首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lack of neural innervation due to neurological damage renders muscle unable to produce force. Use of electrical stimulation is a medium in which investigators have tried to find a way to restore movement and the ability to perform activities of daily living. Different methods of applying electrical current to modify neuromuscular activity are electrical stimulation (ES), neuromuscular electrical stimulation (NMES), transcutaneous electrical nerve stimulation (TENS), and functional electrical stimulation (FES). This review covers the aspects of electrical stimulation used for rehabilitation and functional purposes. Discussed are the various parameters of electrical stimulation, including frequency, pulse width/duration, duty cycle, intensity/amplitude, ramp time, pulse pattern, program duration, program frequency, and muscle group activated, and how they affect fatigue in the stimulated muscle.  相似文献   

2.
Neuromuscular electrical stimulation (NMES) can be delivered over a nerve trunk or muscle belly and both can generate contractions through peripheral and central pathways. Generating contractions through peripheral pathways is associated with a nonphysiological motor unit recruitment order, which may limit the efficacy of NMES rehabilitation. Presently, we compared recruitment through peripheral and central pathways for contractions of the knee extensors evoked by NMES applied over the femoral nerve vs. the quadriceps muscle. NMES was delivered to evoke 10 and 20% of maximum voluntary isometric contraction torque 2-3 s into the NMES (time(1)) in two patterns: 1) constant frequency (15 Hz for 8 s); and 2) step frequency (15-100-15 Hz and 25-100-25 Hz for 3-2-3 s, respectively). Torque and electromyographic activity recorded from vastus lateralis and medialis were quantified at the beginning (time(1)) and end (time(2); 6-7 s into the NMES) of each pattern. M-waves (peripheral pathway), H-reflexes, and asynchronous activity (central pathways) during NMES were quantified. Torque did not differ regardless of NMES location, pattern, or time. For both muscles, M-waves were ~7-10 times smaller and H-reflexes ~8-9 times larger during NMES over the nerve compared with over the muscle. However, unlike muscles studied previously, neither torque nor activity through central pathways were augmented following 100 Hz NMES, nor was any asynchronous activity evoked during NMES at either location. The coefficient of variation was also quantified at time(2) to determine the consistency of each dependent measure between three consecutive contractions. Torque, M-waves, and H-reflexes were most variable during NMES over the nerve. In summary, NMES over the nerve produced contractions with the greatest recruitment through central pathways; however, considering some of the limitations of NMES over the femoral nerve, it may be considered a good complement to, as opposed to a replacement for, NMES over the quadriceps muscle for maintaining muscle quality and reducing contraction fatigue during NMES rehabilitation.  相似文献   

3.
Neuromuscular electrical stimulation (NMES) can be delivered over a nerve trunk or muscle belly and can generate contractions by activating motor (peripheral pathway) and sensory (central pathway) axons. In the present experiments, we compared the peripheral and central contributions to plantar flexion contractions evoked by stimulation over the tibial nerve vs. the triceps surae muscles. Generating contractions through central pathways follows Henneman's size principle, whereby low-threshold motor units are activated first, and this may have advantages for rehabilitation. Statistical analyses were performed on data from trials in which NMES was delivered to evoke 10-30% maximum voluntary torque 2-3 s into the stimulation (Time(1)). Two patterns of stimulation were delivered: 1) 20 Hz for 8 s; and 2) 20-100-20 Hz for 3-2-3 s. Torque and soleus electromyography were quantified at the beginning (Time(1)) and end (Time(2); 6-7 s into the stimulation) of each stimulation train. H reflexes (central pathway) and M waves (peripheral pathway) were quantified. Motor unit activity that was not time-locked to each stimulation pulse as an M wave or H reflex ("asynchronous" activity) was also quantified as a second measure of central recruitment. Torque was not different for stimulation over the nerve or the muscle. In contrast, M waves were approximately five to six times smaller, and H reflexes were approximately two to three times larger during NMES over the nerve vs. the muscle. Asynchronous activity increased by 50% over time, regardless of the stimulation location or pattern, and was largest during NMES over the muscle belly. Compared with NMES over the triceps surae muscles, NMES over the tibial nerve produced contractions with a relatively greater central contribution, and this may help reduce muscle atrophy and fatigue when NMES is used for rehabilitation.  相似文献   

4.
Neuromuscular electrical stimulation (NMES) is used for preventing muscle atrophy and improving muscle strength in patients and healthy people. However, the current intensity of NMES is usually set at a level that causes the stimulated muscles to contract. This typically causes pain. Quantifying the instantaneous changes in muscle microcirculation and metabolism during NMES before muscle contraction occurs is crucial, because it enables the current intensity to be optimally tuned, thereby reducing the NMES‐induced muscle pain and fatigue. We applied near‐infrared spectroscopy (NIRS) to measure instantaneous tissue oxygenation and deoxygenation changes in 43 healthy young adults during NMES at 10, 15, 20, 25, 30, and 35 mA. Having been stabilized at the NIRS signal baseline, the tissue oxygenation and total hemoglobin concentration increased immediately after stimulation in a dose‐dependent manner (P < 0.05) until stimulation was stopped at the level causing muscle contraction without pain. Tissue deoxygenation appeared relatively unchanged during NMES. We conclude that NIRS can be used to determine the optimal NMES current intensity by monitoring oxygenation changes.   相似文献   

5.
Fatigue is a major limitation to the clinical application of functional electrical stimulation. The activation pattern used during electrical stimulation affects force and fatigue. Identifying the activation pattern that produces the greatest force and least fatigue for each patient is, therefore, of great importance. Mathematical models that predict muscle forces and fatigue produced by a wide range of stimulation patterns would facilitate the search for optimal patterns. Previously, we developed a mathematical isometric force model that successfully identified the stimulation patterns that produced the greatest forces from healthy subjects under nonfatigue and fatigue conditions. The present study introduces a four-parameter fatigue model, coupled with the force model that predicts the fatigue induced by different stimulation patterns on different days during isometric contractions. This fatigue model accounted for 90% of the variability in forces produced by different fatigue tests. The predicted forces at the end of fatigue testing differed from those observed by only 9%. This model demonstrates the potential for predicting muscle fatigue in response to a wide range of stimulation patterns.  相似文献   

6.
During functional electrical stimulation (FES), both the frequency and intensity can be increased to increase muscle force output and counteract the effects of muscle fatigue. Most current FES systems, however, deliver a constant frequency and only vary the stimulation intensity to control muscle force. This study compared muscle performance and fatigue produced during repetitive electrical stimulation using three different strategies: (1) constant pulse-duration and stepwise increases in frequency (frequency-modulation); (2) constant frequency and stepwise increases in pulse-duration (pulse-duration-modulation); and (3) constant frequency and pulse-duration (no-modulation). Surface electrical stimulation was delivered to the quadriceps femoris muscles of 12 healthy individuals and isometric forces were recorded. Muscle performance was assessed by measuring the percent changes in the peak forces and force-time integrals between the first and the last fatiguing trains. Muscle fatigue was assessed by measuring percent declines in peak force between the 60Hz pre- and post-fatigue testing trains. The results showed that frequency-modulation showed better performance for both peak forces and force-time integrals in response to the fatiguing trains than pulse-duration-modulation, while producing similar levels of muscle fatigue. Although frequency-modulation is not commonly used during FES, clinicians should consider this strategy to improve muscle performance.  相似文献   

7.
Abstract

Purpose/aim of the study: An increase of hip abductor muscle strength contributes to the increase in gait speed. It is known that the rate of force development (RFD), an indicator of muscle strength, is increased by the combined use of low-intensity neuromuscular electrical stimulation (NMES) to the glutaeus medius (GM) and low-load resistance training (RT). However, it is unclear whether low-intensity neuromuscular electrical stimulation of the glutaeus medius during walking also increases the rate of force development. The aim of this study was to clarify whether NMES to the GM during gait modulates the RFD of the hip abductor muscles in healthy adults.

Materials and methods: Twenty-two healthy adults randomly received both gait with sub-motor threshold NMES and gait with sham NMES conditions. The RFD was assessed at pre- and post-intervention. A two-way repeated measures analysis of variance was used to analyse the effects of time and intervention.

Results: Gait with sub-motor threshold NMES condition significantly increased the RFD in shorter time interval (0–50 and 0–100?ms) compared to gait with sham NMES condition.

Conclusions: These findings suggest that the adding low-intensity NMES of the GM to gait is effective in increasing the RFD of the hip abductor muscles.  相似文献   

8.
Functional electrical stimulation is the use of electrical currents to activate paralyzed muscles to produce functional movements. Muscle force output must meet or exceed the external load to maintain a posture or produce movements. A mathematical force-fatigue modeling system that predicts muscle force responses during repetitive electrical stimulation has been developed in our laboratory to help identify stimulation patterns that optimize force output for individual subjects. This study tests how well this model predicts the number of contractions that can be maintained above a required force level (successful contractions) during repetitive activation of a muscle. Healthy human quadriceps muscles were tested isometrically on 12 subjects. Data were first collected and used to parameterize the model. Next, the model was used to predict the number of successful contractions that were produced by trains with frequencies ranging from 5 to 100 Hz while the pulse durations and amplitudes were held constant. Finally, three clinically relevant stimulation frequencies were selected and tested to verify the model's predictions. Under these conditions, the model accurately predicted the number of successful contractions for clinically relevant stimulation frequencies. Furthermore, the model appears to have the potential to identify the stimulation frequency that maximizes muscle force output and minimizes fatigue for each subject.  相似文献   

9.
Cellular therapy is a potential approach to improve the regenerative capacity of damaged or diseased skeletal muscle. However, its clinical use has often been limited by impaired donor cell survival, proliferation and differentiation following transplantation. Additionally, functional improvements after transplantation are all-too-often negligible. Because the host microenvironment plays an important role in the fate of transplanted cells, methods to modulate the microenvironment and guide donor cell behavior are warranted. The purpose of this study was to investigate whether the use of neuromuscular electrical stimulation (NMES) for 1 or 4 weeks following muscle-derived stem cell (MDSC) transplantation into dystrophic skeletal muscle can modulate the fate of donor cells and enhance their contribution to muscle regeneration and functional improvements. Animals submitted to 4 weeks of NMES after transplantation demonstrated a 2-fold increase in the number of dystrophin+ myofibers as compared to control transplanted muscles. These findings were concomitant with an increased vascularity in the MDSC+NMES group when compared to non-stimulated counterparts. Additionally, animals subjected to NMES (with or without MDSC transplantation) presented an increased maximal specific tetanic force when compared to controls. Although cell transplantation and/or the use of NMES resulted in no changes in fatigue resistance, the combination of both MDSC transplantation and NMES resulted in a faster recovery from fatigue, when compared to non-injected and non-stimulated counterparts. We conclude that NMES is a viable method to improve MDSC engraftment, enhance dystrophic muscle strength, and, in combination with MDSC transplantation, improve recovery from fatigue. These findings suggest that NMES may be a clinically-relevant adjunct approach for cell transplantation into skeletal muscle.  相似文献   

10.
Neuromuscular electrical stimulation (NMES) can be used as treatment for spasticity. The present study examined differences in time-dependent effects of NMES depending on stimulation frequency. Forty healthy subjects were separated into four groups (no-stim, NMES of 50, 100, and 200?Hz). The un-conditioned H-reflex amplitude and the H-reflex conditioning-test paradigm were used to measure the effectiveness on monosynaptic Ia excitation of motoneurons in the soleus (SOL) muscle, disynaptic reciprocal Ia inhibition from tibialis anterior (TA) to SOL, and presynaptic inhibition of SOL Ia afferents. Each trial consisted of a 30-min period of NMES applied to the deep peroneal nerve followed by a 30-min period with no stimulation to measure prolonged effects. Measurements were performed periodically. Stimulation applied at all frequencies produced a significant reduction in monosynaptic Ia excitation of motoneurons in the SOL muscle, however, only stimulation with 50?Hz showed prolonged reduction after NMES. NMES frequency did not affect the amount of disynaptic reciprocal Ia inhibition and presynaptic inhibition of Ia afferents. The results show a frequency-dependent effect of NMES on the monosynaptic Ia excitation of motoneurons. This result has implications for selecting the optimal NMES frequency for treatment in patients with spasticity.  相似文献   

11.
Because muscles must be repetitively activated during functional electrical stimulation, it is desirable to identify the stimulation pattern that produces the most force. Previous experimental work has shown that the optimal pattern contains an initial high-frequency burst of pulses (i.e., an initial doublet or triplet) followed by a low, constant-frequency portion. Pattern optimization is particularly challenging, because a muscle's contractile characteristics and, therefore, the optimal pattern change under different physiological conditions and are different for each person. This work describes the continued development and testing of a mathematical model that predicts isometric forces from fresh and fatigued muscles in response to brief trains of electrical pulses. By use of this model and an optimization algorithm, stimulation patterns that produced maximum forces from each subject were identified.  相似文献   

12.
Associations were quantified between the control force and fatigue-induced force decline in 22 single fast-twitch-fatigable motor units of 5 deeply anesthetized adult cats. The units were subjected to intermittent stimulation at 1 train/s for 360 s. Two stimulation patterns were delivered in a pseudo-random manner. The first was a 500-ms train with constant interpulse intervals. The second pattern had the same number of stimuli, mean stimulus rate, and stimulus duration, but the stimulus pulses were rearranged to increase the force produced by the units in the control (prefatigue) state. The associations among the control peak tetanic force of these units, 3 indices of fatigue, and total cumulative force during fatiguing contractions were dependent, in part, on the stimulation pattern used to produce fatigue. The associations were also dependent, albeit to a lesser extent, on the force measure (peak vs. integrated) and the fatigue index used to quantify fatigue. It is proposed that during high-force fatiguing contractions, neural mechanisms are potentially available to delay and reduce the fatigue of fast-twitch-fatigable units for brief, but functionally relevant, periods. In contrast, the fatigue of slow-twitch fatigue-resistant units seems more likely to be controlled largely, if not exclusively, by metabolic processes within their muscle cells.  相似文献   

13.
Chronic spinal cord injury (SCI) induces detrimental musculoskeletal adaptations that adversely affect health status, ranging from muscle paralysis and skin ulcerations to osteoporosis. SCI rehabilitative efforts may increasingly focus on preserving the integrity of paralyzed extremities to maximize health quality using electrical stimulation for isometric training and/or functional activities. Subject-specific mathematical muscle models could prove valuable for predicting the forces necessary to achieve therapeutic loading conditions in individuals with paralyzed limbs. Although numerous muscle models are available, three modeling approaches were chosen that can accommodate a variety of stimulation input patterns. To our knowledge, no direct comparisons between models using paralyzed muscle have been reported. The three models include 1) a simple second-order linear model with three parameters and 2) two six-parameter nonlinear models (a second-order nonlinear model and a Hill-derived nonlinear model). Soleus muscle forces from four individuals with complete, chronic SCI were used to optimize each model's parameters (using an increasing and decreasing frequency ramp) and to assess the models' predictive accuracies for constant and variable (doublet) stimulation trains at 5, 10, and 20 Hz in each individual. Despite the large differences in modeling approaches, the mean predicted force errors differed only moderately (8-15% error; P=0.0042), suggesting physiological force can be adequately represented by multiple mathematical constructs. The two nonlinear models predicted specific force characteristics better than the linear model in nearly all stimulation conditions, with minimal differences between the two nonlinear models. Either nonlinear mathematical model can provide reasonable force estimates; individual application needs may dictate the preferred modeling strategy.  相似文献   

14.
Fatigue compensation during FES using surface EMG   总被引:5,自引:0,他引:5  
Muscle fatigue limits the effectiveness of FES when applied to regain functional movements in spinal cord injured (SCI) individuals. The stimulation intensity must be manually increased to provide more force output to compensate for the decreasing muscle force due to fatigue. An artificial neural network (ANN) system was designed to compensate for muscle fatigue during functional electrical stimulation (FES) by maintaining a constant joint angle. Surface electromyography signals (EMG) from electrically stimulated muscles were used to determine when to increase the stimulation intensity when the muscle’s output started to drop.

In two separate experiments on able-bodied subjects seated in hard back chairs, electrical stimulation was continuously applied to fatigue either the biceps (during elbow flexion) or the quadriceps muscle (during leg extension) while recording the surface EMG. An ANN system was created using processed surface EMG as the input, and a discrete fatigue compensation control signal, indicating when to increase the stimulation current, as the output. In order to provide training examples and test the systems’ performance, the stimulation current amplitude was manually increased to maintain constant joint angles. Manual stimulation amplitude increases were required upon observing a significant decrease in the joint angle. The goal of the ANN system was to generate fatigue compensation control signals in an attempt to maintain a constant joint angle.

On average, the systems could correctly predict 78.5% of the instances at which a stimulation increase was required to maintain the joint angle. The performance of these ANN systems demonstrates the feasibility of using surface EMG feedback in an FES control system.  相似文献   


15.
A novel technique is proposed to predict force reduction in skeletal muscle due to fatigue under the influence of electrical stimulus parameters and muscle physiological characteristics. Twelve New Zealand white rabbits were divided in four groups (\(n=3\)) to obtain the active force evolution of in vitro Extensor Digitorum Longus muscles for an hour of repeated contractions under different electrical stimulation patterns. Left and right muscles were tested, and a total of 24 samples were used to construct a response surface based in the proper generalized decomposition. After the response surface development, one additional rabbit was used to check the predictive potential of the technique. This multidimensional surface takes into account not only the decay of the maximum repeated peak force, but also the shape evolution of each contraction, muscle weight, electrical input signal and stimulation protocol. This new approach of the fatigue simulation challenge allows to predict, inside the multispace surface generated, the muscle response considering other stimulation patterns, different tissue weight, etc.  相似文献   

16.
Fatiguing contractions of the adductor pollicis muscle were produced by intermittent supramaximal stimulation of the ulnar nerve in a set frequency pattern, in six normal subjects. At the end of an initial fatiguing contraction series, low frequency fatigue (LFF) had been induced and persisted at 15 min of recovery. Stimulated fatiguing activity was then repeated in an identical fashion to the initial series. At high frequencies, declines in force were similar for both series. At low frequencies, declines in force were greater during the second series despite similar changes in compound muscle action potential amplitude. This confirmation that LFF persists during subsequent stimulated activity, and reduces low but not high frequency fatigue resistance, suggests that the impaired endurance of fatigued muscle during voluntary activity primarily results from peripheral changes at low frequency. These findings also have implications for therapeutic electrical stimulation of muscle.  相似文献   

17.
Functionalelectrical stimulation can assist paralyzed individuals to performfunctional movements, but muscle fatigue is a major limitation to itspractical use. An accurate and predictive mathematical model canfacilitate the design of stimulation patterns that optimize aspects ofthe force transient while minimizing fatigue. Solution nonuniqueness, amajor shortcoming in previous work, was overcome with a simpler model.The model was tested on data collected during isometric contractions ofrat gastrocnemius muscles and human quadriceps femoris muscles undervarious physiological conditions. For each condition tested, parametervalues were identified using the force response to one or twostimulation trains. The parameterized model was then used to predictforces in response to other stimulation patterns. The predicted forcesclosely matched the measured forces. The model was not sensitive toinitial parameter estimates, demonstrating solution uniqueness. Bypredicting the force that develops in response to an arbitrary patternof stimulation, we envision the present model helping identify optimalstimulation patterns for activation of skeletal muscle duringfunctional electrical stimulation.

  相似文献   

18.
Creatine kinase (CK) is a key enzyme for maintaining a constant ATP/ADP ratio during rapid energy turnover. To investigate the role of CK in skeletal muscle fatigue, we used isolated whole muscles and intact single fibers from CK-deficient mice (CK(-/-)). With high-intensity electrical stimulation, single fibers from CK(-/-) mice displayed a transient decrease in both tetanic free myoplasmic [Ca(2+)] ([Ca(2+)](i), measured with the fluorescent dye indo-1) and force that was not observed in wild-type fibers. With less intense, repeated tetanic stimulation single fibers and EDL muscles, both of which are fast-twitch, fatigued more slowly in CK(-/-) than in wild-type mice; on the other hand, the slow-twitch soleus muscle fatigued more rapidly in CK(-/-) mice. In single wild-type fibers, tetanic force decreased and [Ca(2+)](i) increased during the first 10 fatiguing tetani, but this was not observed in CK(-/-) fibers. Fatigue was not accompanied by phosphocreatine breakdown and accumulation of inorganic phosphate in CK(-/-) muscles. In conclusion, CK is important for avoiding fatigue at the onset of high-intensity stimulation. However, during more prolonged stimulation, CK may contribute to the fatigue process by increasing the myoplasmic concentration of inorganic phosphate.  相似文献   

19.
Previous studies have suggested that older adults may be more resistant to muscular fatigue than young adults. We sought to determine whether motor unit firing rate might be a factor that determines the response to fatiguing exercise in young and older subjects. Motor unit recordings and muscular forces were obtained from the tibialis anterior (TA) muscle of 11 young and 8 older individuals. Maximal voluntary force was first measured during maximal-effort dorsiflexion contractions. Each subject then performed a series of 15 maximal isometric contractions, with each contraction lasting 30 s. A 10-s rest period separated the fatiguing contractions. As a result of the fatiguing exercise, both subject groups demonstrated a significant loss in maximal force. The force decline was less in the older adults (20.4%) than in the young adults (33.8%). As expected, prior to muscle fatigue, maximal firing rates in the TA muscle were greater in the young (28.1 ± 5.8 imp/s) than in the older adults (22.3 ± 4.8 imp/s). The decrease in motor unit firing rate with fatigue was also greater in the young adults (34.9%), than in the older adults (22.0%). These results suggest that the greater fatigue-resistance exhibited by older individuals might be explained by the fact that the decline in motor unit firing rate during fatigue is greater in young persons than it is in older adults.  相似文献   

20.
Chronically paralyzed muscle requires extensive training before it can deliver a therapeutic dose of repetitive stress to the musculoskeletal system. Neuromuscular electrical stimulation, under feedback control, may subvert the effects of fatigue, yielding more rapid and extensive adaptations to training. The purposes of this investigation were to 1) compare the effectiveness of torque feedback-controlled (FDBCK) electrical stimulation with classic open-loop constant-frequency (CONST) stimulation, and 2) ascertain which of three stimulation strategies best maintains soleus torque during repetitive stimulation. When torque declined by 10%, the FDBCK protocol modulated the base stimulation frequency in three ways: by a fixed increase, by a paired pulse (doublet) at the beginning of the stimulation train, and by a fixed decrease. The stimulation strategy that most effectively restored torque continued for successive contractions. This process repeated each time torque declined by 10%. In fresh muscle, FDBCK stimulation offered minimal advantage in maintaining peak torque or mean torque over CONST stimulation. As long-duration fatigue developed in subsequent bouts, FDBCK stimulation became most effective ( approximately 40% higher final normalized torque than CONST). The high-frequency strategy was selected approximately 90% of the time, supporting that excitation-contraction coupling compromise and not neuromuscular transmission failure contributed to fatigue of paralyzed muscle. Ideal stimulation strategies may vary according to the site of fatigue; this stimulation approach offered the advantage of online modulation of stimulation strategies in response to fatigue conditions. Based on stress-adaptation principles, FDBCK-controlled stimulation may enhance training effects in chronically paralyzed muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号