首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Schmidt T  Striebinger H  Haas J  Bailer SM 《FEBS letters》2010,584(20):4361-4365
The heterogeneous nuclear ribonucleoprotein (hnRNP) K is an evolutionarily conserved protein with roles in signal transduction and gene expression. An impact of hnRNP K on the life cycle of a broad range of viral pathogens was reported while functional data for herpesviruses were lacking. In this study we show that hnRNP K is important for Herpes simplex virus 1 egress. In absence of hnRNP K, viral entry, gene expression, viral DNA replication, and maturation of nuclear particles appear normal whereas release of infectious virions to the extracellular space was significantly affected. Our results indicate that hnRNP K has an impact on a late step of herpesviral propagation making it a potential antiviral target.  相似文献   

8.
9.
10.
11.
Microtubules (MTs) and microfilaments (MFs) are known to modulate mitochondrial morphology, distribution and function. However, little is known evidence about the role of intermediate filaments (IFs) in modulating mitochondria except desmin. To investigate whether or not the IFs regulate mitochondrial morphology, distribution, and function, we manipulated the IFs of cultured epithelial cells to express a mutant keratin 18 (K18). In contrast to the filamentous expression of wild K18, mutant K18 induced aggregation of K8/18, showing no fine IF network in the cells. In mutant K18-transfected cells, the mitochondria were fragmented into small spheroids, although they were observed as mitochondrial fibers in un-transfected or wild K18-transfected cells. Fluorescence recovery after photobleaching of fluorescence-labeled mitochondria was markedly less in the mutant K18-transfected cells, although a significant recovery was confirmed in wild K18-transfected cells. These findings suggest that the IFs are important for the maintenance of normal mitochondrial structures.  相似文献   

12.
13.
The human CD45 gene encodes a protein–tyrosine phosphatase that exhibits differential isoform expression in resting and activated T cells due to alternative splicing of three variable exons. Previously, we have used biochemical methods to identify two regulatory proteins, hnRNP L and PSF, which contribute to the activation-induced skipping of CD45 via the ESS1 regulatory element in variable exon 4. Here we report the identification of a third CD45 regulatory factor, hnRNP L-like (hnRNP LL), via a cell-based screen for clonal variants that exhibit an activation-like phenotype of CD45 splicing even under resting conditions. Microarray analysis of two splicing-altered clones revealed increased expression of hnRNP LL relative to wild-type cells. We further demonstrate that both the expression of hnRNP LL protein and its binding to ESS1 are up-regulated in wild-type cells upon activation. Forced overexpression of hnRNP LL in wild-type cells results in an increase in exon repression, while knock-down of hnRNP LL eliminates activation-induced exon skipping. Interestingly, analysis of the binding of hnRNP L and hnRNP LL to mutants of ESS1 reveals that these proteins have overlapping, but distinct binding requirements. Together, these data establish that hnRNP LL plays a critical and unique role in the signal-induced regulation of CD45 and demonstrate the utility of cell-based screens for the identification of novel splicing regulatory factors.  相似文献   

14.
15.
Human cytomegalovirus (HCMV) is the most frequent viral cause of congenital defects and HCMV infection in immunocompromised patients may trigger devastating disease. Cytotoxic lymphocytes control HCMV by releasing granzymes towards virus-infected cells. In mice, granzyme M (GrM) has a physiological role in controlling murine CMV infection. However, the underlying mechanism remains poorly understood. In this study, we showed that human GrM was expressed by HCMV-specific CD8+ T cells both in latently infected healthy individuals and in transplant patients during primary HCMV infection. We identified host cell heterogeneous nuclear ribonucleoprotein K (hnRNP K) as a physiological GrM substrate. GrM most efficiently cleaved hnRNP K in the presence of RNA at multiple sites, thereby likely destroying hnRNP K function. Host cell hnRNP K was essential for HCMV replication not only by promoting viability of HCMV-infected cells but predominantly by regulating viral immediate-early 2 (IE2) protein levels. Furthermore, hnRNP K interacted with IE2 mRNA. Finally, GrM decreased IE2 protein expression in HCMV-infected cells. Our data suggest that targeting of hnRNP K by GrM contributes to the mechanism by which cytotoxic lymphocytes inhibit HCMV replication. This is the first evidence that cytotoxic lymphocytes target host cell proteins to control HCMV infections.  相似文献   

16.
17.
Erythroid precursor cells lose the capacity for mRNA synthesis due to exclusion of the nucleus during maturation. Therefore, the stability and translation of mRNAs that code for specific proteins, which function in late stages of maturation when reticulocytes become erythrocytes, are controlled tightly. Reticulocyte 15-lipoxygenase (r15-LOX) initiates the breakdown of mitochondria in mature reticulocytes. Through the temporal restriction of mRNA translation, the synthesis of r15-LOX is prevented in premature cells. The enzyme is synthesized only in mature reticulocytes, although r15-LOX mRNA is already present in erythroid precursor cells. Translation of r15-LOX mRNA is inhibited by hnRNP K and hnRNP E1, which bind to the differentiation control element (DICE) in its 3' untranslated region (3'UTR). The hnRNP K/E1-DICE complex interferes with the joining of the 60S ribosomal subunit to the 40S subunit at the AUG. We took advantage of the inducible human erythroid K562 cell system that fully recapitulates this process to identify so far unknown factors, which are critical for DICE-dependent translational regulation. Applying RNA chromatography with the DICE as bait combined with hnRNP K immunoprecipitation, we specifically purified the DEAD-box RNA helicase 6 (DDX6) that interacts with hnRNP K and hnRNP E1 in a DICE-dependent manner. Employing RNA interference and fluorescence in situ hybridization, we show that DDX6 colocalizes with endogenous human (h)r15-LOX mRNA to P-body-like RNP granules, from which 60S ribosomal subunits are excluded. Our data suggest that in premature erythroid cells translational silencing of hr15-LOX mRNA is maintained by DDX6 mediated storage in these RNP granules.  相似文献   

18.
19.
核内不均一性核糖核蛋白K(heterogeneous nuclear ribonucleoprotein K,hnRNP K)最早在hnRNA加工过程中被发现,属于hnRNP家族的一员。研究表明hnRNPK的主要功能结构为3个引导DNA—RNA连接的KH域和一个独特的KI域。hnRNP K不仅能够通过依赖CT元件的途径或不依赖CT元件的途径在转录水平上对基因表达进行调控,还能够通过自身的磷酸化,改变mRNA的翻译效率,以及调控基因翻译及转导胞内信号。此外,hnRNP K与肿瘤发生和转移的关系也是近年来的研究热点。hnRNP K被发现在许多肿瘤组织中高表达,主要通过调控与细胞增殖有关的基因表达而影响肿瘤的发生发展,同时它与肿瘤细胞的扩散转移也有关。  相似文献   

20.
Hu F  Liu F 《Cellular signalling》2011,23(10):1528-1533
Under pathophysiological conditions such as obesity, excessive oxidation of nutrients may induce mitochondrial stress, leading to mitochondrial unfolded protein response (UPRmt) and initiation of a retrograde stress signaling pathway. Defects in the UPRmt and the retrograde signaling pathways may disrupt the integrity and homeostasis of the mitochondria, resulting in endoplasmic reticulum stress and insulin resistance. Improving the capacity of mitochondria to reduce stress may be an effective approach to improve mitochondria function and to suppress obesity-induced metabolic disorders such as insulin resistance and type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号