactant. The up to date literature survey of IL–protein interactions using isothermal titration calorimetry will be discussed and parallel comparison with the results obtained for such studies with other techniques will be highlighted to demonstrate the accuracy of ITC technique.Major conclusions and general significanceNet stability of proteins can be obtained from the difference in the free energy (ΔG) of the native (folded) and denatured (unfolded) state using the Gibbs–Helmholtz equation (ΔG = ΔH  TΔS). Isothermal titration calorimetry can directly measure the heat changes upon IL–protein interactions. Calculation of other thermodynamic parameters such as entropy, binding constant and free energy depends upon the proper fitting of the binding isotherms using various fitting models. This article is part of a Special Issue entitled Microcalorimetry in the BioSciences — Principles and Applications, edited by Fadi Bou-Abdallah.  相似文献   

17.
18.
Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography–mass spectrometry (GC–MS) analysis was used to study volatile and semi-volatile compounds emitted by the Eupatorium odoratum (E. odoratum) extract. Variables of HS-SPME such as the type of SPME fiber, extraction time and temperature, incubation time, desorption time and temperature have been optimized. Optimized conditions were obtained by the use of divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber, 5 min/20 min incubation/extraction time at 65 °C, 5 min desorption time at 260 °C. Using three different polar chromatographic columns to get retention index and mass spectrometry data, 99 volatile and semi-volatile compounds were tentatively identified in the E. odoratum extract. This study has identified the promising source of E. odoratum oviposition repellent.  相似文献   

19.
BackgroundFenugreek is a legume plant used as an ingredient of curry spice. Incidents of IgE-mediated food allergy to fenugreek have been reported. Coincidence with allergy to peanut, a major food allergen, seems to be common suggesting a rather high rate of cross-reactivity.ObjectiveCharacterization of fenugreek allergens using patient sera and mass spectrometry-based proteomic analysis.MethodsAllergenic fenugreek proteins were detected by immunoblotting, using sera from 13 patients with specific IgE to peanut and fenugreek. IgE-binding proteins were analyzed by peptide mass fingerprinting and peptide sequencing.ResultsA fenugreek protein quintet in the range from 50 kDa to 66 kDa showed high IgE-affinity, the protein at 50 kDa reaching the strongest signals in all patients. Proteomic analyses allowed the classification of several fenugreek proteins to a number of allergen families. Fenugreek 7S-vicilin and 11S-legumin were partly sequenced and revealed considerable homologies to peanut Ara h 1 and Ara h 3, respectively. The presence of a fenugreek 2S albumin and pathogenesis-related (PR-10) plant pollen protein was assumed by database searching results.ConclusionIn this study, individual fenugreek proteins were characterised for the first time. Observed homologies to major peanut allergens provide a molecular explanation for clinical cross-reactivity.  相似文献   

20.
As a consequence of the one-dimensional storage and transfer of genetic information, DNA  RNA  protein, the process by which globular proteins and RNAs achieve their three-dimensional structure involves folding of a linear chain. The folding process itself could create massive activation barriers that prevent the attainment of many stable protein and RNA structures. We consider several kinds of energy barriers inherent in folding that might serve as kinetic constraints to achieving the lowest energy state. Alternative approaches to forming 3D structure, where a substantial number of weak interactions would be created prior to the formation of all the peptide (or phosphodiester) bonds, might not be subjected to such high barriers. This could lead to unique 3D conformational states, potentially more stable than “native” proteins and RNAs, with new functionalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号