首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drosophila melanogaster is a genetically malleable organism with a short life span, making it a tractable system in which to study mechanical effects of genetic perturbation and aging on tissues, e.g., impaired heart function. However, Drosophila heart-tube studies can be hampered by its bilayered structure: a ventral muscle layer covers the contractile cardiomyocytes. Here we propose an atomic force microscopy-based analysis that uses a linearized-Hertz method to measure individual mechanical components of soft composite materials. The technique was verified using bilayered polydimethylsiloxane. We further demonstrated its biological utility via its ability to resolve stiffness changes due to RNA interference to reduce myofibrillar content or due to aging in Drosophila myocardial layers. This protocol provides a platform to assess the mechanics of soft biological composite systems and, to our knowledge, for the first time, permits direct measurement of how genetic perturbations, aging, and disease can impact cardiac function in situ.  相似文献   

2.
The lipotoxic effects of obesity are important contributing factors in cancer, diabetes, and cardiovascular disease (CVD), but the genetic mechanisms, by which lipotoxicity influences the initiation and progression of CVD are poorly understood. Hearts, of obese and diabetic individuals, exhibit several phenotypes in common, including ventricular remodeling, prolonged QT intervals, enhanced frequency of diastolic and/or systolic dysfunction, and decreased fractional shortening. High systemic lipid concentrations are thought to be the leading cause of lipid-related CVD in obese or diabetic individuals. However, an alternative possibility is that obesity leads to cardiac-specific steatosis, in which lipids and their metabolites accumulate within the myocardial cells themselves and thereby disrupt normal cardiovascular function. Drosophila has recently emerged as an excellent model to study the fundamental genetic mechanisms of metabolic control, as well as their relationship to heart function. Two recent studies of genetic and diet-induced cardiac lipotoxicity illustrate this. One study found that alterations in genes associated with membrane phospholipid metabolism may play a role in the abnormal lipid accumulation associated with cardiomyopathies. The second study showed that Drosophila fed a diet high in saturated fats, developed obesity, dysregulated insulin and glucose homeostasis, and severe cardiac dysfunction. Here, we review the current understanding of the mechanisms that contribute to the detrimental effects of dysregulated lipid metabolism on cardiovascular function. We also discuss how the Drosophila model could help elucidate the basic genetic mechanisms of lipotoxicity- and metabolic syndrome-related cardiomyopathies in mammals.  相似文献   

3.
Heart failure with preserved ejection fraction (HFpEF) is characterised by a high incidence of metabolic comorbidities that share the potential to induce both systemic and coronary microvascular inflammation and oxidative stress. These pathophysiological alterations contribute to increased passive stiffness of the myocardium and to diastolic dysfunction, both hallmarks of HFpEF. Passive myocardial stiffness depends mainly on two components: the extracellular matrix (ECM) and the cardiomyocytes. Quantitative and qualitative changes in collagen metabolism leading to myocardial fibrosis determine the ECM-based stiffness of the myocardium. Different noninvasive diagnostic tools to assess myocardial fibrosis are being developed, some of which have demonstrated to correlate with clinical status and prognosis. Cardiomyocytes mainly alter the passive stiffness through alterations in the giant myofilament titin, which serves as a spring. By modifying its phosphorylation state or by direct oxidative effects, titin determines cardiomyocyte-based passive stiffness. Probably the relative importance of cardiomyocyte-based changes is more important in the beginning of the disease, whereas ECM-based changes become more prominent in the more advanced stages. The present review focuses on these changes in ECM and cardiomyocytes in HFpEF and their potential prognostic and therapeutic implications.  相似文献   

4.

Background

Mathematical modeling can be employed to overcome the practical difficulty of isolating the mechanisms responsible for clinical heart failure in the setting of normal left ventricular ejection fraction (HFNEF). In a human cardiovascular respiratory system (H-CRS) model we introduce three cases of left ventricular diastolic dysfunction (LVDD): (1) impaired left ventricular active relaxation (IR-type); (2) increased passive stiffness (restrictive or R-type); and (3) the combination of both (pseudo-normal or PN-type), to produce HFNEF. The effects of increasing systolic contractility are also considered. Model results showing ensuing heart failure and mechanisms involved are reported.

Methods

We employ our previously described H-CRS model with modified pulmonary compliances to better mimic normal pulmonary blood distribution. IR-type is modeled by changing the activation function of the left ventricle (LV), and R-type by increasing diastolic stiffness of the LV wall and septum. A 5th-order Cash-Karp Runge-Kutta numerical integration method solves the model differential equations.

Results

IR-type and R-type decrease LV stroke volume, cardiac output, ejection fraction (EF), and mean systemic arterial pressure. Heart rate, pulmonary pressures, pulmonary volumes, and pulmonary and systemic arterial-venous O2 and CO2 differences increase. IR-type decreases, but R-type increases the mitral E/A ratio. PN-type produces the well-described, pseudo-normal mitral inflow pattern. All three types of LVDD reduce right ventricular (RV) and LV EF, but the latter remains normal or near normal. Simulations show reduced EF is partly restored by an accompanying increase in systolic stiffness, a compensatory mechanism that may lead clinicians to miss the presence of HF if they only consider LVEF and other indices of LV function. Simulations using the H-CRS model indicate that changes in RV function might well be diagnostic. This study also highlights the importance of septal mechanics in LVDD.

Conclusion

The model demonstrates that abnormal LV diastolic performance alone can result in decreased LV and RV systolic performance, not previously appreciated, and contribute to the clinical syndrome of HF. Furthermore, alterations of RV diastolic performance are present and may be a hallmark of LV diastolic parameter changes that can be used for better clinical recognition of LV diastolic heart disease.  相似文献   

5.
A computational model that accounts for blood-tissue interaction under physiological flow conditions was developed and applied to a thin-walled model of the left heart. This model consisted of the left ventricle, left atrium, and pulmonary vein flow. The input functions for the model included the pulmonary vein driving pressure and time-dependent relationship for changes in chamber tissue properties during the simulation. The Immersed Boundary Method was used for the interaction of the tissue and blood in response to fluid forces and changes in tissue pathophysiology, and the fluid mass and momentum conservation equations were solved using Patankar's Semi-Implicit Method for Pressure Linked Equations (SIMPLE). This model was used to examine the flow fields in the left heart under abnormal diastolic conditions of delayed ventricular relaxation, delayed ventricular relaxation with increased ventricular stiffness, and delayed ventricular relaxation with an increased atrial contraction. The results obtained from the left heart model were compared to clinically observed diastolic flow conditions, and to the results from simulations of normal diastolic function in this model [1]. Cases involving impairment of diastolic function were modeled with changes to the input functions for fiber relaxation/contraction of the chambers. The three cases of diastolic dysfunction investigated agreed with the changes in diastolic flow fields seen clinically. The effect of delayed relaxation was to decrease the early filling magnitude, and this decrease was larger when the stiffness of the ventricle was increased. Also, increasing the contraction of the atrium during atrial systole resulted in a higher late filling velocity and atrial pressure. The results show that dysfunction can be modeled by changing the relationships for fiber resting-length and/or stiffness. This provides confidence in future modeling of disease, especially changes to chamber properties to examine the effect of local dysfunction on global flow fields.  相似文献   

6.
A number of studies have been conducted recently on the model organism Drosophila to determine the function of genes involved in human disease, including those implicated in neurological disorders, cancer and metabolic and cardiovascular diseases. The simple structure and physiology of the Drosophila heart tube together with the available genetics provide a suitable in vivo assay system for studying cardiac gene functions. In our study, we focus on analysis of the role of dystrophin (Dys) in heart physiology. As in humans, the Drosophila dys gene encodes multiple isoforms, of which the large isoforms ( DLPs ) and a truncated form ( Dp117 ) are expressed in the adult heart. Here, we show that the loss of dys function in the heart leads to an age-dependent disruption of the myofibrillar organization within the myocardium as well as to alterations in cardiac performance. dys RNAi-mediated knockdown in the mesoderm also shortens lifespan. Knockdown of all or deletion of the large isoforms increases the heart rate by shortening the diastolic intervals (relaxation phase) of the cardiac cycle. Morphologically, loss of the large DLPs isoforms causes a widening of the cardiac tube and a lower fractional shortening, a phenotype reminiscent of dilated cardiomyopathy. The dilated dys mutant phenotype was reversed by expressing a truncated mammalian form of dys ( Dp116 ). Our results illustrate the utility of Drosophila as a model system to study dilated cardiomyopathy and other muscular-dystrophy-associated phenotypes.  相似文献   

7.
Left ventricular (LV) diastolic dysfunction is a fundamental impairment in congestive heart failure (CHF). This study examined LV diastolic function in the canine model of CHF induced by chronic coronary embolization (CCE). Dogs were implanted with coronary catheters (both left anterior descending and circumflex arteries) for CCE and instrumented for measurement of LV pressure and dimension. Heart failure was elicited by daily intracoronary injections of microspheres (1.2 million, 90- to 120-microm diameter) for 24 +/- 4 days, resulting in significant depression of cardiac systolic function. After CCE, LV maximum negative change of pressure with time (dP/dt(min)) decreased by 25 +/- 2% (P < 0.05) and LV isovolumic relaxation constant and duration increased by 19 +/- 5% and 25 +/- 6%, respectively (both P < 0.05), indicating an impairment of LV active relaxation, which was cardiac preload independent. LV passive viscoelastic properties were evaluated from the LV end-diastolic pressure (EDP)-volume (EDV) relationship (EDP = be(alpha*EDV)) during brief inferior vena caval occlusion and acute volume loading, while the chamber stiffness coefficient (alpha) increased by 62 +/- 10% (P < 0.05) and the stiffness constant (k) increased by 66 +/- 13% after CCE. The regional myocardial diastolic stiffness in LV anterior and posterior walls was increased by 70 +/- 25% and 63 +/- 24% (both P < 0.05), respectively, after CCE, associated with marked fibrosis, increase in collagen I and III, and enhancement of plasminogen activator inhibitor-1 (PAI-1) protein expression. Thus along with depressed LV systolic function there is significant impairment of LV diastolic relaxation and increase in chamber stiffness, with development of myocardial fibrosis and activation of PAI-1, in the canine model of CHF induced by CCE.  相似文献   

8.
9.
Diastolic heart failure (DHF), characterized by depressed myocardial relaxation performance and poor ventricular filling, is a distinct form of heart failure accounting for nearly half of the heart failure patients with otherwise normal systolic performance. Defective intracellular calcium (Ca2+) cycling is an important mechanism underlying impaired relaxation in DHF. Recently, genetic manipulation of Ca2+ handling proteins in cardiac myocytes has been explored for its potential therapeutic application in DHF. Specifically, ectopic expression of the skeletal muscle Ca2+ binding protein parvalbumin (Parv) has been shown to accelerate myocardial relaxation in vitro and in vivo. Parv acts as a unique "delayed" Ca2+ buffer during diastole by promoting Ca2+ transient decay and sequestration and corrects diastolic dysfunction in an energy-independent manner. This brief review summarizes the rationale and development of Parv gene transfer approaches for DHF, and in particular, discusses the divergent effects of Parv isoforms on cardiac myocyte Ca2+ handling and contractile function with the long-range goal of alleviating diastolic dysfunction in DHF.  相似文献   

10.
It is well established that the aging heart exhibits left ventricular (LV) diastolic dysfunction and changes in mechanical properties, which are thought to be due to alterations in the extracellular matrix. We tested the hypothesis that the mechanical properties of cardiac myocytes significantly change with aging, which could contribute to the global changes in LV diastolic dysfunction. We used atomic force microscopy (AFM), which determines cellular mechanical property changes at nanoscale resolution in myocytes, from young (4 mo) and old (30 mo) male Fischer 344 x Brown Norway F1 hybrid rats. A measure of stiffness, i.e., apparent elastic modulus, was determined by analyzing the relationship between AFM indentation force and depth with the classical infinitesimal strain theory and by modeling the AFM probe as a blunted conical indenter. This is the first study to demonstrate a significant increase (P < 0.01) in the apparent elastic modulus of single, aging cardiac myocytes (from 35.1 +/- 0.7, n = 53, to 42.5 +/- 1.0 kPa, n = 58), supporting the novel concept that the mechanism mediating LV diastolic dysfunction in aging hearts resides, in part, at the level of the myocyte.  相似文献   

11.
The Drosophila heart, also called the dorsal vessel, is an organ for hemolymph circulation that resembles the vertebrate heart at its transient linear tube stage. Dorsal vessel morphogenesis shares several similarities with early events of vertebrate heart development and has proven to be an insightful system for the study of cardiogenesis due to its relatively simple structure and the productive use of Drosophila genetic approaches. In this review, we summarize published findings on Drosophila heart development in terms of the regulators and genetic pathways required for cardiac cell specification and differentiation, and organ formation and function. Emerging genome-based strategies should further facilitate the use of Drosophila as an advantageous system in which to identify previously unknown genes and regulatory networks essential for normal cardiac development and function.  相似文献   

12.
13.
Aging is associated with profound changes in the structure and function of the heart. A fundamental understanding of these processes, using relevant animal models, is required for effective prevention and treatment of cardiovascular disease in the elderly. Here, we studied cardiac performance in 4- to 5-mo-old (young) and 24- to 26-mo-old (old) Fischer 344 male rats using the Millar pressure-volume (P-V) conductance catheter system. We evaluated systolic and diastolic function in vivo at different preloads, including preload recruitable stroke work (PRSW), maximal slope of the systolic pressure increment (+dP/dt), and its relation to end-diastolic volume (+dP/dt-EDV) as well as the time constant of left ventricular pressure decay, as an index of relaxation. The slope of the end-diastolic P-V relation (EDPVR), an index of left ventricular stiffness, was also calculated. Aging was associated with decrease in left ventricular systolic pressure, +dP/dt, maximal slope of the diastolic pressure decrement, +dP/dt-EDV, PRSW, ejection fraction, stroke volume, cardiac and stroke work indexes, and efficiency. In contrast, total peripheral resistance, left ventricular end-diastolic volume, left ventricular end-diastolic pressure, and EDPVR were greater in aging than in young animals. Taken together, these data suggest that advanced aging is characterized by decreased systolic performance accompanied by delayed relaxation and increased diastolic stiffness of the heart in male Fischer 344 rats. P-V analysis is a sensitive method to determine cardiac function in rats.  相似文献   

14.
Even in healthy aging, cardiac morbidity and mortality increase with age in both mice and humans. These effects include a decline in diastolic function, left ventricular hypertrophy, metabolic substrate shifts, and alterations in the cardiac proteome. Previous work from our laboratory indicated that short‐term (10‐week) treatment with rapamycin, an mTORC1 inhibitor, improved measures of these age‐related changes. In this report, we demonstrate that the rapamycin‐dependent improvement of diastolic function is highly persistent, while decreases in both cardiac hypertrophy and passive stiffness are substantially persistent 8 weeks after cessation of an 8‐week treatment of rapamycin in both male and female 22‐ to 24‐month‐old C57BL/6NIA mice. The proteomic and metabolomic abundance changes that occur after 8 weeks of rapamycin treatment have varying persistence after 8 further weeks without the drug. However, rapamycin did lead to a persistent increase in abundance of electron transport chain (ETC) complex components, most of which belonged to Complex I. Although ETC protein abundance and Complex I activity were each differentially affected in males and females, the ratio of Complex I activity to Complex I protein abundance was equally and persistently reduced after rapamycin treatment in both sexes. Thus, rapamycin treatment in the aged mice persistently improved diastolic function and myocardial stiffness, persistently altered the cardiac proteome in the absence of persistent metabolic changes, and led to persistent alterations in mitochondrial respiratory chain activity. These observations suggest that an optimal translational regimen for rapamycin therapy that promotes enhancement of healthspan may involve intermittent short‐term treatments.  相似文献   

15.

Aims

Diastolic dysfunction is common in geriatric heart failure. A reliable parameter to predict myocardium stiffness and relaxation under similar end-diastolic pressure is being developed. We propose a material and mathematical model for calculating myocardium stiffness based on the concept of linear correlation between and wedge pressure.

Methods and Results

We enrolled 919 patients (male: ). Compared with the younger population of controls (mean age: years; ; male: ), the elderly (mean age: ; ; male: ) had a greater prevalence of hypertension, diabetes mellitus, and coronary artery disease (all ). We collected their M-mode and 2-D echocardiographic volumetric parameters, intraventricular filling pressure, and speckle tracking images to establish a mathematical model. The feasibility of this model was validated. The average early diastolic velocity of the mitral annulus assessed using tissue Doppler imaging was significantly attenuated in the elderly (: vs. ; ) and corresponded to the higher estimated wedge () pressure ( vs. ; ) in that cohort. E (Young''s modulus) was calculated to describe the tensile elasticity of the myocardium. With the same intraventricular filling pressure, E was significantly higher in the elderly, especially those with values . Compared with diastolic dysfunction parameters, E also presented sentinel characteristics more sensitive for detecting early myocardial relaxation impairment, which indicates stiffer myocardium in aging hearts.

Conclusion

Our material and geometric mathematical model successfully described the stiffer myocardium in aging hearts with higher intraventricular pressure. Additional studies that compare individual differences, especially in health status, are needed to validate its application for detecting diastolic heart failure.  相似文献   

16.
Aging increases the risk for arrhythmias and sudden cardiac death (SCD). We aimed at elucidating aging-related electrical, functional, and structural changes in the heart and vasculature that account for this heightened arrhythmogenic risk. Young (5-9 mo) and old (3.5-6 yr) female New Zealand White (NZW) rabbits were subjected to in vivo hemodynamic, electrophysiological, and echocardiographic studies as well as ex vivo optical mapping, high-field magnetic resonance imaging (MRI), and histochemical experiments. Aging increased aortic stiffness (baseline pulse wave velocity: young, 3.54 ± 0.36 vs. old, 4.35 ± 0.28 m/s, P < 0.002) and diastolic (end diastolic pressure-volume relations: 3.28 ± 0.5 vs. 4.95 ± 1.5 mmHg/ml, P < 0.05) and systolic (end systolic pressure-volume relations: 20.56 ± 4.2 vs. 33.14 ± 8.4 mmHg/ml, P < 0.01) myocardial elastances in old rabbits. Electrophysiological and optical mapping studies revealed age-related slowing of ventricular and His-Purkinje conduction (His-to-ventricle interval: 23 ± 2.5 vs. 31.9 ± 2.9 ms, P < 0.0001), altered conduction anisotropy, and a greater inducibility of ventricular fibrillation (VF, 3/12 vs. 7/9, P < 0.05) in old rabbits. Histochemical studies confirmed an aging-related increased fibrosis in the ventricles. MRI showed a deterioration of the free-running Purkinje fiber network in ventricular and septal walls in old hearts as well as aging-related alterations of the myofibrillar orientation and myocardial sheet structure that may account for this slowed conduction velocity. Aging leads to parallel stiffening of the aorta and the heart, including an increase in systolic stiffness and contractility and diastolic stiffness. Increasingly, anisotropic conduction velocity due to fibrosis and altered myofibrillar orientation and myocardial sheet structure may contribute to the pathogenesis of VF in old hearts. The aging rabbit model represents a useful tool for elucidating age-related changes that predispose the aging heart to arrhythmias and SCD.  相似文献   

17.
The linear cardiac tube of Drosophila, the dorsal vessel, is an important model organ for the study of cardiac specification and patterning in vertebrates. In Drosophila, the Hox segmentation gene abdominal-A (abd-A) is required for the specification of a functionally distinct heart region at the posterior of the dorsal vessel, from which blood is pumped anteriorly through a tube termed the aorta. Since we have previously shown that the posterior part of the aorta is specified during embryogenesis to form the adult heart during metamorphosis, we determined if the embryonic aorta is also patterned by the function of Hox segmentation genes. Using gain- and loss-of-function experiments, we demonstrate that the three Hox genes expressed in the posterior aorta and heart are sufficient to confer heart or posterior aorta fate throughout the dorsal vessel. Additionally, we demonstrate that Ultrabithorax and abd-A, but not Antennapedia, function to control cell number in the dorsal vessel. These studies add robustness to the model that homeotic selector genes pattern the Drosophila dorsal vessel, and further extend our understanding of how the cardiac tube is patterned in animal models.  相似文献   

18.
The adrenal steroid hormone dehydroepiandrosterone (DHEA) and its sulfated derivative [DHEA(S)] have been extensively studied for their potential anti-aging effects. Associated with aging, DHEA levels decline in humans, whereas other adrenal hormones remain unchanged, suggesting that DHEA may be important in the aging process. However, the effect of DHEA(S) supplementation on cardiac function in the aged has not been investigated. Therefore, we administered to young and old female mice a 60-day treatment with exogenous DHEA(S) at a dose of 0.1 mg/ml in the drinking water and compared the effects on left ventricular diastolic function and the myocardial extracellular matrix composition. The left ventricular stiffness (beta) was 0.30 +/- 0.06 mmHg/mul in the older control mice compared with 0.17 +/- 0.02 mmHg/mul in young control mice. Treatment with DHEA(S) decreased left ventricular stiffness to 0.12 +/- 0.03 mmHg/mul in the older mice and increased left ventricular stiffness to 0.27 +/- 0.04 mmHg/mul in young mice. The mechanism for the DHEA(S)-induced changes in diastolic function appeared to be associated with altered matrix metalloproteinase activity and the percentage of collagen cross-linking. We conclude that exogenous DHEA(S) supplementation is capable of reversing the left ventricular stiffness and fibrosis that accompanies aging, with a paradoxical increased ventricular stiffness in young mice.  相似文献   

19.
Beneficial actions of nitric oxide (NO) in failing myocardium have frequently been overshadowed by poorly documented negative inotropic effects mainly derived from in vitro cardiac preparations. NO's beneficial actions include control of myocardial energetics and improvement of left ventricular (LV) diastolic distensibility. In isolated cardiomyocytes, administration of NO increases their diastolic cell length consistent with a rightward shift of the passive length-tension relation. This shift is explained by cGMP-induced phosphorylation of troponin I, which prevents calcium-independent diastolic cross-bridge cycling and concomitant diastolic stiffening of the myocardium. Similar improvements in diastolic stiffness have been observed in isolated guinea pig hearts, in pacing-induced heart failure dogs, and in patients with dilated cardiomyopathy or aortic stenosis and have been shown to result in higher LV preload reserve and stroke work. NO also controls myocardial energetics through its effects on mitochondrial respiration, oxygen consumption, and substrate utilization. The effects of NO on diastolic LV performance appear to be synergistic with its effects on myocardial energetics through prevention of myocardial energy wastage induced by LV contraction against late-systolic reflected arterial pressure waves and through prevention of diastolic LV stiffening, which is essential for the maintenance of adequate subendocardial coronary perfusion. A drop in these concerted actions of NO on diastolic LV distensibility and on myocardial energetics could well be instrumental for the relentless deterioration of failing myocardium.  相似文献   

20.
Pressure overload cardiac hypertrophy may be a compensatory mechanism to normalize systolic wall stress and preserve left ventricular (LV) function. To test this concept, we developed a novel in vivo method to measure myocardial stress (sigma)-strain (epsilon) relations in normal and hypertrophied mice. LV volume was measured using two pairs of miniature omnidirectional piezoelectric crystals implanted orthogonally in the endocardium and one crystal placed on the anterior free wall to measure instantaneous wall thickness. Highly linear sigma-epsilon relations were obtained in control (n = 7) and hypertrophied mice produced by 7 days of transverse aortic constriction (TAC; n = 13). Administration of dobutamine in control mice significantly increased the load-independent measure of LV contractility, systolic myocardial stiffness. In TAC mice, systolic myocardial stiffness was significantly greater than in control mice (3,156 +/- 1,433 vs. 1,435 +/- 467 g/cm(2), P < 0.01), indicating enhanced myocardial contractility with pressure overload. However, despite the increased systolic performance, both active (time constant of LV pressure decay) and passive (diastolic myocardial stiffness constant) diastolic properties were markedly abnormal in TAC mice compared with control mice. These data suggest that the development of cardiac hypertrophy is associated with a heightened contractile state, perhaps as an early compensatory response to pressure overload.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号