首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Removal of the epithelium from preparations of guinea-pig airways increases the responsiveness of the smooth muscle of normal and ovalbumin-sensitized animals to a number of contractile agents. To determine if epithelium removal results in an increase in Ca2+ entry into the smooth muscle, the effect of removing the epithelium on Ca2+ uptake into the trachealis smooth muscle was studied using a modified La3+-technique. KCl increased Ca2+ uptake in the presence and absence of the epithelium in control and sensitized animals. Methacholine did not promote Ca2+ uptake, whether or not the epithelium was present, in either control or sensitized animals. Ovalbumin did not stimulate Ca2+ uptake into the trachealis of sensitized animals. These results indicate that the increase in responsiveness of airway smooth muscle seen on epithelium removal is not a consequence of a facilitation of Ca2+ entry into the muscle. The increased responsiveness to methacholine in control animals, and to ovalbumin in preparations in tension studies in epithelium-free tissues from sensitized animals, cannot be explained by an increased availability of extracellular Ca2+ into the muscle, but, rather may reflect some other effect of the epithelium-derived modulatory factor.  相似文献   

2.
The dog model of ascaris airway sensitivity was chosen because of its frequency and its immunologic similarity to the human atopic asthmatic state. We studied the mediators of the antigen-induced airway response in vitro and the alterations in the in vivo and in vitro responsiveness to spasmogens evoked by antigen challenge. A myogenic basis of altered reactivity was suggested by the following: tetrodotoxin-insensitive spontaneous active tone; phasic contractions of airway smooth muscle; and responsiveness to leukotrienes C4 and D4. The pharmacologic characteristics of the antigen-induced airway smooth muscle contraction in vitro were similar to those induced by arachidonic acid and the leukotrienes only in some respects but were clearly different from those induced by compound 48/80. This suggested a predominant role for arachidonate lipoxygenase products. Histamine appeared to play a minor role in the antigen response. Comparisons were made between antigen-induced responses of actively and passively sensitized airways tissues. In the latter, histamine release appeared to contribute to the initial antigen-induced contraction and, unlike in actively sensitized airways, the responses were easily desensitized to repeated challenge. Alterations of airway responsiveness were demonstrated in vivo to acetylcholine and 5-HT following antigen challenge of highly ascaris-sensitive dogs. In vitro studies of passively sensitized muscle showed selectively enhanced response to 5-HT following antigen challenge. These studies support the presence of altered myogenic properties of airway smooth muscle and nonspecific increased airway responsiveness in this animal model.  相似文献   

3.
Within the respiratory epithelium of asthmatic patients, copper/zinc-containing superoxide dismutase (Cu/Zn SOD) is decreased. To address the hypothesis that lung Cu/Zn SOD protects against allergen-induced injury, wild-type and transgenic mice that overexpress human Cu/Zn SOD were either passively sensitized to ovalbumin (OVA) or actively sensitized by repeated airway exposure to OVA. Controls included nonsensitized wild-type and transgenic mice given intravenous saline or airway exposure to saline. After aerosol challenge to saline or OVA, segments of tracheal smooth muscle were obtained for in vitro analysis of neural control. In response to electrical field stimulation, wild-type sensitized mice challenged with OVA had significant increases in cholinergic reactivity. Conversely, sensitized transgenic mice challenged with OVA were resistant to changes in neural control. Stimulation of tracheal smooth muscle to elicit acetylcholine release showed that passively sensitized wild-type but not transgenic mice released more acetylcholine after OVA challenge. Function of the M(2) muscarinic autoreceptor was preserved in transgenic mice. These results demonstrate that murine airways with elevated Cu/Zn SOD were resistant to allergen-induced changes in neural control.  相似文献   

4.
Repeated aerosol antigen challenge of previously sensitized guinea pigs induces airway hyperresponsiveness to inhaled acetylcholine. To determine the mechanism producing these airway changes and assuming that changes in the trachealis muscle reflect changes in muscle of the entire tracheobronchial tree, we examined the in vitro smooth muscle mechanics and morphometric parameters of tracheae from guinea pigs demonstrating hyperresponsiveness in vivo vs. tracheae from control guinea pigs. No differences between these groups were found in luminal volume at zero transmural pressure, passive pressure-volume characteristics, or area of airway wall. Smooth muscle areas were slightly less in tracheae from hyperresponsive guinea pigs. Tracheae from hyperresponsive guinea pigs had both significantly increased isovolumetric force generation and isobaric shortening compared with tracheae from controls when evaluated over the range of transmural pressures from -40 to 40 cmH2O. We conclude that the in vivo airway hyperresponsiveness induced with repeated antigen challenge is associated with both increased force generation and shortening of tracheal smooth muscle without increased muscle mass, suggesting enhanced contractile activity.  相似文献   

5.
The effect of egg albumin (EA) challenge on tracheal tube preparations from sensitized guinea pigs was studied with regard to EA permeability, histamine release and penetrability, and the contractile response of the preparation. We used a plethysmographic method that allowed simultaneous measurement of changes in smooth muscle tension and collection of samples for determination of mediators. Our results clearly show that epithelial damage potentiates the contractile response to histamine, potassium ions, and acetylcholine. Epithelial damage did not alter the maximal contractile response in preparations challenged with high antigen concentrations (EA, 1 mg/ml), but histamine release measured in the perfusate increased substantially. The permeability of the preparations to EA was greater when the epithelium was damaged. No increase in the permeability in response to the EA challenge was observed. The present study has demonstrated that guinea pig airway epithelium constitutes a barrier for both antigen and drugs. We also present a method for recording contractile responses from intact whole tracheal preparations, in which the epithelium can still act as a barrier, as is the case in vivo.  相似文献   

6.
The force generated by tracheal spirals and lung parenchymal strips from normal and ovalbumin-sensitized guinea pigs was measured in vitro, after challenge with histamine, carbachol, leukotriene (LT) C4, LTD4, or a prostaglandin endoperoxide analog (U-44069). The responses and sensitivity of airway tissues to the above agonists were identical in normal and sensitized animals. Treatment of tracheal spirals with indomethacin (8.5 microM), phenidone (185 microM), and nordihydroguaiaretic acid (NDGA: 30 microM) reduced resting tension (tone) equally in both normal and sensitized trachea, but did not affect lung parenchymal strips from either group. The responses of tracheal spirals from normal and sensitized animals to low concentrations of histamine, carbachol, LTC4, and LTD4 were reduced or abolished by treatment with the above inhibitors. Responses to higher concentrations of the same agonists were significantly enhanced. In contrast, treatment of normal and sensitized trachea with indomethacin (2.8 and 8.5 microM) did not abolish or reduce the effects of low concentrations of U-44069. However, an enhancement of the effect of high concentrations occurred only on normal tracheal spirals, even though the control tissues from each group responded identically with U-44069 in the absence of any inhibitor. Parenchymal strips increased in sensitivity to histamine, but not carbachol, as a result of time, vehicle, or prior exposure to the drug. Inhibitor treatment did not affect sensitivity or responsiveness of parenchyma to histamine, carbachol, and U-44069, but the contractile activity of LTD4 on both normal and sensitized lung parenchymal strips was reduced by indomethacin, NDGA, and phenidone. We conclude that ovalbumin sensitization does not induce hyperreactivity of guinea pig airways.  相似文献   

7.
Increased smooth muscle contractility or reduced smooth muscle mechanical loads could account for the excessive airway narrowing and hyperresponsiveness seen in asthma. These mechanisms were investigated by using an allergen-induced porcine model of airway hyperresponsiveness. Airway narrowing to electric field stimulation was measured in isolated bronchial segments, over a range of transmural pressures (0-20 cmH(2)O). Contractile responses to ACh were measured in bronchial segments and in isolated tracheal smooth muscle strips isolated from control and test (ovalbumin sensitized and challenged) pigs. Test airways narrowed less than controls (P < 0.0001). Test pigs showed reduced contractility to ACh, both in isolated bronchi (P < 0.01) and smooth muscle strips (P < 0.01). Thus isolated airways from pigs exhibiting airway hyperresponsiveness in vivo are hyporesponsive in vitro. The decreased narrowing in bronchi from hyperresponsive pigs may be related to decreased smooth muscle contractility. These data suggest that mechanisms external to the airway wall may be important to the hyperresponsive nature of sensitized lungs.  相似文献   

8.
Airway wall remodeling in response to inflammation might alter load on airway smooth muscle and/or change airway wall stability. We therefore determined airway wall compliance and closing pressures in an animal model. Weanling pigs were sensitized to ovalbumin (OVA; ip and sc, n = 6) and were subsequently challenged three times with OVA aerosol. Control pigs received 0.9% NaCl (n = 4) in place of OVA aerosol. Bronchoconstriction in vivo was assessed from lung resistance and dynamic compliance. Semistatic airway compliance was recorded ex vivo in isolated segments of bronchus, after the final OVA aerosol or 0.9% NaCl challenge. Internally or externally applied pressure needed to close bronchial segments was determined in the absence or presence of carbachol (1 microM). Sensitized pig lungs exhibited immediate bronchoconstriction to OVA aerosol and also peribronchial accumulations of monocytes and granulocytes. Compliance was reduced in sensitized bronchi in vitro (P < 0.01), and closing pressures were increased (P < 0.05). In the presence of carbachol, closing pressures of control and sensitized bronchi were not different. We conclude that sensitization and/or inflammation increases airway load and airway stability.  相似文献   

9.
The effect of epithelium removal on the reactivity of rabbit airway smooth muscle to bronchoactive agents and on the effect of verapamil was studied in vitro using preparations from several levels within the respiratory tree, i.e., trachea, primary (10) and secondary (20) bronchus. Methacholine contracted tissues from all three levels of airway. Histamine contracted strips from 20 bronchus, had an inconsistent action in strips from 10 bronchus and was without effect in tracheal preparations. K+ contracted tissues from the trachea and 10 bronchus, and had a mixed action in 20 bronchial strips. Removal of the epithelial cell layer variably affected the reactivity of the smooth muscle to the three agents studied. In 20 bronchus, epithelium removal potentiated responses to histamine and methacholine. In 10 bronchus, only responses to methacholine were consistently augmented. In tracheal preparations epithelium removal did not alter the reactivity of the tissue to any agent examined. Verapamil (1 microM) attenuated responses to all agents and increased in its potency from tracheal through 10 to 20 bronchial preparations. Following epithelium removal, verapamil was substantially less effective in 20 bronchi, yet its effects were unchanged in the trachea. The results indicate that the epithelial cell layer modulates airway smooth muscle reactivity; this phenomenon is apparently widespread in mammals, the modulatory effect is more prominent in the smaller airways, and the magnitude of the effect of verapamil on airway smooth muscle is, in part, related to the presence of the epithelium.  相似文献   

10.
We studied the influence of respiratory epithelium on tracheal smooth muscle tone of guinea pigs. Mechanical removal of the epithelium induced an increase of the contractile response to histamine. In preparation of smooth muscle previously contracted by histamine, isoproterenol induced dose--dependent relaxation, the level of which was significantly greater in tracheal smooth muscle with epithelium than without it. These results suggest an important role of respiratory epithelium on the contractile activity of smooth muscle.  相似文献   

11.
To determine whether the release of newly formed mediators such as the peptidoleukotrienes and platelet-activating factor might modulate the food protein induced jejunal smooth muscle contraction observed in sensitized rats, Hooded-Lister rats were sensitized by injection of ovalbumin (10 micrograms i.p.) and controls were sham sensitized with saline. Fourteen days later the contractility of longitudinally (n = 9) and circularly (n = 9) oriented jejunal segments (mucosa intact) were examined in standard tissue baths in response to antigen, leukotrienes, and platelet-activating factor alone and in the presence of a specific leukotriene receptor antagonist (MK-571), a 5-lipoxygenase inhibitor (L651,392), and a platelet-activating factor receptor antagonist (WEB 2086). Although the responses of control and sensitized tissues to stretch and 10(-4) M bethanechol were similar, only sensitized tissues contracted in response to antigen (1 mg/mL). MK-571 (10(-5) M) reduced or significantly inhibited the contractile response of sensitized longitudinally and circularly oriented tissues to 10(-7) M leukotrienes C4, D4, or E4, but neither L651,392 (10(-4) M) nor MK-571 (10(-5) M) significantly reduced the contractile response of sensitized tissues to antigen challenge. WEB 2086 (10(-4) M) significantly (p less than 0.01) reduced the contractile response of sensitized longitudinally and circularly oriented tissues to 10(-7) M platelet-activating factor but did not significantly alter the response to antigen in longitudinally (45% of control, p = 0.14) or circularly (118% of control, ns) oriented jejunal smooth muscle. In this model leukotrienes and platelet-activating factor play an insignificant role in modulating food protein induced jejunal smooth muscle contraction in intestinal anaphylaxis.  相似文献   

12.
Removal of epithelium from mammalian tracheae has been shown to enhance responsiveness to a variety of contractile and relaxant agents. One of the most dramatic shifts reported has been for guinea pig tracheal tissue denuded of epithelium and treated with substance P. We investigated whether this shift in responsiveness was because of 1) removal of an epithelium-associated enzyme, neutral endopeptidase, which degrades substance P and 2) loss of an epithelium-derived noncyclooxygenase relaxant factor. Using a muscle bath preparation we performed concentration-response curves with substance P and acetylcholine on indomethacin-treated tissues with and without intact epithelium and with and without pretreatment with the neutral endopeptidase inhibitor, phosphoramidon. Epithelium removal potentiated the mean agonist concentration calculated to causes 30% of the maximal contractile response by 148-fold for substance P and by 7-fold for acetylcholine. Phosphoramidon potentiated the contractile response to substance P, but not to acetylcholine, by both the epithelium-intact and denuded tissues (P less than 0.05). However, the degree of enhancement by phosphoramidon was much greater in the intact tissues. With phosphoramidon treatment, therefore, the difference in responsiveness to substance P between the intact and denuded tissues was reduced from 148-fold to 18-fold. This effect of phosphoramidon suggests that the hyperresponsiveness to substance P of epithelium-denuded airway tissue is largely because of removal of neutral endopeptidase. Because all tissues were treated with indomethacin, the leftward shifts in substance P and in acetylcholine responsiveness induced by epithelium removal further suggest that an epithelium-derived noncyclooxygenase factor other than neutral endopeptidase also modulates the contractile response to substance P and to acetylcholine.  相似文献   

13.
14.
The effect of antigen challenge on the airway responses to substance P and on the epithelial neutral endopeptidase (NEP) activity was investigated in aerosol sensitized guinea-pigs. In vivo, bronchial responses to aerosolized substance P were similar to the responses observed in antigen-challenged guinea-pigs and in the control groups. In contrast, when the guinea-pigs were pretreated with the NEP inhibitor, phosphoramidon, a significant increase in the airway responses to substance P was observed after antigen challenge in vivo. However, in vitro, the contractile responses of the tracheal smooth muscle to substance P were similar between groups of guinea-pigs, in respect to the presence or absence of the epithelium and/or phosphoramidon. Histological studies showed an accumulation of eosinophils in the tracheal submucosa after antigen challenge and intact epithelial cells. These results show that in vivo bronchial hyperresponsiveness to substance P after antigen challenge in the guinea-pig is not associated with increased responses of the smooth muscle to exogenous SP in vitro. In addition, the results with phosphoramidon suggest that loss of NEP activity cannot account for the in vivo bronchial hyperresponsiveness to substance P presently observed.  相似文献   

15.
The effect of O3 exposure (3 ppm, 1 h) on the in vivo and in vitro airway responsiveness, as well as the changes in cell contents in bronchoalveolar lavage (BAL) fluid, were evaluated 16-18 h after O3 exposure in sensitized and nonsensitized male guinea pigs. The sensitization procedure was performed through repeated inhalation of ovalbumin for 3 wk. Increase in pulmonary insufflation pressure produced by the excitatory nonadrenergic noncholinergic (eNANC) system, histamine, and antigen were assessed in in vivo conditions, whereas airway responsiveness to histamine and substance P was evaluated in in vitro conditions by use of tracheal chains with or without epithelium and lung parenchymal strips. We found that O3 exposure 1) increased the neutrophil content in BAL fluids in both sensitized and nonsensitized guinea pigs, 2) caused hyperresponsiveness to eNANC stimulation in nonsensitized guinea pigs (although combination of sensitization and O3 exposure paradoxically abolished the hyperresponsiveness to eNANC stimulation), 3) increased the in vivo bronchoconstrictor responses to histamine and antigen, 4) caused hyperresponsiveness to substance P in nonsensitized tracheae with or without epithelium and in sensitized tracheae with epithelium, 5) did not modify the responsiveness to histamine in tracheae with or without epithelium (and in addition, epithelium removal caused hyperresponsiveness to histamine even in those tracheae exposed to O3), and 6) produced hyperresponsiveness to histamine in lung parenchymal strips either from sensitized or nonsensitized guinea pigs.  相似文献   

16.
Changes in the immunoreactive ET-1 levels during the anaphylactic reaction of airway tissue from ovalbumin-sensitized guinea pigs were investigated. ET-1-immunoreactivity (ET-IR) was detected in the epithelial and smooth muscle layers of tracheal sections from normal guinea pigs and it was enhanced slightly by phosphoramidon (1 μM) treatment. The ET-IR level of the epithelial layer of ovalbumin-treated tissue from actively sensitized animals was slightly higher than that from normal animals, but it was enhanced markedly by phosphoramidon (1 μM) treatment. Furthermore, the mean ET-IR level of homogenates of antigen-treated tracheal tissues from sensitized guinea pigs (22.8±1.55 fmol mg−1 protein, n=5) was significantly higher than the corresponding normal level (12.3±1.21 fmol mg−1 protein, n=5). These results suggest that increased epithelial airway ET-1 levels contribute to the anaphylactic reaction of guinea pig airways.  相似文献   

17.
To examine further the possible prostanoid involvement in the influence of the epithelium on guinea-pig tracheal smooth muscle responsiveness, we have analyzed the effects of LTD4, methacholine and histamine on the level of airway smooth muscle tone and on the amounts of PGE2, PGF2 alpha and PGI2 (determined by radioimmunoassay) in the presence and absence of the epithelium. Removal of the epithelium increased the sensitivity of guinea-pig trachea to the contractile effects of LTD4, methacholine and histamine. LTD4 (3-100 nM), methacholine (0.1-10 microM) or histamine (0.3-30 microM) did not increase prostanoid release above control values in either the presence or absence of the epithelium. The unstimulated release of PGE2 and PGF2 alpha, but not PGI2, was decreased in tissues lacking epithelium. Indomethacin (1 microM) reduced the baseline tone to a smaller extent in the absence of epithelium. In the presence but not the absence of the epithelium, indomethacin increased the sensitivity of preparations to the contractile effect of methacholine. The results support the postulate of an epithelium-derived inhibitory factor modulating guinea-pig tracheal smooth muscle responsiveness. The identity of this factor is not known but is not PGI2 and is unlikely to be PGF2 alpha or PGE2. However, the possibility remains that the basal release of PGE2 and/or PGF2 alpha derived from the epithelium may markedly affect the responsiveness of guinea-pig tracheal smooth muscle. Furthermore, the epithelium is a significant source of PGE2 and PGF2 alpha which may be involved in the maintenance of baseline tone.  相似文献   

18.
An alteration in the handling of Ca2+ has been proposed as the pathogenic mechanism underlying the airway smooth muscle hyperresponsiveness of asthma. The present study tested the hypothesis that the altered responsiveness of receptor operated contraction to carbachol in allergic asthma results from a change in the phasic or tonic components. Using a kinetic approach, the phasic and tonic responses to 10 microM carbachol were quantitated in isolated epithelium-free trachea 21 days after guinea-pigs were sensitized with ovalbumin and aluminum hydroxide (as adjuvant) to generate preferentially IgE-like antibodies. Sensitization was confirmed by challenge of the isolated trachea with ovalbumin. The steady-state and kinetic characteristics of the phasic and tonic responses were the same from sensitized animals and animals treated with saline and aluminum hydroxide (control) and before and after challenge of the trachea from both groups of animals. The present results demonstrate that immunologic sensitization and challenge do not appear to elicit a defect in the phasic or tonic responses of receptor mediated contractions in airway smooth muscle and suggest there is no alteration in the handling of Ca2+ in smooth muscle from sensitized and challenged guinea-pig trachea.  相似文献   

19.
The p21-activated protein kinases (Paks) have been implicated in the regulation of smooth muscle contractility, but the physiologic effects of Pak activation on airway reactivity in vivo are unknown. A mouse model with a genetic deletion of Pak1 (Pak1(-/-)) was used to determine the role of Pak in the response of the airways in vivo to challenge with inhaled or intravenous acetylcholine (ACh). Pulmonary resistance was measured in anesthetized mechanically ventilated Pak1(-/-) and wild type mice. Pak1(-/-) mice exhibited lower airway reactivity to ACh compared with wild type mice. Tracheal segments dissected from Pak1(-/-) mice and studied in vitro also exhibited reduced responsiveness to ACh compared with tracheas from wild type mice. Morphometric assessment and pulmonary function analysis revealed no differences in the structure of the airways or lung parenchyma, suggesting that that the reduced airway responsiveness did not result from structural abnormalities in the lungs or airways due to Pak1 deletion. Inhalation of the small molecule synthetic Pak1 inhibitor, IPA3, also significantly reduced in vivo airway responsiveness to ACh and 5-hydroxytryptamine (5-Ht) in wild type mice. IPA3 inhibited the contractility of isolated human bronchial tissues to ACh, confirming that this inhibitor is also effective in human airway smooth muscle tissue. The results demonstrate that Pak is a critical component of the contractile activation process in airway smooth muscle, and suggest that Pak inhibition could provide a novel strategy for reducing airway hyperresponsiveness.  相似文献   

20.

Background

Asthma is a chronic disease that is characterized by airway hyperresponsiveness and airway remodeling. The underlying mechanisms that mediate the pathological processes are not fully understood. Abl is a non-receptor protein tyrosine kinase that has a role in the regulation of smooth muscle contraction and smooth muscle cell proliferation in vitro. The role of Abl in airway hyperresponsiveness and airway remodeling in vivo is largely unknown.

Methods

To evaluate the role of Abl in asthma pathology, we assessed the expression of Abl in airway tissues from the ovalbumin sensitized and challenged mouse model, and human asthmatic airway smooth muscle cells. In addition, we generated conditional knockout mice in which Abl expression in smooth muscle was disrupted, and then evaluated the effects of Abl conditional knockout on airway resistance, smooth muscle mass, cell proliferation, IL-13 and CCL2 in the mouse model of asthma. Furthermore, we determined the effects of the Abl pharmacological inhibitors imatinib and GNF-5 on these processes in the animal model of asthma.

Results

The expression of Abl was upregulated in airway tissues of the animal model of asthma and in airway smooth muscle cells of patients with severe asthma. Conditional knockout of Abl attenuated airway resistance, smooth muscle mass and staining of proliferating cell nuclear antigen in the airway of mice sensitized and challenged with ovalbumin. Interestingly, conditional knockout of Abl did not affect the levels of IL-13 and CCL2 in bronchoalveolar lavage fluid of animals treated with ovalbumin. However, treatment with imatinib and GNF-5 inhibited the ovalbumin-induced increase in IL-13 and CCL2 as well as airway resistance and smooth muscle growth in animals.

Conclusions

These results suggest that the altered expression of Abl in airway smooth muscle may play a critical role in the development of airway hyperresponsiveness and airway remodeling in asthma. Our findings support the concept that Abl may be a novel target for the development of new therapy to treat asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号