首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuronostatin is a recently described neuropeptide that is derived from the somatostatin preprohormone. We have shown previously that neuronostatin led to a biphasic, dose-related increase in mean arterial pressure when injected into the lateral cerebroventricle of adult, male rats. Because neuronostatin depolarized both magnocellular and parvocellular, paraventricular nucleus neurons in hypothalamic slice preparations, we hypothesized that neuronostatin elevated mean arterial pressure first by stimulating sympathetic nervous system activity followed by the release of a pressor hormone, specifically vasopressin. We found that the first phase of neuronostatin-induced increase in mean arterial pressure was reversed by pretreatment with phentolamine, indicating that phase 1 was, indeed, due to an increase in sympathetic activity. We also found that centrally injected neuronostatin led to a dose-related increase in vasopressin secretion in a time course consistent with the peak of the second phase. Furthermore, the second phase of arterial pressure elevation was reversed by pretreatment with a vasopressin 1 receptor antagonist, indicating that phase 2 was likely due to an increase in vasopressin secretion. We previously have shown that the anorexigenic and antidipsogenic effects of neuronostatin were reversed by pretreatment with the melanocortin 3/4 receptor antagonist, SHU9119, so we evaluated the ability of SHU9119 to reverse the effects of neuronostatin on MAP and vasopressin secretion. We found that SHU9119 abrogated the second phase of neuronostatin-induced increase in MAP and neuronostatin-induced vasopressin secretion, indicating that neuronostatin acts through the central melanocortin system to increase vasopressin release, ultimately leading to an elevation in MAP.  相似文献   

2.
The effects of vanadate on cardiovascular function and on the secretion of renin and vasopressin were investigated by infusing sodium orthovanadate (0.32 mu mole/kg X min) intravenously into five conscious dogs. Vanadate caused significant increases in mean arterial pressure, total peripheral resistance, pulmonary arterial pressure, and cardiac output. These data illustrate that the hemodynamic effects of vanadate in the conscious dog are similar to those of the anesthetized dog but that minor differences do exist. Vanadate significantly suppressed plasma renin activity, but plasma vasopressin was unchanged. The effects of vanadate also were investigated in the same dogs on another day after administration of the calcium channel blocker, verapamil (0.3 mg/kg bolus + 0.01 mg/kg X min). After calcium channel blockade, the increases in arterial pressure and pulmonary arterial pressure induced by vanadate were attenuated, and cardiac output did not increase. Calcium channel blockade also prevented the vanadate-induced decrease in plasma renin activity. These data suggest that the cardiovascular and humoral alterations produced by vanadate in the conscious dog are at least partially mediated by changes in intracellular calcium.  相似文献   

3.
In the current study, we aimed to determine the cardiovascular effects of arachidonic acid and peripheral mechanisms mediated these effects in normotensive conscious rats. Studies were performed in male Sprague Dawley rats. Arachidonic acid was injected intracerebroventricularly (i.c.v.) at the doses of 75, 150 or 300 microg and it caused dose- and time-dependent increase in mean arterial pressure and decrease in heart rate in normal conditions. Maximal effects were observed 10 min after 150 and 300 microg dose of arachidonic acid and lasted within 30 min. In order to evaluate the role of main peripheral hormonal mechanisms in those cardiovascular effects, plasma adrenaline, noradrenaline, vasopressin levels and renin activity were measured after arachidonic acid (150 microg; i.c.v.) injection. Centrally injected arachidonic acid increased plasma levels of all these hormones and renin activity. Intravenous pretreatments with prazosin (0.5 mg/kg), an alpha1 adrenoceptor antagonist, [beta-mercapto-beta,beta-cyclopentamethylenepropionyl1, O-Me-Tyr2-Arg8]-vasopressin (10 microg/kg), a vasopressin V1 receptor antagonist, or saralasin (250 microg/kg), an angiotensin II receptor antagonist, partially blocked the pressor response to arachidonic acid (150 microg; i.c.v.) while combined administration of these three antagonists completely abolished the effect. Moreover, both individual and combined antagonist pretreatments fully blocked the bradycardic effect of arachidonic acid. In conclusion, our findings show that centrally administered arachidonic acid increases mean arterial pressure and decreases heart rate in normotensive conscious rats and the increases in plasma adrenaline, noradrenaline, vasopressin levels and renin activity appear to mediate the cardiovascular effects of the drug.  相似文献   

4.
We determined the cardiovascular and neurohormonal responses to intracerebroventricular injection of leptin in conscious rabbits. Intracerebroventricular injection of leptin elicited dose-related increases in mean arterial pressure and renal sympathetic nerve activity while producing no consistent, significant increases in heart rate. Peak values of mean arterial pressure and renal sympathetic nerve activity induced by intracerebroventricular injection of 50 microgram of leptin (+17.3 +/- 1.2 mmHg and +47.9 +/- 12.0%) were obtained at 10 and 20 min after injection, respectively. Plasma catecholamine concentrations significantly increased at 60 min after intracerebroventricular injection of leptin (control vs. 60 min; epinephrine: 33 +/- 12 vs. 97 +/- 27 pg/ml, P < 0.05; norepinephrine: 298 +/- 39 vs. 503 +/- 86 pg/ml, P < 0.05). Intracerebroventricular injection of leptin also caused significant increases in plasma vasopressin and glucose levels. However, pretreatment with intravenous injection of pentolinium (5 mg/kg), a ganglion blocking agent, abolished these cardiovascular and neurohormonal responses. On the other hand, intravenous injection of the same dose of leptin (50 microgram) as used in the intracerebroventricular experiment failed to cause any cardiovascular and renal sympathetic nerve responses. These results suggest that intracerebroventricular leptin acts in the central nervous system and activates sympathoadrenal outflow, resulting in increases in arterial pressure and plasma glucose levels in conscious rabbits.  相似文献   

5.
In chloralose-anaesthetized dogs, plasma vasopressin concentration was measured by radioimmunoassay during step changes in blood volume of 4 mL/kg over a range of blood volume from +20 to -12 mL/kg. Blood volume was both increased and decreased over this range. There was a logarithmic relationship between blood volume and plasma vasopressin concentration over the range of blood volume examined. There was also a logarithmic relationship between blood volume and mean left atrial pressure. Linear regression between the natural logarithm of plasma vasopressin concentration and mean arterial pressure, heart rate, and mean left atrial pressure gave the highest correlation coefficient (r = 0.94) between vasopressin and mean arterial pressure. The results support the hypothesis that there are sensitive mechanisms controlling the release of vasopressin in response to changes in blood volume. Observations were also made of changes in atrial pressure and activity of left atrial receptors during changes in blood volume over the same range. The results suggest that changes in atrial receptor activity are unlikely to be the major cause of the large increases in plasma vasopressin concentration associated with hypovolemia.  相似文献   

6.
Neurons containing arginine vasopressin (AVP) have been shown to project from the paraventricular nucleus of the hypothalamus to the nucleus tractus solitarius (NTS) in the medulla. We investigated whether AVP acts in brain stem regions to influence sympathoadrenal outflow. Cannulae were implanted into the fourth ventricle of rats 7 days prior to the experiment. The effects of intracerebroventricular (icv) injections of AVP, the vehicle, and AVP antagonist, d(CH2)5Tyr(Me)AVP, on mean arterial pressure (MAP) and plasma noradrenaline (NA) and adrenaline (A) levels were determined in conscious unrestrained rats. Injections of AVP (icv, 23 and 73 ng/kg) but not the vehicle increased MAP and plasma NA and A levels. In contrast, iv injection of AVP increased MAP but decreased plasma concentrations of A and NA. The pressor response to icv injection of AVP was abolished by prior icv injection of AVP antagonist. Injection of AVP antagonist (icv, 0.5 and 1.5 microgram/kg) had no effect on MAP or plasma NA or A levels. These results show that centrally injected AVP activates sympathoadrenal outflow, possibly via an inhibition of baroreceptor reflexes. Since centrally administered AVP antagonist did not influence MAP or plasma NA or A levels, it appears that endogenously released AVP does not have a tonic influence on central cardiovascular reflex system in conscious, unrestrained rats.  相似文献   

7.
We hypothesized that the respiratory baroreflex in conscious rats is either more transient, or has a higher pressure threshold than in other species. To characterize the effect of arterial pressure changes on respiration in conscious rats, ventilation (V) was measured by the plethysmographic technique during injections, or infusions, of pressor and depressor agents. Bolus injections of angiotensin II (Ang II) or arginine vasopressin (AVP), transiently increased mean arterial pressure (MAP; mean +/- SE) 43+/-6 and 28+/-5 mm Hg (1 mm Hg = 133.3 Pa), respectively, and immediately reduced tidal volume (Vt) and, in the case of AVP, V. In contrast, by 10 min of a sustained elevation of MAP (40+/-3 mm Hg) with infusion of Ang II, Vt, f, and V were not different from control levels. Bolus injection of sodium nitroprusside (SNP) to lower MAP (-28+/-3 mm Hg) immediately increased breathing frequency (f) and V, whereas sustained infusion of SNP to lower MAP (-21+/-3 mm Hg) did not change for V at 10 and 20 min. In conscious rats, both injection and infusion of the pressor agent PE (+40 to 50 mm Hg) stimulated f and V; this contrasted with anesthetized rats where PE inhibited f and V, as reported by others. In conscious rats, respiratory responses associated with baroreflexes adapt rapidly and, in the case of PE, can be overridden by some other mechanism.  相似文献   

8.
Saline was infused intravenously for 90 min to normal, sodium-replete conscious dogs at three different rates (6, 20, and 30 micromol x kg(-1) x min(-1)) as hypertonic solutions (HyperLoad-6, HyperLoad-20, and HyperLoad-30, respectively) or as isotonic solutions (IsoLoad-6, IsoLoad-20, and IsoLoad-30, respectively). Mean arterial blood pressure did not change with any infusion of 6 or 20 micromol x kg(-1) x min(-1). During HyperLoad-6, plasma vasopressin increased by 30%, although the increase in plasma osmolality (1.0 mosmol/kg) was insignificant. During HyperLoad-20, plasma ANG II decreased from 14+/-2 to 7+/-2 pg/ml and sodium excretion increased markedly (2.3+/-0.8 to 19+/-8 micromol/min), whereas glomerular filtration rate (GFR) remained constant. IsoLoad-20 decreased plasma ANG II similarly (13+/-3 to 7+/-1 pg/ml) concomitant with an increase in GFR and a smaller increase in sodium excretion (1.9+/-1.0 to 11+/-6 micromol/min). HyperLoad-30 and IsoLoad-30 increased mean arterial blood pressure by 6-7 mm Hg and decreased plasma ANG II to approximately 6 pg/ml, whereas sodium excretion increased to approximately 60 micromol/min. The data demonstrate that, during slow sodium loading, the rate of excretion of sodium may increase 10-fold without changes in mean arterial blood pressure and GFR and suggest that the increase may be mediated by a decrease in plasma ANG II. Furthermore, the vasopressin system may respond to changes in plasma osmolality undetectable by conventional osmometry.  相似文献   

9.
A role for arginine vasopressin has been implicated in the compensatory control of arterial blood pressure in several animal models with reported increases in plasma levels of arginine vasopressin. A threefold elevation in plasma vasopressin has been reported in conscious dogs following constriction of the inferior vena cava. In the present study, infusion of the arginine vasopressin antagonist [1-(beta-mercapto-beta,beta-cyclopentamethylenepropionic acid), 2-O-methyltyrosine] Arg8-vasopressin into conscious dogs with chronic caval constriction did not decrease mean arterial blood pressure. However, the dose of infused antagonist completely blocked the pressor response to 2 micrograms of exogenous vasopressin. Also the antagonist produced no effect on heart rate, plasma renin activity, or urinary volume and electrolyte excretions. A slight, transient increase (P less than or equal to 0.05) was observed in creatinine clearance and in PAH clearance following antagonist infusion, suggesting a possible decrease in renal vascular resistance. These data suggest that the direct vasoconstrictor actions of vasopressin contribute minimally, if at all, to blood pressure maintenance following chronic caval constriction. Alternatively, blockade of endogenous vasopressin receptors at the level of peripheral arterioles may have resulted in no depressor response due to a masking of this response by other compensatory hormonal and neural pressor systems.  相似文献   

10.
Increases in central venous pressure and arterial pressure have been reported to have variable effects on normal arginine vasopressin (AVP) levels in healthy humans. To test the hypothesis that baroreceptor suppression of AVP secretion might be more likely if AVP were subjected to a prior osmotic stimulus, we investigated the response of plasma AVP to increased central venous pressure and mean arterial pressure after hypertonic saline in six normal volunteers. Plasma AVP, serum osmolality, heart rate, central venous pressure, mean arterial pressure, and pulse pressure were assessed before and after a 0.06 ml.kg-1.min-1-infusion of 5% saline give over 90 min and then after 10 min of 30 degrees head-down tilt and 10 min of head-down tilt plus lower-body positive pressure. Hypertonic saline increased plasma AVP. After head-down tilt, which did not change heart rate, pulse pressure, or mean arterial pressure but did increase central venous pressure, plasma AVP fell. Heart rate, pulse pressure, and central venous pressure were unchanged from head-down tilt values during lower-body positive pressure, whereas mean arterial pressure increased. Plasma AVP during lower-body positive pressure was not different from that during tilt. Osmolality increased during the saline infusion but was stable throughout the remainder of the study. These data therefore suggest that an osmotically stimulated plasma AVP level can be suppressed by baroreflex activation. Either the low-pressure cardiopulmonary receptors (subjected to a rise in central venous pressure during head-down tilt) or the sinoaortic baroreceptors (subjected to hydrostatic effects during head-down tilt) could have been responsible for the suppression of AVP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
To confirm and extend the results of previous studies which demonstrated central cardiovascular effects of vasopressin in anesthetized rats, we determined blood pressure and heart rate changes for 30 minutes after intracerebroventricular injections of arginine vasopressin, arginine vasotocin and oxytocin in conscious rats. As compared to sham injections, significantly greater increases in either systolic or diastolic blood pressure were noted over the 30 minutes which followed the injection of 0.15, 1.0 or 10.0 nM of either vasopressin or vasotocin. In animals given vasopressin, plasma levels of the peptide were determined. There was a substantial increase in plasma vasopressin only after the highest dose. Overall blood pressure responses to doses of oxytocin as high as 100 nM were not significantly different than sham injections. Heart rate following both vasopressin and vasotocin was increased at 0.15 nM, was initially decreased then increased at 1.0 nM and was substantially decreased after the 10.0 nM dose. There was a significant increase in heart rate at the 10.0 nM and 100 nM doses of oxytocin. Dose response curves for systolic blood pressure and heart rate 20 minutes after injection were similar for vasopressin and vasotocin. We conclude that arginine vasopressin has significant central pressor and tachycardic effects in conscious rats, and it is related, at least in part, to the tail structure of the peptide, which is shared with arginine vasotocin.  相似文献   

12.
It is likely that central cholinergic pathways to the paraventricular and supraoptic nuclei participate in the control of vasopressin release. We have shown previously that this is due, in part, to activation of muscarinic, but not nicotinic, receptors in the paraventricular nucleus. There is, however, reason to believe that this cholinergic effect in the supraoptic nucleus may be the result of activation of nicotinic receptors. To test this possibility, we have studied in conscious unrestrained rats the effect of microinjection of muscarinic and nicotinic agonists into the supraoptic nucleus on vasopressin release, mean arterial blood pressure, and heart rate. Under ether anesthesia, a stainless steel guide cannula was placed in the supraoptic nucleus 5-7 days before the experiment, and femoral, arterial, and venous catheters were implanted 1 day before the experiment. Microinjection of nicotine into the supraoptic nucleus at doses of 1 and 10 micrograms resulted in transient increases in the plasma vasopressin concentration that were 7-fold and 11-fold greater, respectively, than control values at 3 min. There were also small transient increases in mean arterial blood pressure, but heart rate was unchanged. The microinjection of 2 and 20 ng of oxotremorine, a muscarinic agonist, into the supraoptic nucleus had no effect on the plasma vasopressin concentration, mean arterial blood pressure, or heart rate. These doses of oxotremorine were previously shown to have potent stimulatory effects on vasopressin release when microinjected into the paraventricular nucleus. These findings suggest that the central cholinergic stimulation of vasopressin release is due, in part, to activation of muscarinic receptors in the paraventricular nucleus and nicotinic receptors in the supraoptic nucleus.  相似文献   

13.
Increases in plasma vasopressin and renin activity that occur in response to haemorrhage have been attributed in part to reflex effects from cardiac receptors and sinoaortic baroreceptors, but the relative importance of these different receptors in causing humoral changes during haemorrhage in conscious dogs has not been reported. We investigated this question by hemorrhaging 6 sham-operated (SO), 6 cardiac-denervated (CD), 4 sinoaortic-denervated (SAD), and 4 combined sinoaortic and cardiac-denervated (SACD), conscious dogs. Blood was removed at a rate of 0.9 ml/kg X min. Plasma vasopressin and renin samples were taken during a control period and after 10, 20, and 30 ml/kg of blood had been removed. Results (mean +/- SE) are shown in the tables below. (table; see text) These experiments illustrate that: resting plasma levels of vasopressin and renin in conscious dogs are unaffected by the denervation procedures used in these experiments, the increase in plasma vasopressin that occurs during haemorrhage is mediated largely via cardiac receptors, with a considerably smaller contribution from the sinoaortic baroreceptors, during moderately severe haemorrhage (30 ml/kg) vasopressin secretion can be increased by a mechanism independent of sinoaortic and cardiac reflexes, the increase in plasma renin activity that occurs during haemorrhage is not dependent upon either cardiac or sinoaortic reflexes.  相似文献   

14.
Hemodynamic effects of hypertonic saline in the conscious rat   总被引:1,自引:0,他引:1  
The present study examines the role of vasopressin and the sympathetic nervous system on the hemodynamic effects of an infusion of hypertonic saline (NaCl 1.5 M) in conscious rats. The cardiovascular response to hypertonic saline was similar in both untreated and hexamethonium-pretreated rats. Mean arterial pressure increased by 15 mmHg as a consequence of the elevation of total peripheral resistance, while cardiac index was decreased. The administration of an antagonist to the pressor activity of vasopressin in rats with intact reflexes, partially decreased mean arterial pressure and total peripheral resistance and increased cardiac index toward basal values. In contrast, the hemodynamic response to hypertonic saline was totally reverted when the vasopressin antagonist was injected in the hexamethonium-pretreated rats. The results of the present study indicate that the hypertensive response induced by hypertonic saline in conscious rats is due to the vasoconstrictor effects of both vasopressin and the sympathetic nervous system.  相似文献   

15.
Experiments were conducted in conscious rats to determine whether DOCA-salt treatment could cause an elevation of sodium concentration of cerebrospinal fluid (CSF), which may be responsible for the enhanced activity of sympathetic nervous system (SNS) and increased secretion of vasopressin (AVP). Systolic blood pressure (SBP) and mean arterial pressure (MAP) were gradually but consistently increased by DOCA-salt treatment. Serum Na concentration was similarly increased with time by DOCA-salt, and significantly higher than control in the 4th treatment week. In contrast, DOCA-salt did not alter the CSF Na levels at any time during treatment. A relationship between SBP and CSF Na was never evident at any stage of the DOCA-salt hypertension. The decrease in MAP following administration of the vasopressin V1-receptor antagonist, d(CH2)5Tyr(Me)AVP (30 micrograms/kg), or hexamethonium (30 mg/kg) was enhanced in the DOCA-treated rats, as compared to findings in the controls. These hypotensive effects were gradually, but progressively enhanced with the development of hypertension by DOCA-salt treatment. We tentatively conclude that mechanisms accounting for the enhanced activity of SNS and AVP in DOCA-salt hypertensive rats are independent of an increased Na concentration in the CSF.  相似文献   

16.
Mean arterial pressure (mmHg (1 mmHg = 133.322 Pa)), sodium excretion rate (mumol.kg-1.min-1), and urine flow (microL.kg-1.min-1) were measured in conscious unrestrained spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY) before, during, and after a 3-h intravenous infusion of arginine vasopressin (20 ng.kg-1.min-1), an equipressor dose of phenylephrine, or an infusion of the vehicle. Cessation of the phenylephrine infusion was associated with a return of arterial pressure to preinfusion control values in both SHR and WKY. Cessation of the vasopressin infusion was also associated with a return of arterial pressure to preinfusion values in WKY. In contrast, in the SHR, arterial pressure fell from a preinfusion control level of 164 +/- 6.2 to 137 +/- 4 mmHg within 1 h of stopping the vasopressin infusion. Five hours after stopping the infusion, pressure was 134 +/- 3 mmHg (29 +/- 5 mmHg below preinfusion levels). Similar to the WKY, cessation of a vasopressin infusion was associated with a return of arterial pressure to preinfusion values in Sprague-Dawley rats. Thus, the failure to observe a hypotensive response in normotensive rats was not a peculiarity of the WKY strain. Sodium excretion rates increased during the infusions of vasopressin to a greater extent in SHR than in WKY. However, the natriuresis induced by phenylephrine was not significantly different from that generated by vasopressin in SHR, and in WKY, the natriuresis was greater for phenylephrine than for vasopressin. Urine output increased to a greater extent during the infusions of phenylephrine in both SHR and WKY than during vasopressin infusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Modulation of cardiovascular reflexes by arginine vasopressin   总被引:1,自引:0,他引:1  
Arginine vasopressin (AVP), a potent vasoconstrictor, does not raise arterial pressure in normal humans or neurally intact animals, even during infusions that achieve pathophysiological plasma concentrations. It has been proposed that this is because AVP facilitates the baroreflex control of the circulation. We performed a series of investigations to test this hypothesis, and to determine sites at which AVP might act to augment the baroreflex. In anesthetized rabbits, vasopressin (36 pmol.kg-1.min-1) increased discharge from both medullated and nonmedullated single fibres from aortic baroreceptor nerves during elevations in aortic arch pressure. Similarly, vasopressin (36 pmol.kg-1.min-1) increased the response of left ventricular mechanoreceptor single fibre discharge to elevations of left ventricular end-diastolic pressure. These observations suggest that sensitization of high and low pressure baroreceptors is one mechanism by which vasopressin may facilitate baroreflexes. In a further series of experiments in sinoaortic denervated anesthetized rabbits, vasopressin (18 pmol.kg-1.min-1) facilitated vagally mediated reflex inhibition of renal sympathetic nerve activity during volume expansion. In humans, AVP (0.37 pmol.kg-1.min-1) raised plasma AVP to an antidiuretic level (22 +/- 4 fmol/mL), but did not change blood pressure or the baroreflex control of heart rate or forearm vascular resistance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Vasopressinergic neurons in the paraventricular nucleus project to areas in the spinal cord from which sympathetic nerves originate. This pathway is hypothesized to be involved in the regulation of mean arterial pressure (MAP), particularly under various conditions of osmotic stress. Several studies measuring sympathetic nerve activity support this hypothesis. However, the evidence that spinal vasopressin influences MAP under physiological or pathophysiological conditions in conscious animals is limited. The purpose of this study was to investigate, in conscious rats, if the increases in MAP during acute or chronic osmotic stimuli are due to activation of spinal vasopressin (V1a) receptors. Three conditions of osmotic stress were examined: acute intravenous hypertonic saline, 24- and 48-h water deprivation, and 4 wk of DOCA-salt treatment. Rats were chronically instrumented with an indwelling catheter for intrathecal injections and a radiotelemeter to measure MAP. In normotensive rats, intrathecal vasopressin and V1a agonist increased MAP, heart rate, and motor activity; these responses were blocked by pretreatment with an intrathecal V1a receptor antagonist. However, when the intrathecal V1a antagonist was given during the three conditions of osmotic stress to investigate the role of "endogenous" vasopressin, the antagonist had no effect on MAP, heart rate, or motor activity. Contrary to the hypothesis suggested by previous studies, these findings indicate that spinal V1a receptors are not required for elevations of MAP under conditions of acute or chronic osmotic stress in conscious rats.  相似文献   

19.
We investigated the effect of the intravenous infusion of atrial natriuretic peptide (ANP) on the response of plasma arginine vasopressin (AVP) levels to intravenous infusion of angiotensin II (ANG II) in healthy individuals. Intravenous infusion of ANP (10 ng·kg(-1)·min(-1)) slightly but significantly decreased plasma AVP levels, while intravenous infusion of ANG II (10 ng·kg(-1)·min(-1)) resulted in slightly increased plasma AVP levels. ANG II infused significant elevations in arterial blood pressure and central venous pressure (CVP). Because the elevation in blood pressure could have potentially inhibited AVP secretion via baroreceptor reflexes, the effect of ANG II on blood pressure was attenuated by the simultaneous infusion of nitroprusside. ANG II alone produced a remarkable increase in plasma AVP levels when infused with nitroprusside, whereas the simultaneous ANP intravenous infusion (10 ng·kg(-1)·min(-1)) abolished the increase in plasma AVP levels induced by ANG II when blood pressure elevation was attenuated by nitroprusside. Thus, ANG II increased AVP secretion and ANP inhibited not only basal AVP secretion but also ANG II-stimulated AVP secretion in humans. These findings support the hypothesis that circulating ANP modulates AVP secretion, in part, by antagonizing the action of circulating ANG II.  相似文献   

20.
Mongrel dogs prepared with chronic catheters in their femoral artery and vein and urinary bladder received 60 minute infusions of atrial peptide ranging from 5 to 100 ng/kg/min. Infusion of atrial peptides caused dose dependent increases in plasma atrial peptide concentration with doses of 25 ng/kg/min or less increasing plasma concentrations to levels observed in normal animals during stimulation of endogenous atrial peptide secretion. Atrial peptide infusion at doses of 10 ng/kg/min and above caused significant decreases in mean arterial pressure which were not accompanied by statistically significant changes in heart rate. Atrial peptide infusion at doses of 25 ng/kg/min and above increased urinary sodium excretion and urine flow rate. Atrial peptide infusion was without effect on plasma vasopressin, ACTH and corticosterone concentrations. However, atrial peptide infusion resulted in dose dependent decreases in plasma aldosterone concentration and plasma renin activity, but the decreases were only significant with the high physiologic (25 ng/kg/min) and pharmacologic doses (50 & 100 ng/kg/min). These data show that atrial peptide infusions in conscious dogs have minimal effects when infused in small doses that mimic endogenous atrial peptide release. At higher doses, significant effects on the cardiovascular, renal and endocrine systems can be observed but their physiological significance is unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号