首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
Effects of N-alcohols on potassium conductance in squid giant axons   总被引:1,自引:0,他引:1  
The effect of bath application of several short chain N-alcohols on voltage-dependent potassium conductance has been studied in intact giant axons of Loligo forbesi under voltage-clamp conditions. All tested alcohols (methanol, ethanol, propanol, butanol, heptanol and octanol) were found to depress potassium conductance only at concentrations much larger than those necessary to reduce sodium conductance. The efficacy of the different molecules was correlated with the carbon-chain length. In all cases the effects were found to be at least partly reversible. Low concentrations of propanol (100 mM) or heptanol (1 mM) were found to increase potassium conductance whereas higher concentrations had the usual depressing effect. The two alcohols were found to induce a slow inactivation of the potassium conductance. A detailed analysis of the time course of the turning-on of the potassium current for various pulse potentials in the presence of TTX revealed that, for membrane potential values more positive than -20 mV, the time constant of activation was reduced in the presence of propanol or heptanol. The delay which separates the change in potential and the turning-on of the potassium current, which was systematically analysed for different pulse and prepulse potential values, was increased by the two alcohols, the curve relating this delay to prepulse potential being shifted towards larger (positive) delays. This high degree of complexity in the effects on potassium conductance suggests that the alcohol molecules modify several more or less independent mechanisms associated with the turning-on of the potassium current.  相似文献   

3.
Summary The effects of the calcium antagonist D-600 (methoxyverapamil) on the excitatory inward sodium current,I Na, of internally perfused squid giant axons were studied under voltageclamp conditions. We observed little or no effect of the drug when it was added to the external solution at concentrations of 10–200 M. Furthermore, it did not produce a frequency, or use-dependent block ofI Na when repetitive voltage-clamp pulses were used at rates of 2–5Hz. However, it did produce use-dependent blockade ofI Na when it was placed internally at a concentration of 200 M. These results in conjunction with other studies suggest that D-600 is a selective blocker of calcium channels in squid axons when the drug is placed in the external solution. Its effects, when placed in the internal solution, are similar to those of permanently charged local anesthetic derivatives, which also produce use-dependent block ofI Na.  相似文献   

4.
The effects of phloretin on membrane ionic conductances have been studied in the giant axon of the squid, Loligo pealei. Phloretin reversibly suppresses the potassium and sodium conductances and modifies their dependence on membrane potential (Em). Its effects on the potassium conductance (GK) are much greater than on the sodium conductance; no effects on sodium inactivation are observed. Internal perfusion of phloretin produces both greater shifts in GK(Em) and greater reductions maximum GK than does external perfusion; the effect of simultaneous internal and external perfusion is little greater than that of internal perfusion alone. Lowering the internal pH, which favors the presence of the neutral species of weakly acidic phloretin (pKa 7.4), potentiates the actions of internally perfused phloretin. Other organic cations with dipole moments similar to phloretin's have little effect on either potassium or sodium conductances in squid axons. These results can be explained by either of two mechanisms; on postulates a phloretin "receptor" near the voltage sensor component of the potassium channel which is accessible to drug molecules applied at either the outer or inner membrane surface and is much more sensitive to the neutral than the negatively charged form of the drug. The other mechanism proposes that neutral phloretin molecules are dispersed in an ordered array in the membrane interior, producing a diffuse dipole field which modifies potassium channel gating. Different experimental results support these two mechanisms, and neither hypothesis can be disproven.  相似文献   

5.
The effects of batrachotoxin (BTX) on the membrane potential and conductances of squid giant axons have been studied by means of intracellular microelectrode recording, internal perfusion, and voltage clamp techniques. BTX (550–1100 nM) caused a marked and irreversible depolarization of the nerve membrane, the membrane potential being eventually reversed in polarity by as much as 15 mv. The depolarization progressed more rapidly with internal application than with external application of BTX to the axon. External application of tetrodotoxin (1000 nM) completely restored the BTX depolarization. Removal or drastic reduction of external sodium caused a hyperpolarization of the BTX-poisoned membrane. However, no change in the resting membrane potential occurred when BTX was applied in the absence of sodium ions in both external and internal phases. These observations demonstrate that BTX specifically increases the resting sodium permeability of the squid axon membrane. Despite such an increase in resting sodium permeability, the BTX-poisoned membrane was still capable of undergoing a large sodium permeability increase of normal magnitude upon depolarizing stimulation provided that the membrane potential was brought back to the original or higher level. The possibility that a single sodium channel is operative for both the resting sodium, permeability and the sodium permeability increase upon stimulation is discussed.  相似文献   

6.
Asymmetry currents and admittance in squid axons.   总被引:1,自引:0,他引:1       下载免费PDF全文
The complex admittance of squid (Loligo pealei) axon was measured rapidly (within 1 s) with pseudo-random small signals and discrete Fourier transform techniques under guarded, "space-clamp" conditions and during suppression of ion conduction. Asymmetry currents were measured by paired step clam pulses of +/-70 mV from a holding potential of -97 mV and gave an apparent capacitance of 0.36 muF/cm2. However, the admittance data showed no change in capacitance at holding potentials from -97 to -67 mV and gave a decrease of 0.07 of 0.15 muF/cm2 at -37 mV. The failure to observe a capacitance increase at low membrane potentials suggests the following possibilities: (a) the asymmetry current is a displacement current that inactivates completely with time, and (b) the asymmetry current is not a displacement current and arises from large signal effects (i.e., delayed nonlinearity in ionic current) on the membrane.  相似文献   

7.
8.
We have studied the effects of external cesium and rubidium on potassium conductance of voltage clamped squid axons over a broad range of concentrations of these ions relative to the external potassium concentration. Our primary novel finding concerning cesium is that relatively large concentrations of this ion are able to block a small, but statistically significant fraction of outward potassium current for potentials less than approximately 50 mV positive to reversal potential. This effect is relieved at more positive potentials. We have also found that external rubidium blocks outward current with a qualitatively similar voltage dependence. This effect is more readily apparent than the cesium blockade, occurring even for concentrations less than that of external potassium. Rubidium also has a blocking effect on inward current, which is relieved for potentials more than 20-40 mV negative to reversal, thereby allowing both potassium and rubidium ions to cross the membrane. We have described these results with a single-file diffusion model of ion permeation through potassium channels. The model analysis suggests that both rubidium and cesium ions exert their blocking effects at the innermost site of a two-site channel, and that rubidium competes with potassium ions for entry into the channel more effectively than does cesium under comparable conditions.  相似文献   

9.
10.
Fibrillar proteins from squid axons. I. Neurofilament protein   总被引:33,自引:0,他引:33  
  相似文献   

11.
Asymmetry currents were recorded from intracellularly perfused squid axons subjected to exactly equal positive and negative voltage clamp pulses at a temperature close to 0 degrees C. The voltage and time dependence of the asymmetry currents was studied at a holding potential of minus 80 to minus 100 mV. The effect of varying the holding potential was investigated. The latter experiments showed that the voltage dependence of the asymmetrical charge movement is different from the voltage dependence of the m system.  相似文献   

12.
Ionized calcium concentrations in squid axons   总被引:22,自引:10,他引:12       下载免费PDF全文
Values for ionized [Ca] in squid axons were obtained by measuring the light emission from a 0.1-mul drop of aequorin confined to a plastic dialysis tube of 140-mum diameter located axially. Ionized Ca had a mean value of 20 x 10(-9) M as judged by the subsequent introduction of CaEGTA/EGTA buffer (ratio ca. 0.1) into the axoplasm, and light measurement on a second aequorin drop. Ionized Ca in axoplasma was also measured by introducing arsenazo dye into an axon by injection and measuring the Ca complex of such a dye by multichannel spectrophotometry. Values so obtained were ca. 50 x 10(-9) M as calibrated against CaEGTA/EGTA buffer mixtures. Wth a freshly isolated axon in 10 mM Ca seawater, the aequorin glow invariably increased with time; a seawater [Ca] of 2-3 mM allowed a steady state with respect to [Ca]. Replacement of Na+ in seawater with choline led to a large increase in light emission from aequorin. Li seawater partially reversed this change and the reintroduction of Na+ brought light levels back to their initial value. Stimulation at 60/s for 2-5 min produced an increase in aequorin glow about 0.1% of that represented by the known Ca influx, suggesting operationally the presence of substantial Ca buffering. Treatment of an axon with CN produced a very large increase in aequorin glow and in Ca arsenazo formation only if the external seawater contained Ca.  相似文献   

13.
Potassium fluxes in dialyzed squid axons   总被引:11,自引:6,他引:5       下载免费PDF全文
Measurements have been made of K influx in squid giant axons under internal solute control by dialysis. With [ATP]i = 1 µM, [Na]i = 0, K influx was 6 ± 0.6 pmole/cm2 sec; an increase to [ATP]i = 4 mM gave an influx of 8 ± 0.5 pmole/cm2 sec, while [ATP]i 4, [Na]i 80 gave a K influx of 19 ± 0.7 pmole/cm2 sec (all measurements at ∼16°C). Strophanthidin (10 µM) in seawater quantitatively abolished the ATP-dependent increase in K influx. The concentration dependence of ATP-dependent K influx on [ATP]i, [Na]i, and [K]o was measured; an [ATP]i of 30 µM gave a K influx about half that at physiological concentrations (2–3 mM). About 7 mM [Na]i yielded half the K influx found at 80 mM [Na]i. The ATP-dependent K influx responded linearly to [K]o from 1–20 mM and was independent of whether Na, Li, or choline was the principal cation of seawater. Substances tested as possible energy sources for the K pump were acetyl phosphate, phosphoarginine, PEP, and d-ATP. None was effective except d-ATP and this substance gave 70% of the maximal flux only when phosphoarginine or PEP was also present.  相似文献   

14.
Action potentials are the information carriers of neural systems. The generation of action potentials involves the cooperative opening and closing of sodium and potassium channels. This process is metabolically expensive because the ions flowing through open channels need to be restored to maintain concentration gradients of these ions. Toxins like tetraethylammonium can block working ion channels, thus affecting the function and energy cost of neurons. In this paper, by computer simulation of the Hodgkin-Huxley neuron model, we studied the effects of channel blocking with toxins on the information transmission and energy efficiency in squid giant axons. We found that gradually blocking sodium channels will sequentially maximize the information transmission and energy efficiency of the axons, whereas moderate blocking of potassium channels will have little impact on the information transmission and will decrease the energy efficiency. Heavy blocking of potassium channels will cause self-sustained oscillation of membrane potentials. Simultaneously blocking sodium and potassium channels with the same ratio increases both information transmission and energy efficiency. Our results are in line with previous studies suggesting that information processing capacity and energy efficiency can be maximized by regulating the number of active ion channels, and this indicates a viable avenue for future experimentation.  相似文献   

15.
Magnesium efflux in dialyzed squid axons   总被引:4,自引:2,他引:2       下载免费PDF全文
The efflux of Mg++ from squid axons subject to internal solute control by dialysis is a function of ionized [Mg], [Na], [ATP], and [Na]o. The efflux of Mg++ from an axon with physiological concentrations of ATP, Na, and Mg inside into seawater is of the order of 2-4 pmol/cm2s but this efflux is strongly inhibited by increases in [Na]i, by decreases in [ATP]i, or by decreases in [Na]o. The efflux of Mg++ is largely independent of [Mg]i when ATP is at physiological levels, but in the absence of ATP reaches half the value of Mg efflux in be presence of ATP when [Mg]i is about 4 mM and [Na] 40 mM. Half-maximum responses to ATP occur at about 350 micronM ATP into seawater with Na either present or absent. The Mg efflux mechanism has many similarities to the Ca efflux system in squid axons especially with respect to the effects of ATP, Nao, and Na on the flux. The concentrations of free Mg and Ca in axoplasm differ, however, by a factor of 10(5) while the observed fluxes differ by a factor of 10(2).  相似文献   

16.
The excitation of the squid giant axon that had been perfused intra- and extracellularly with solutions containing a high concentration of glycerol could be observed below 0 degree C. The action potential could be elicited at normal strengths of electrical stimuli. The time-course of the action potential was slowed, whereas the resting potential and the amplitude of the action potential changed only slightly. The membrane current under the voltage clamp at -6.3 degrees C was about 100-fold slower than that in normal sea water at 8.7 degrees C because of the large viscosity of glycerol solutions and the low temperature. The Q10 values of the magnitude and the time-course of the membrane current were 2.3 and 1/4.0, respectively.  相似文献   

17.
18.
Ionized magnesium concentration in axoplasm of dialyzed squid axons.   总被引:8,自引:0,他引:8  
  相似文献   

19.
The binding of tritiated tetrodotoxin to squid giant axons.   总被引:6,自引:0,他引:6  
The binding of tetrodotoxin to squid gian axons was determined as a function of toxin concentration, using a tritiated toxin preparation of known radiochemical purity and specific activity. From the amount of saturable binding observed, the number of toxin binding sites thought to be sodium channels was found to be 553 plus or minus 119/mum-2 of axon surface.  相似文献   

20.
Summary The influx of magnesium from seawater into squid giant axons has been measured under conditions where internal solute control in the axon was maintained by dialysis. Mg influx is smallest (1 pmol/cm2 sec) when both Na and ATP have been removed from the axoplasm by dialysis. The addition of 3mm ATP to the dialysis fluid gives a Mg influx of 2.5 pmol/cm2 sec while the addition of [Na] i and [ATP] i gives 3 pmol/cm2 sec as a value for Mg influx; this corresponds well with fluxes measured in intact squid giant axons.The Mg content of squid axons is 6 mmol/kg axoplasm; this is unaffected by soaking axons in Li or Na seawater for periods of up to 100 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号