首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Th2 phenotype cytokine, IL-4, plays an important role in the regulation of Th1 cell responses and spontaneous remission of inflammatory CNS demyelinating diseases such as multiple sclerosis (MS). In this study we demonstrate IL-4-induced down-regulation of inducible NO synthase (iNOS) expression and survival of differentiating oligodendrocyte progenitors (OPs) in proinflammatory cytokine (Cyt-Mix)-treated CNS glial cells, which is a condition similar to that observed in the brain of a patient with MS. IL-4 treatment of Cyt-Mix-treated CNS glial cells significantly decreased iNOS expression/NO release with a parallel increase in survival of differentiating OPs. IL-4 effects were concentration-dependent and could be reversed by anti-IL-4R Abs. The use of inhibitors for Akt, p38 MAPK, and peroxisome proliferator-activated receptor gamma (PPAR-gamma) antagonist revealed that inhibition of Cyt-Mix-induced iNOS expression and survival of differentiating OPs by IL-4 is via PPAR-gamma activation. There was a coordinate increase in the expression of both PPAR-gamma and its natural ligand-producing enzyme 12/15-lipoxygenase (12/15-LOX) in IL-4-treated cells. Next, EMSA, immunoblots, and transient cotransfection studies with reporter plasmids (pNF-kappaB-Luc and pTK-PPREx3-Luc) and 12/15-LOX small interfering RNA revealed that IL-4-induced PPAR-gamma activation antagonizes NF-kappaB transactivation in Cyt-Mix-treated astrocytes. In support of this finding, similarly treated 12/15-LOX(-/-) CNS glial cells further corroborated the result. Furthermore, there was reversal of IL-4 inductive effects in the brain of LPS-challenged 12/15-LOX(-/-) mice when compared with LPS-challenged wild-type mice. Together, these data for the first time demonstrate the inhibition of Cyt-Mix-induced NF-kappaB transactivation in CNS glial cells by IL-4 via PPAR-gamma activation, hence its implication for the protection of differentiating OPs during MS and other CNS demyelinating diseases.  相似文献   

2.
Macrophages respond to the Th2 cytokine IL-4 with elevated expression of arachidonate 15-lipoxygenase (ALOX15). Although IL-4 signaling elicits anti-inflammatory responses, 15-lipoxygenase may either support or inhibit inflammatory processes in a context-dependent manner. AMP-activated protein kinase (AMPK) is a metabolic sensor/regulator that supports an anti-inflammatory macrophage phenotype. How AMPK activation is linked to IL-4-elicited gene signatures remains unexplored. Using primary human macrophages stimulated with IL-4, we observed elevated ALOX15 mRNA and protein expression, which was attenuated by AMPK activation. AMPK activators, e.g. phenformin and aminoimidazole-4-carboxamide 1-β-d-ribofuranoside inhibited IL-4-evoked activation of STAT3 while leaving activation of STAT6 and induction of typical IL-4-responsive genes intact. In addition, phenformin prevented IL-4-induced association of STAT6 and Lys-9 acetylation of histone H3 at the ALOX15 promoter. Activating AMPK abolished cellular production of 15-lipoxygenase arachidonic acid metabolites in IL-4-stimulated macrophages, which was mimicked by ALOX15 knockdown. Finally, pretreatment of macrophages with IL-4 for 48 h increased the mRNA expression of the proinflammatory cytokines IL-6, IL-12, CXCL9, and CXCL10 induced by subsequent stimulation with lipopolysaccharide. This response was attenuated by inhibition of ALOX15 or activation of AMPK during incubation with IL-4. In conclusion, limiting ALOX15 expression by AMPK may promote an anti-inflammatory phenotype of IL-4-stimulated human macrophages.  相似文献   

3.
4.
5.
The IL-12 family of cytokines, which include IL-12, IL-23, and IL-27, play critical roles in the differentiation of Th1 cells and are believed to contribute to the development of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Relatively little is known concerning the expression of IL-12 family cytokines by cells of the CNS, the affected tissue in MS. Previously, we and others demonstrated that peroxisome proliferator-activated receptor (PPAR)-gamma agonists suppress the development of EAE, alter T cell proliferation and phenotype, and suppress the activation of APCs. The present studies demonstrated that PPAR-gamma agonists, including the naturally occurring 15-deoxy-Delta(12,14)-PGJ(2) and the synthetic thiazoladinedione rosiglitazone, inhibited the induction of IL-12p40, IL-12p70 (p35/p40), IL-23 (p19/p40), and IL-27p28 proteins by LPS-stimulated primary microglia. In primary astrocytes, LPS induced the production of IL-12p40, IL-23, and IL-27p28 proteins. However, IL-12p70 production was not detected in these cells. The 15-deoxy-Delta(12,14)-PGJ(2) potently suppressed IL-12p40, IL-23, and IL-27p28 production by primary astrocytes, whereas rosiglitazone suppressed IL-23 and IL-27p28, but not IL-12p40 in these cells. These novel observations suggest that PPAR-gamma agonists modulate the development of EAE, at least in part, by inhibiting the production of IL-12 family cytokines by CNS glia. In addition, we demonstrate that PPAR-gamma agonists inhibit TLR2, MyD88, and CD14 expression in glia, suggesting a possible mechanism by which these agonists modulate IL-12 family cytokine expression. Collectively, these studies suggest that PPAR-gamma agonists may be beneficial in the treatment of MS.  相似文献   

6.
7.
Peroxisome proliferator-activated receptors (PPAR) are members of a nuclear hormone receptor superfamily that includes receptors for steroids, retinoids, and thyroid hormone, all of which are known to affect the immune response. Previous studies dealing with PPAR-gamma expression in the immune system have been limited. Recently, PPAR-gamma was identified in monocyte/macrophage cells. In this study we examined the role of PPAR-gamma in experimental autoimmune encephalomyelitis (EAE), an animal model for the human disease multiple sclerosis. The hypothesis we are testing is whether PPAR-gamma plays an important role in EAE pathogenesis and whether PPAR-gamma ligands can inhibit the clinical expression of EAE. Initial studies have shown that the presence of the PPAR-gamma ligand 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ2) inhibits the proliferation of Ag-specific T cells from the spleen of myelin basic protein Ac(1-11) TCR-transgenic mice. 15d-PGJ2 suppressed IFN-gamma, IL-10, and IL-4 production by both Con A- and myelin basic protein Ac(1-11) peptide-stimulated lymphocytes as determined by ELISA and ELISPOT assay. Culture of encephalitogenic T cells with 15d-PGJ2 in the presence of Ag reduced the ability of these cells to adoptively transfer EAE. Examination of the target organ, the CNS, during the course of EAE revealed expression of PPAR-gamma in the spinal cord inflammatory infiltrate. Administration of 15d-PGJ2 before and at the onset of clinical signs of EAE significantly reduced the severity of disease. These results suggest that PPAR-gamma ligands may be a novel therapeutic agent for diseases such as multiple sclerosis.  相似文献   

8.
Understanding the role of CD11b(+)GR-1(+) myeloid suppressor cells in the immune suppression and immunoregulation associated with a variety of diseases may provide therapeutic opportunities. In this article, we show, in a model of helminth infection, that CD11b(+)GR-1(+) myeloid suppressor cells but not CD11b(+)F4/80(high) mature macrophages expanded in the peritoneal cavity of BALB/c mice implanted with Taenia crassiceps. Peritoneal cell populations from early stage-infected animals impaired T cell proliferation by secreting NO. Yet, they lost their ability to secrete NO in the late stage of infection. Concomitantly, their capacity to exert arginase activity and to express mRNAs coding for FIZZ1 (found in inflammatory zone 1), Ym, and macrophage galactose-type C-type lectin increased. Furthermore, cells from early stage-infected mice triggered T cells to secrete IFN-gamma and IL-4, whereas in the late stage of infection, they only induced IL-4 production. These data suggest that CD11b(+)GR-1(+) myeloid suppressor cells displaying an alternative activation phenotype emerged gradually as T. crassiceps infection progressed. Corroborating the alternative activation status in the late stage of infection, the suppressive activity relied on arginase activity, which facilitated the production of reactive oxygen species including H(2)O(2) and superoxide. We also document that the suppressive activity of alternative myeloid suppressor cells depended on 12/15-lipoxygenase activation generating lipid mediators, which triggered peroxisome proliferator-activated receptor-gamma. IL-4 and IL-13 signaling contributed to the expansion of myeloid suppressor cells in the peritoneal cavity of T. crassiceps-infected animals and to their antiproliferative activity by allowing arginase and 12/15-lipoxygenase gene expression.  相似文献   

9.
10.
Targeted gene disruption or overexpression of 12/15-lipoxygenase in mice on the genetic background of apolipoprotein E or low density lipoprotein-receptor (LDL-R) deficiency has implicated 12/15-lipoxygenase in atherogenesis. The data support indirectly a role for 12/15-lipoxygenase in the oxidative modification of low density lipoprotein. In this study we set out to explore other potential mechanisms for 12/15-lipoxygenase in atherosclerosis using apolipoprotein B mRNA editing catalytic polypeptide-1/LDL-R double-deficient mice, a model highly related to the human condition of familial hypercholesterolemia. 12/15-Lipoxygenase deficiency in this strain led to approximately 50% decrease in aortic lesions in male and female mice at 8 months on a chow diet in the absence of cholesterol differences. While studying 12/15-lipoxygenase-deficient macrophages in culture, we discovered a remarkable selective defect (75-90% decrease) in interleukin-12 production but not in tumor necrosis factor-alpha or nitric oxide release, in response to lipopolysaccharide in the presence or absence of interferon-gamma priming. The lipopolysaccharide/interferon-gamma response was associated with a 33-50% decrease in nuclear interferon consensus sequence-binding protein, which is consistent with interferon consensus sequence-binding protein containing protein complex-dependent regulation of the interleukin-12 p40 gene. The decrease in interleukin-12 production was recapitulated in vivo in mouse aortas of the triple knockout group and was reflected in a marked decrease in interferon-gamma expression. The data provide support for a novel mechanism linking the 12/15-lipoxygenase pathway to a known immunomodulatory Th1 cytokine in atherogenesis.  相似文献   

11.
Lipopolysaccharide (LPS) increases the production of interleukin-12 (IL-12) from mouse macrophages via a kappaB site within the IL-12 p40 promoter. In this study, we found that oxidized low density lipoprotein (oxLDL) inhibited this LPS-stimulated production of IL-12 in a dose-dependent manner while native LDL did not. OxLDL inhibited p40 promoter activation in monocytic RAW264.7 cells transiently transfected with p40 promoter/reporter constructs, and the repressive effect mapped to a region in the p40 promoter containing a binding site for nuclear factor-kappaB (NF-kappaB) (p40-kappaB). Activation of macrophages by LPS in the presence of oxLDL resulted in markedly reduced binding to the kappaB site, as demonstrated by the electrophoretic mobility shift assays. In contrast, native LDL did not inhibit the IL-12 p40 promoter activation and NF-kappaB binding to the kappaB sites, suggesting that oxidative modification of LDL was crucial for the inhibition of NF-kappaB-mediated IL-12 production. 9-Hydroxyoctadecadienoic acid, a major oxidized lipid component of oxLDL, significantly inhibited IL-12 production in LPS-stimulated mouse macrophages and also suppressed NF-kappaB-mediated activation in IL-12 p40 promoter. The NF-kappaB components p50 and p65 directly bound peroxisome proliferator-activated receptor-gamma (PPAR-gamma) in vitro. In cotransfections of CV-1 and HeLa cells, PPAR-gamma inhibited the NF-kappaB transactivation in an oxLDL-dependent manner. From these results, we propose that oxLDL-mediated suppression of the IL-12 production from LPS-activated mouse macrophages may, at least in part, involve both inhibition of the NF-kappaB-DNA interactions and physical interactions between NF-kappaB and PPAR-gamma.  相似文献   

12.
13.
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is highly expressed in lipid-accumulating macrophages of the coronary artery. In light of this, the wide-spread clinical use of thiazolidinediones (TZDs) in the treatment of type II diabetes raises concerns about the role of PPAR-gamma in macrophage function and disease progression. To define the role of PPAR-gamma in macrophage biology, we used homologous recombination to create embryonic stem cells that were homozygous for a null mutation in the PPAR-gamma gene. We demonstrate here that PPAR-gamma is neither essential for nor substantially affects the development of the macrophage lineage both in vitro and in vivo. In contrast, we show it is an important regulator of the scavenger receptor CD36, which has been genetically linked to lipid accumulation in macrophages. Both 15-deoxy-Delta12,14prostaglandin J2 and thiazolidinediones have anti-inflammatory effects that are independent of PPAR-gamma. We show that PPAR-gamma is required for positive effects of its ligands in modulating macrophage lipid metabolism, but that inhibitory effects on cytokine production and inflammation may be receptor independent.  相似文献   

14.
15.
16.
17.
LPS, an endotoxin isolated from gram-negative bacterial, has been shown to be a potent cytokine initiator in murine peritoneal macrophages. CAMP-dependent pathway is generally considered to play a suppressive role in immune response. This study investigated the effect of cAMP on LPS-induced gene expression of cytokines in murine macrophages. Our data clearly demonstrated that in LPS-treated macrophages, cAMP elevator (CTx and 8-bromo-cAMP) could increase IL-1Ra and IL-10 gene expression, while mRNAs of IL-1alpha, IL-12, IL-6, and MIF were decreased and other cytokines like IL-1beta, and IFN-gamma did not give a definite tendency. This is the first report that CTx and 8-bromo-cAMP positively regulate IL-1Ra gene expression in LPS-stimulated macrophages. Our data also suggest that a cAMP-dependent pathway may play a regulatory role in Toll-receptor system.  相似文献   

18.
19.
Autocrine activation of APC by IL-12 has recently been revealed; we demonstrate here that inducible expression of Stat4 in APC is central to this process. Stat4 is induced in dendritic cells (DC) in a maturation-dependent manner and in macrophages in an activation-dependent manner. Stat4 levels directly correlate with IL-12-dependent IFN-gamma production by APC as well as IFN-gamma production by DC during Ag presentation. The Th2 cytokines IL-4 and IL-10 suppress Stat4 induction in DC and macrophages when present during maturation and activation, respectively, diminishing IFN-gamma production. In contrast, IL-4 has no effect on Stat4 levels in mature DC and actually augments IFN-gamma production by DC during Ag presentation, indicating that IL-4 acts differently in a spatiotemporal manner. The functional importance of Stat4 is evident in Stat4(-/-) DC and macrophages, which fail to produce IFN-gamma. Furthermore, Stat4(-/-) macrophages are defective in NO production in response to IL-12 and are susceptible to TOXOPLASMA: Autocrine IL-12 signaling is required for high-level IFN-gamma production by APC at critical stages in both innate and adaptive immunity, and the control of Stat4 expression is likely an important regulator of this process.  相似文献   

20.
Synthetic oligodeoxynucleotides containing unmethylated CpG motifs (CpG-ODNs) function as powerful immune adjuvants by activating macrophages, dendritic cells, and B cells. However, the molecular recognition mechanism that initiates signaling in response to CpG-ODN has not fully been identified. We show in this study that peritoneal macrophages from SCID mice having mutations in the catalytic subunit of DNA-protein kinase (DNA-PKcs) were almost completely defective in the production of IL-10 and in ERK activation when treated with CpG-ODN. In contrast, IL-12 p70 production significantly increased. Furthermore, small interfering RNA (siRNA)-mediated knockdown of DNA-PKcs expression in the mouse monocyte/macrophage cell line RAW264.7 led to reduced IL-10 production and ERK activation by CpG-ODN. IL-10 and IL-12 p70 production, but not ERK activation, are blocked by chloroquine, an inhibitor of endosomal acidification. Endosomal translocation of CpG-ODN in a complex with cationic liposomes consisting of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) (CpG-DOTAP-liposomes) decreased IL-10 production and ERK activation, whereas the endosomal escape of CpG-ODN in a complex with cationic liposomes consisting of DOTAP and dioleyl-phosphatidylethanolamine (DOPE) (CpG-DOTAP/DOPE-liposomes) increased. In contrast, IL-12 p70 production was increased by CpG-DOTAP-liposomes and decreased by CpG-DOTAP/DOPE-liposomes. IL-10 production induced by CpG-DOTAP/DOPE-liposomes was not observed in macrophages from SCID mice. Thus, our findings suggest that DNA-PKcs in the cytoplasm play an important role in CpG-ODN-induced production of IL-10 in macrophages. In addition, DNA-PKcs-mediated production of IL-10 and IL-12 p70 can be regulated by manipulating the intracellular trafficking of CpG-ODN in macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号