首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enucleation is the step in erythroid terminal differentiation when the nucleus is expelled from developing erythroblasts creating reticulocytes and free nuclei surrounded by plasma membrane. We have studied protein sorting during human erythroblast enucleation using fluorescence activated cell sorting (FACS) to obtain pure populations of reticulocytes and nuclei produced by in vitro culture. Nano LC mass spectrometry was first used to determine the protein distribution profile obtained from the purified reticulocyte and extruded nuclei populations. In general cytoskeletal proteins and erythroid membrane proteins were preferentially restricted to the reticulocyte alongside key endocytic machinery and cytosolic proteins. The bulk of nuclear and ER proteins were lost with the nucleus. In contrast to the localization reported in mice, several key erythroid membrane proteins were detected in the membrane surrounding extruded nuclei, including band 3 and GPC. This distribution of key erythroid membrane and cytoskeletal proteins was confirmed using western blotting. Protein partitioning during enucleation was investigated by confocal microscopy with partitioning of cytoskeletal and membrane proteins to the reticulocyte observed to occur at a late stage of this process when the nucleus is under greatest constriction and almost completely extruded. Importantly, band 3 and CD44 were shown not to restrict specifically to the reticulocyte plasma membrane. This highlights enucleation as a stage at which excess erythroid membrane proteins are discarded in human erythroblast differentiation. Given the striking restriction of cytoskeleton proteins and the fact that membrane proteins located in macromolecular membrane complexes (e.g. GPA, Rh and RhAG) are segregated to the reticulocyte, we propose that the membrane proteins lost with the nucleus represent an excess mobile population of either individual proteins or protein complexes.  相似文献   

2.
While the temporal sequences of the synthesis and assembly of membrane skeletal proteins has been studied during erythroid maturation, relatively little is known about the events which initiate the assembly of membrane skeleton at the early stages of mammalian erythroid commitment. To investigate the early events that initiate the assembly of the membrane skeleton in mammalian erythroid cells, we have studied the synthesis and assembly of membrane skeletal proteins in murine Rauscher erythroleukemia virus-transformed cells. These cells are blocked in differentiation at around the early progenitor (burst forming unit-erythroid, BFUe) cell stage but can be induced to differentiate in vitro. Pulse-labeling studies reveal that Rauscher cells actively synthesize alpha spectrin, beta spectrin, ankyrin and band 4.1 proteins. However, the synthesis of the band 3 protein and its mRNA are barely detectable in these cells. The peripheral membrane skeletal components assemble only transiently in the membrane skeleton and turn over rapidly, resulting in about 20-fold lower steady state levels than are found in mature erythrocytes. Upon induction with erythropoietin and dimethyl sulfoxide, the mRNA level and synthesis of band 3 are increased about 50-fold. In contrast, the synthesis of spectrin, ankyrin and band 4.1 is increased only about 1.5 to 2.0-fold. However, after induction, the fraction of these proteins assembled on the membrane is increased, their half-lives on the membrane are nearly doubled with a concomitant 4 to 5-fold increase in their steady-state levels. These results suggest that the synthesis of peripheral membrane proteins is detected at the earliest stages of erythroid commitment and increases only slightly during further differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Mammalian erythroid cells undergo enucleation, an asymmetric cell division involving extrusion of a pycnotic nucleus enveloped by the plasma membrane. The mechanisms that power and regulate the enucleation process have remained obscure. Here, we show that deregulation of Rac GTPase during a late stage of erythropoiesis completely blocks enucleation of cultured mouse fetal erythroblasts without affecting their proliferation or differentiation. Formation of the contractile actin ring (CAR) on the plasma membrane of enucleating erythroblasts was disrupted by inhibition of Rac GTPases. Furthermore, we demonstrate that mDia2, a downstream effector of Rho GTPases and a formin protein required for nucleation of unbranched actin filaments, is also required for enucleation of mouse fetal erythroblasts. We show that Rac1 and Rac2 bind to mDia2 in a GTP-dependent manner and that downregulation of mDia2, but not mDia1, by small interfering RNA (siRNA) during the late stages of erythropoiesis blocked both CAR formation and erythroblast enucleation. Additionally, overexpression of a constitutively active mutant of mDia2 rescued the enucleation defects induced by the inhibition of Rac GTPases. These results reveal important roles for Rac GTPases and their effector mDia2 in enucleation of mammalian erythroblasts.  相似文献   

4.
Terminal differentiation of mammalian erythroid progenitors involves 4-5 cell divisions and induction of many erythroid important genes followed by chromatin and nuclear condensation and enucleation. The protein levels of c-Myc (Myc) are reduced dramatically during late stage erythroid maturation, coinciding with cell cycle arrest in G(1) phase and enucleation, suggesting possible roles for c-Myc in either or both of these processes. Here we demonstrate that ectopic Myc expression affects terminal erythroid maturation in a dose-dependent manner. Expression of Myc at physiological levels did not affect erythroid differentiation or cell cycle shutdown but specifically blocked erythroid nuclear condensation and enucleation. Continued Myc expression prevented deacetylation of several lysine residues in histones H3 and H4 that are normally deacetylated during erythroid maturation. The histone acetyltransferase Gcn5 was up-regulated by Myc, and ectopic Gcn5 expression partially blocked enucleation and inhibited the late stage erythroid nuclear condensation and histone deacetylation. When overexpressed at levels higher than the physiological range, Myc blocked erythroid differentiation, and the cells continued to proliferate in cytokine-free, serum-containing culture medium with an early erythroblast morphology. Gene expression analysis demonstrated the dysregulation of erythropoietin signaling pathway and the up-regulation of several positive regulators of G(1)-S cell cycle checkpoint by supraphysiological levels of Myc. These results reveal an important dose-dependent function of Myc in regulating terminal maturation in mammalian erythroid cells.  相似文献   

5.
Interactions between integral proteins of the plasma membrane and the cytoskeleton may be important for localizing certain membrane proteins in a nonrandom fashion at specialized domains of the cell surface. Here, we show that ankyrin, the key protein for the linkage of the erythrocyte anion exchanger (band 3) to the spectrin-based membrane cytoskeleton, is also present in kidney distal tubular cells where ankyrin is precisely colocalized with Na+,K+-ATPase. Both proteins are confined to the basolateral plasma membrane and are absent from the apical membrane, the junctional complex and the membrane surface that contacts the basal lamina. Purified Na+,K+-ATPase of sheep and pig kidney contains a binding site for erythrocyte ankyrin as demonstrated by immunoprecipitation experiments. A band 3-like binding site for ankyrin is likely, since binding of ankyrin to Na+,K+-ATPase could be inhibited in a competitive fashion by the isolated cytoplasmic domain of erythrocyte band 3.  相似文献   

6.
Analysis of the expression and assembly of the anion transporter by metabolic pulse-chase and steady-state protein and RNA measurements reveals that the extent of association of band 3 with the membrane cytoskeleton varies during chicken embryonic development. Pulse-chase studies have indicated that band 3 polypeptides do not associate with the membrane cytoskeleton until they have been transported to the plasma membrane. At this time, band 3 polypeptides are slowly recruited, over a period of hours, onto a preassembled membrane cytoskeletal network and the extent of this cytoskeletal assembly is developmentally regulated. Only 3% of the band 3 polypeptides are cytoskeletal-associated in 4-d erythroid cells vs. 93% in 10-d erythroid cells and 36% in 15-d erythroid cells. This observed variation appears to be regulated primarily at the level of recruitment onto the membrane cytoskeleton rather than by different transport kinetics to the membrane or differential turnover of the soluble and insoluble polypeptides and is not dependent upon the lineage or stage of differentiation of the erythroid cells. Steady-state protein and RNA analyses indicate that the low levels of cytoskeletal band 3 very early in development most likely result from limiting amounts of ankyrin and protein 4.1, the membrane cytoskeletal binding sites for band 3. As embryonic development proceeds, ankyrin and protein 4.1 levels increase with a concurrent rise in the level of cytoskeletal band 3 until, on day 10 of development, virtually all of the band 3 polypeptides are cytoskeletal bound. After day 10, the levels of total and cytoskeletal band 3 decline, whereas ankyrin and protein 4.1 continue to accumulate until day 18, indicating that the cytoskeletal association of band 3 is not regulated solely by the availability of membrane cytoskeletal binding sites at later stages of development. Thus, multiple mechanisms appear to regulate the recruitment of band 3 onto the erythroid membrane cytoskeleton during chicken embryonic development.  相似文献   

7.
In the present study we have examined several types of nucleated cells with respect to the occurrence and subcellular distribution of ankyrin. In red blood cells ankyrin links and integral membrane protein, the anion channel (band 3), to the subplasmalemmal cytoskeleton which is comprised largely of spectrin and actin. Since nucleated cells also contain spectrin and other constituents of the erythrocyte membrane skeleton it is possible that in nonerythroid cells ankyrin is also important for connecting membrane proteins to the cytoskeleton. We show here that membrane fractions of rat brain and various types of rat epithelial cells contain analogs of ankyrin at Mr 210,000 and 190,000 that are immunologically related to human erythrocyte ankyrin. In transporting epithelial cells, such as epithelia of the intestine, pancreas, prostate or kidney (various species) the analogs of ankyrin are confined to the basolateral plasma membrane and are absent from the apical membrane. In neurons of the central and peripheral nervous system and in photoreceptors of the retina, ankyrin was found restricted to the membrane of the cell body and axons and was not detected by immunostaining along the afferent processes (dendrites, photoreceptor inner and outer segments). Linkage of integral membrane proteins via ankyrin to the spectrin-based membrane cytoskeleton may provide a molecular basis for restricting the lateral mobility of certain membrane proteins and localizing them in a nonrandom or polarized fashion at specialized domains of the plasma membrane.  相似文献   

8.
Infection of erythrocytes by the malaria parasite Plasmodium falciparum results in the export of several parasite proteins into the erythrocyte cytoplasm. Changes occur in the infected erythrocyte due to altered phosphorylation of proteins and to novel interactions between host and parasite proteins, particularly at the membrane skeleton. In erythrocytes, the spectrin based red cell membrane skeleton is linked to the erythrocyte plasma membrane through interactions of ankyrin with spectrin and band 3. Here we report an association between the P. falciparum histidine-rich protein (PfHRP1) and phosphorylated proteolytic fragments of red cell ankyrin. Immunochemical, biochemical and biophysical studies indicate that the 89 kDa band 3 binding domain and the 62 kDa spectrin-binding domain of ankyrin are co-precipitated by mAb 89 against PfHRP1, and that native and recombinant ankyrin fragments bind to the 5' repeat region of PfHRP1. PfHRP1 is responsible for anchoring the parasite cytoadherence ligand to the erythrocyte membrane skeleton, and this additional interaction with ankyrin would strengthen the ability of PfEMP1 to resist shear stress.  相似文献   

9.
Transformed murine hematopoietic cells of several lineages bound the fluorescent membrane probe merocyanine 540, whereas their normal counterparts did not. Similar selective binding was reproduced in artificial liposomes which bound this probe above their phase transition temperature, but not below it. The regions of the membrane to which merocyanine 540 binds along with the receptors for the lectin concanavalin A, but not the receptors for the lectin wheat germ agglutinin, were rearranged during the course of induced differentiation of erythroleukemia cells. Based on these findings, we propose a model of hematopoietic cell surface differentiation in which proteins such as concanavalin A receptors, which are destined for removal from the plasma membrane, are specifically associated with disordered, liquid-like lipid domains which can be visualized with merocyanine 540. For the specific case of erythroid differentiation, these domains and their associated proteins are collected at the region of the membrane where nuclear extrusion occurs and are eliminated from the reticulocyte plasma membrane by the enucleation event.  相似文献   

10.
《The Journal of cell biology》1989,109(6):3005-3013
We have used murine splenic erythrolasts infected with the anemia- inducing strain of Friend virus (FVA cells), as an in vitro model to study cytoskeletal elements during erythroid maturation and enucleation. FVA cells are capable of enucleating in suspension culture in vitro, indicating that associations with an extracellular matrix or accessory cells are not required for enucleation to occur. The morphology of FVA cells undergoing enucleation is nearly identical to erythroblasts enucleating in vivo. The nucleus is segregated to one side of the cell and then appears to be pinched off resulting in an extruded nucleus and reticulocyte. The extruded nucleus is surrounded by an intact plasma membrane and has little cytoplasm associated with it. Newly formed reticulocytes have an irregular shape, are vacuolated and contain all cytoplasmic organelles. The spatial distribution of several cytoskeletal proteins was examined during the maturation process. Spectrin was found associated with the plasma membrane of FVA cells at all stages of maturation but was segregated entirely to the incipient reticulocyte during enucleation. Microtubules formed cages around nuclei in immature FVA cells and were found primarily in the incipient reticulocyte in cells undergoing enucleation. Reticulocytes occasionally contained microtubules, but a generalized diffuse distribution of tubulin was more common. Vimentin could not be detected at any time in FVA cell maturation. Filamentous actin (F-actin) had a patchy distribution at the cell surface in the most immature erythroblasts, but F-actin bundles could be detected as the cells matured. F-actin was found concentrated between the extruding nucleus and incipient reticulocyte in enucleating erythroblasts. Newly formed reticulocytes exhibited punctate actin fluorescence whereas extruded nuclei lacked F-actin. Addition of colchicine, vinblastine, or taxol to cultures of FVA cells did not affect enucleation. In contrast, cytochalasin D caused a complete inhibition of enucleation that could be reversed by washing out the cytochalasin D. These results demonstrate that F-actin plays a role in enucleation while the complete absence of microtubules or excessive numbers of polymerized microtubules do not affect enucleation.  相似文献   

11.
Kidney Na+,K(+)-ATPase has been recently shown to bind erythroid ankyrin and to colocalize with ankyrin at the basolateral cell surface of kidney epithelial cells. These observations suggest that Na+,K(+)-ATPase is linked via ankyrin to the spectrin/actin-based membrane cytoskeleton. In the present study we show that Na+,K(+)-ATPase and analogs of spectrin, ankyrin and actin copurify from detergent extracts of pig kidney and parotid gland membranes. Actin, spectrin and ankyrin were extracted from purified Na+,K(+)-ATPase microsomes at virtually identical conditions as their counterparts from the erythrocyte membrane, i.e., 1 mM EDTA (spectrin, actin) and 1 M KCl (ankyrin). Visualization of the stripped proteins by rotary shadowing revealed numerous elongated spectrin-like dimers (100 nm) and tetramers (215 nm), a fraction of which (17%) was associated with globular (10 nm) ankyrin-like particles. Like erythrocyte ankyrin, kidney ankyrin was cleaved into a soluble 72 kDa fragment and a membrane-bound 90 kDa fragment. Consistent with our previous immunocytochemical findings on the pig kidney, Na+,K(+)-ATPase and ankyrin were found to be colocalized at the basolateral plasma membrane of striated ducts and acini of the pig parotid gland. The present findings confirm and extend the recently proposed concept that in polarized epithelial cells Na+,K(+)-ATPase may serve as major attachment site for the spectrin-based membrane cytoskeleton to the basolateral cell domain. Connections of integral membrane proteins to the cytoskeleton may help to place these proteins at specialized domains of the cell surface and to prevent them from endocytosis.  相似文献   

12.
We have examined the associations of purified red cell band 4.2 with red cell membrane and membrane skeletal proteins using in vitro binding assays. Band 4.2 bound to the purified cytoplasmic domain of band 3 with a Kd between 2 and 8 X 10(-7) M. Binding was saturable and slow, requiring 2-4 h to reach equilibrium. This finding confirms previous work suggesting that the principal membrane-binding site for band 4.2 lies within the 43-kDa cytoplasmic domain of band 3 (Korsgren, C., and Cohen, C. M. (1986) J. Biol. Chem. 261, 5536-5543). Band 4.2 also bound to purified ankyrin in solution with a Kd between 1 and 3.5 X 10(-7) M. As with the cytoplasmic domain of band 3, binding was saturable and required 4-5 h to reach equilibrium. Reconstitution with ankyrin of inside-out vesicles stripped of all peripheral proteins had no effect upon band 4.2 binding to membranes; similarly, reconstitution with band 4.2 had no effect upon ankyrin binding. This shows that ankyrin and band 4.2 bind to distinct loci within the 43-kDa band 3 cytoplasmic domain. Coincubation of ankyrin and band 4.2 in solution partially blocked the binding of both proteins to the membrane. Similarly, coincubation of bands 4.1 and 4.2 in solution partially blocked binding of both to membranes. In all cases, the data suggest the possibility that domains on each of these proteins responsible for low affinity membrane binding are principally affected. The data also provide evidence for an association of band 4.2 with band 4.1. Our results show that band 4.2 can form multiple associations with red cell membrane proteins and may therefore play an as yet unrecognized structural role on the membrane.  相似文献   

13.
V. Bennett  J. Steiner  J. Davis 《Protoplasma》1988,145(2-3):89-94
Summary The purpose of this review is to summarize recent progress in understanding interactions of spectrin with membranes from brain and other tissues. Spectrin has at least two choices in linkages with the membrane, one through ankyrin, which in turn is associated with integral membrane proteins, and another linkage directly with integral membrane sites identified recently in brain membranes. Some of the integral membrane protein sites in brain bind preferentially with one spectrin isoform, while some can interact with both erythroid and the general isoform of spectrin. Ankyrin also has different isoforms, and these exhibit specificity in binding to spectrin isoforms and associate with distinct integral membrane proteins. The membrane binding sites for ankyrin include several integral membrane proteins, which are differentially expressed in different cells: the anion exchanger of intercalated cells of mammalian kidney, the sodium/potassium ATPase of kidney, and the voltage-dependent sodium channel of neurons. Ankyrin is present in many other cell types and it is likely that additional ankyrin-binding proteins will be identified. Each of the proteins that now are candidates for ankyrin binding proteins are ion channels or transporters and are localized in specialized cellular domains. The polarized localization of the ankyrin-associated membrane proteins is an essential aspect of their function at a physiological level. Spectrin and ankyrin thus exhibit an unsuspected diversity in protein linkages and have the potential for cell domain-specific interactions with a variety of membrane proteins.  相似文献   

14.
A population of band 3 proteins in the human erythrocyte membrane is known to have restricted rotational mobility due to interaction with cytoskeletal proteins. We have further investigated the cause of this restriction by measuring the effects on band 3 rotational mobility of rebinding ankyrin and band 4.1 to ghosts stripped of these proteins as well as spectrin and actin. Rebinding either ankyrin or 4.1 alone has no detectable effect on band 3 mobility. Rebinding both these proteins together does, however, reimpose a restriction on band 3 rotation. The effect on band 3 rotational mobility of rebinding ankyrin and 4.1 are similar irrespective of whether or not band 4.2 is removed from the membrane. We suggest that ankyrin and 4.1 together promote the formation of slowly rotating clusters of band 3.  相似文献   

15.
16.
This report presents evidence for diversity in membrane binding sites between three forms of ankyrin: brain ankyrin, erythrocyte ankyrin, and a variant of erythrocyte ankyrin (protein 2.2) present in circulating human erythrocytes that is missing a regulatory domain. These ankyrins were compared with respect to binding to kidney microsomes and exhibited the following behavior. 1) Brain and erythrocyte ankyrin each bind to distinct sites. 2) Protein 2.2 is an activated ankyrin that binds to all of the sites accessible to both brain and erythrocyte ankyrin and, in addition, associates with its own specialized sites. 3) The specificity of these membrane sites for various ankyrins is not absolute but reflects 2.5-10-fold differences in relative affinities. Further evidence that binding sites of different ankyrins share some common features is that the cytoplasmic domain of the erythrocyte anion transporter associates with all three ankyrins and displaces binding of the ankyrin variants to kidney membranes. The differences between erythrocyte and brain ankyrins in association with kidney membranes are likely to have physiological relevance to kidney because immunologically related isoforms of ankyrin are expressed in this tissue: erythroid ankyrin which is restricted to the basolateral domains of two cell types and a brain-related ankyrin expressed in all cells and present on apical as well as basolateral membrane surfaces. An unanticipated observation was the discovery of a membrane-associated ankyrin protease in kidney that is specific for erythrocyte ankyrin and may selectively activate the erythroid isoform of ankyrin. The variety of binding sites within this group of ankyrin proteins supports the idea that ankyrins are capable of linking a number of different membrane proteins to the spectrin-actin skeleton.  相似文献   

17.
Erythroid enucleation is critical for terminal differentiation of red blood cells, and involves extrusion of the nucleus by orthochromatic erythroblasts to produce reticulocytes. Due to the difficulty of synchronizing erythroblasts, the molecular mechanisms underlying the enucleation process remain poorly understood. To elucidate the cellular program governing enucleation, we utilized a novel chemical screening approach whereby orthochromatic cells primed for enucleation were enriched ex vivo and subjected to a functional drug screen using a 324 compound library consisting of structurally diverse, medicinally active and cell permeable drugs. Using this approach, we have confirmed the role of HDACs, proteasomal regulators and MAPK in erythroid enucleation and introduce a new role for Cyclin-dependent kinases, in particular CDK9, in this process. Importantly, we demonstrate that when coupled with imaging analysis, this approach provides a powerful means to identify and characterize rate limiting steps involved in the erythroid enucleation process.  相似文献   

18.
The membrane-skeleton of adult chicken neurons in the cerebellum and optic system is composed of polypeptides structurally and functionally related to the erythroid proteins spectrin and ankyrin, respectively. Neuronal spectrin comprises two distinct complexes that share a common alpha subunit (Mr 240,000) but which have structurally distinct polymorphic subunits (beta' beta spectrin; Mr 220/225,000; gamma spectrin, Mr 235,000); the brain-specific form (alpha gamma spectrin or fodrin) and an erythrocyte-specific form (alpha beta' beta spectrin). Two structurally related isoforms of ankyrin have also been identified and are termed alpha (Mr 260,000) and beta (Mr 237,000) ankyrin. Immunofluorescence demonstrates that the variants of spectrin and ankyrin, respectively, have different distributions within neurons. On the one hand, alpha gamma spectrin and beta ankyrin are present throughout the neuron, in the perikaryon, dendrites, and axon, whereas alpha beta' spectrin and alpha ankyrin are localized exclusively in the perikaryon and dendrites where they are actively segregated from alpha gamma spectrin and other components of axonal transport. This asymmetric distribution of spectrin and ankyrin isoforms is established in distinct stages during neuronal morphogenesis. Early in cerebellar and retinal development, alpha gamma spectrin is expressed in mitotic cells. Subsequently beta ankyrin and alpha gamma spectrin are coexpressed in postmitotic cells and gradually accumulate on the plasma membrane in a uniform pattern throughout the neuron during the phase of cell growth. At the onset of synaptogenesis and the cessation of cell growth, their levels of synthesis decline sharply while the assembled proteins remained as stable membrane components. Concomitantly, there is a dramatic induction in the accumulation of alpha ankyrin and alpha beta' spectrin, whose assembly is limited to the plasma membrane of the perikarya and dendrites. These results demonstrate that two successive, developmentally regulated programs of ankyrin and spectrin expression and patterning on the plasma membrane are involved in the assembly of the spectrin-based asymmetry in the neuronal membrane-skeleton, and that their asymmetric distribution is actively maintained throughout the life of the neuron.  相似文献   

19.
Membrane and membrane skeleton proteins were examined in erythroid progenitor cells during terminal differentiation. The employed model system of erythroid differentiation was that in which proerythroblasts from mice infected with the anemia-inducing strain of Friend virus differentiate in vitro in response to erythropoietin (EP). With this system, developmentally homogeneous populations of cells can be examined morphologically and biochemically as they progress from proerythroblasts through enucleated reticulocytes. alpha and beta spectrins, the major proteins of the erythrocyte membrane skeleton, are synthesized in the erythroblasts both before and after EP exposure. At all times large portions of the newly synthesized spectrins exist in and are turned over in the cytoplasm. The remaining newly synthesized spectrin is found in a cellular fraction containing total membranes. Pulse-chase experiments show that little of the cytoplasmic spectrins become membrane associated, but that the proportion of newly synthesized spectrin which is membrane associated increases as maturation proceeds. A membrane fraction enriched in plasma membranes has significant differences in the stoichiometry of spectrin accumulation as compared to total cellular membranes. Synthesis of band 3 protein, the anion transporter, is induced only after EP addition to the erythroblasts. All of the newly synthesized band 3 is membrane associated. A two-dimensional gel survey was conducted of newly synthesized proteins in the plasma membrane enriched fraction of the erythroblasts as differentiation proceeded. A majority of the newly synthesized proteins remain in the same proportion to each other during maturation; however, a few newly synthesized proteins greatly increase following EP induction while others decrease markedly. Of the radiolabeled proteins observed in two dimensional gels, only the spectrins, band 3 and actin become major proteins of the mature erythrocyte membrane. Examination of total proteins of the plasma membrane enriched fractions of EP-treated erythroblasts using silver staining and 32P autoradiography show that many proteins and phosphoproteins are selectively eliminated from this fraction late in the course of differentiation during the reticulocyte stage. The selective removal of many proteins at the reticulocyte stage of development combined with previous selective synthesis and accumulation of some specific proteins such as alpha and beta spectrin and band 3 in the differentiating erythroblasts lead to the final mammalian erythrocyte membrane structure.  相似文献   

20.
Cell-cell contact is an important determinant in the formation of functionally distinct plasma membrane domains during the development of epithelial cell polarity. In cultures of Madin-Darby canine kidney (MDCK) epithelial cells, cell-cell contact induces the assembly and accumulation of the Na+,K+-ATPase and elements of the membrane-cytoskeleton (ankyrin and fodrin) at the regions of cell-cell contact. Epithelial cell-cell contact appears to be regulated by the cell adhesion molecule uvomorulin (E-cadherin) which also becomes localized at the lateral plasma membrane of polarized cells. We have sought to determine whether the colocalization of these proteins reflects direct molecular interactions which may play roles in coordinating cell-cell contact and the assembly of the basal-lateral domain of the plasma membrane. Recently, we identified a complex of proteins containing the Na+,K+-ATPase, ankyrin, and fodrin in extracts of whole MDCK cells (Nelson, W.J., and R. W. Hammerton. 1989. J. Cell Biol. 108:893-902). We have now examined cell extracts for protein complexes containing the cell adhesion molecule uvomorulin. Proteins were solubilized from whole MDCK cells and fractionated in sucrose gradients. The sedimentation profile of solubilized uvomorulin is well separated from the majority of cell surface proteins, suggesting that uvomorulin occurs in a protein complex. A distinct portion of uvomorulin (30%) cosediments with ankyrin and fodrin (approximately 10.5S). Further fractionation of cosedimenting proteins in nondenaturing polyacrylamide gels reveals a discrete band of proteins that binds antibodies specific for uvomorulin, Na+,K+-ATPase, ankyrin, and fodrin. Significantly, ankyrin and fodrin, but not Na+K+-ATPase, coimmunoprecipitate in a complex with uvomorulin using uvomorulin antibodies. This result indicates that separate complexes exist containing ankyrin and fodrin with either uvomorulin or Na+,K+-ATPase. These results are discussed in the context of the possible roles of uvomorulin-induced cell-cell contact in the assembly of the membrane-cytoskeleton and associated membrane proteins (e.g., Na+,K+-ATPase) at the contact zone and in the development of cell polarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号