首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. To deplete them of ATP the tumour cells were starved at 37 degrees in a Ringer solution containing 33m-equiv. of Na(+)/l., 131m-equiv. of Li(+)/l., 2mM-sodium cyanide and 0.1mm-ouabain. The cellular content of K(+) was largely replaced by Li(+), but cellular [Na(+)] remained near 33m-equiv./l. 2. The addition of 12mm-glycine to the system caused cellular [Na(+)] to increase, during the next 4min., by about 4m-equiv./l., so that it slightly exceeded extracellular [Na(+)]. This occurred in parallel with the absorption of glycine. 3. The cellular K(+) content fell by an amount representing about 10% of the amount of Na(+) absorbed. 4. The results provide a clear demonstration that the flow of glycine into the cells is linked to a parallel movement of Na(+); K(+) appears to play a facultative role in the carrier system, whereas Li(+) is almost inert. 5. The effects produced by glycine were not reproduced by l-arabinose.  相似文献   

2.
1. The activity of the Na(+) pump in an Na(+)-rich yeast was compared with that in an Na(+)-rich frog sartorius muscle, and found to be very similar to it over the first hour if both were immersed in fluid containing 104mm-Na(+) plus 10mm-K(+). 2. The efflux of labelled Na(+) from an Na(+)-rich yeast into an Na(+)-free medium was investigated. In this Na(+)-free medium, Li(+) or choline replaced the Na(+), and the efflux-content curves obtained with either of these ions were very similar. The curves were sigmoid, reaching or approaching a saturation at the higher internal Na(+) concentrations. 3. The curves obtained with yeast resembled those similarly obtained with frog sartorius muscle by Keynes & Swan (1959), Mullins & Frumento (1963), Harris (1965) and Keynes (1965). The slope of the plot of the logarithm of the Na(+) efflux against the logarithm of the Na(+) concentration in the cells reached its highest value at an internal Na(+) concentration of 15m-equiv./kg. (27m-equiv./l. of cell water). 4. The effect of external K(+) concentration on the efflux-content relationship was examined. An increased K(+) concentration was found to increase the Na(+) efflux by raising the saturation value, which is similar to observations made by Harris (1965) with frog muscle. 5. The effect of increasing the external carbon dioxide concentration was investigated. No effect on the slope of the plot of the logarithm of the Na(+) efflux against the logarithm of the Na(+) content was noticed even when the yeast suspension was equilibrated with 100% carbon dioxide. There was, however, a decrease in the amount of Na(+) efflux on equilibrating the solution with carbon dioxide.  相似文献   

3.
1. The metabolism of K(+), Na(+) and Cl(-) has been investigated in isolated fat-cells prepared from the epididymal adipose tissue of rats. 2. Methods are described for measuring the intracellular water space, the rates of loss of intracellular (42)K(+), (22)Na(+) and (36)Cl(-) and the intracellular concentrations of K(+), Na(+) and Cl(-) in isolated fat-cells. 3. The intracellular water space, measured as the [(3)H]water space minus the [carboxylic acid-(14)C]inulin space, was 3.93+/-0.38mul./100mg. cell dry wt. 4. The first-order rate constants for radioisotope effluxes from isolated fat-cells were 0.029min.(-1) for (42)K(+), 0.245min.(-1) for (22)Na(+) and 0.158min.(-1) for (36)Cl(-). 5. The intracellular concentrations of K(+), Na(+) and Cl(-) were 146m-equiv./l., 18.6+/-2.9m-equiv./l. and 43+/-2.4m-equiv./l. respectively. 6. The total intracellular K(+) content of isolated fat-cells was determined by atomic-absorption spectrophotometry to confirm the value obtained from the radioisotope-efflux data. 7. The ion effluxes from isolated fat-cells were: K(+), 1.5pmoles/cm.(2)/sec., Na(+), 1.6pmoles/cm.(2)/sec., and Cl(-), 2.4pmoles/cm.(2)/sec. 8. The membrane potential of isolated fat-cells calculated from the Cl(-) distribution ratio was -28.7mv.  相似文献   

4.
1. Tumour cells were starved to deplete them of ATP and transferred to 0.9mm-glycine in Ringer solutions containing 2mm-sodium cyanide and various Na(+) and K(+) concentrations. The uptake of glycine then usually reached a peak by about 10min. 2. When cellular [Na(+)] and extracellular [Na(+)] were each about 30m-equiv./l., the maximum amount of glycine absorbed increased between 1.2- and 3.0-fold on lowering extracellular [K(+)] from 128 to 10m-equiv./l. 3. When extracellular [Na(+)] was 150m-equiv./l., the ratio, R, of the cellular to extracellular glycine concentrations increased progressively, from near 1 to about 9, when cellular [Na(+)] was lowered from 120 to 40m-equiv./l. 4. When cellular [Na(+)] was almost constant, either at 45 or 70m-equiv./l., R fell about 14-fold when extracellular [Na(+)] varied from 150 to 16m-equiv./l. 5. Values of R near 0.2 were found when cellular [Na(+)] was about four times as large as extracellular [Na(+)]. 6. R fell about threefold when the cells were put with 12mm- instead of 0.9mm-glycine. 7. The results were taken to imply that, under these conditions, the spontaneous movements of both Na(+) and K(+) across the cell membrane, down their respective concentration gradients, served to concentrate the glycine in the tumour cells (Christensen's hypothesis).  相似文献   

5.
1. The tumour cells were starved in a solution lacking Na(+) and then transferred to a Ringer solution containing 2mm-sodium cyanide, 150m-equiv. of Na(+)/l. and 10m-equiv. of K(+)/l. Such cells were depleted of ATP and contained an endogenous pool of various amino acids equivalent to a 26mm solution. 2. At 4min. after the transfer the cellular Na(+) content had increased by about 100% and roughly an equivalent amount of K(+) had left the cells. 3. Under these conditions [(14)C]glycine was absorbed from an 11mm solution and reached the same cellular concentration by about 4min. The pool size increased by approximately the same amount (DeltaGly), so glycine did not simply exchange with the endogenous components. 4. After 4min. with glycine, the cells contained about 20% more Na(+) (DeltaNa(+)) than the control and about 10% less K(+) (DeltaK(+)). The mean values of DeltaNa(+)/DeltaGly and DeltaK(+)/DeltaGly from five experiments were respectively 0.90+/-0.11 and 0.62+/-0.11equiv./mole. 5. A further indication that these two ratios were not equal was that the cells absorbed more water than the movement of glycine itself required. The excess of water was osmotically equivalent to 0.95+/-0.16equiv. of solute/mole of glycine absorbed. 6. The variation of DeltaNa(+)/DeltaGly with the duration of the incubation was consistent with the stimulated uptake of Na(+) being linked to the actual transport of glycine. The same may apply to the movement of K(+), though the time-dependence was not examined in that case. 7. The observations were analysed in terms of a model in which both K(+) and Na(+) moved with a glycine-carrier system without ATP being involved. The analysis supported the idea that the spontaneous movements of the ions through the system might concentrate glycine in the cells significantly by purely physical means (Christensen's hypothesis).  相似文献   

6.
GerN, a Bacillus cereus spore germination protein, exhibits homology to a widely distributed group of putative cation transporters or channel proteins. GerN complemented the Na(+)-sensitive phenotype of an Escherichia coli mutant that is deficient in Na(+)/H(+) antiport activity (strain KNabc). GerN also reduced the concentration of K(+) required to support growth of an E. coli mutant deficient in K(+) uptake (strain TK2420). In a fluorescence-based assay of everted E. coli KNabc membrane vesicles, GerN exhibited robust Na(+)/H(+) antiport activity, with a K(m) for Na(+) estimated at 1.5 mM at pH 8.0 and 25 mM at pH 7.0. Li(+), but not K(+), served as a substrate. GerN-mediated Na(+)/H(+) antiport was further demonstrated in everted vesicles as energy-dependent accumulation of (22)Na(+). GerN also used K(+) as a coupling ion without completely replacing H(+), as indicated by partial inhibition by K(+) of H(+) uptake into right-side-out vesicles loaded with Na(+). K(+) translocation as part of the antiport was supported by the stimulatory effect of intravesicular K(+) on (22)Na(+) uptake by everted vesicles and the dependence of GerN-mediated (86)Rb(+) efflux on the presence of Na(+) in trans. The inhibitory patterns of protonophore and thiocyanate were most consistent with an electrogenic Na(+)/H(+)-K(+) antiport. GerN-mediated Na(+)/H(+)-K(+) antiport was much more rapid than GerN-mediated Na(+)/H(+) antiport.  相似文献   

7.
1. An ATPase (adenosine triphosphatase) preparation obtained from pig brain microsomes by treatment with sodium iodide showed four apparently different ouabain-sensitive activities under various conditions. They were (a) ouabain-sensitive Mg(2+)-stimulated ATPase, (b) K(+)-stimulated ATPase, (c) (Na(+),K(+))-stimulated ATPase and (d) Na(+)-stimulated ATPase activities. 2. These activities showed the same substrate specificity, ATP being preferentially hydrolysed and CTP slightly. AMP was not hydrolysed. 3. These activities were inhibited by low concentration of ouabain. The concentration producing 50% inhibition was 0.1mum for ouabain-sensitive Mg(2+)-stimulated ATPase, 0.2mum for K(+)-stimulated ATPase, 0.1mum for (Na(+),K(+))-stimulated ATPase and 0.003mum for Na(+)-stimulated ATPase activity. 4. The ouabain-sensitive ATPase activities were inactivated by N-ethylmaleimide but the insensitive ATPase activity was not. 5. The three ouabain-sensitive ATPase activities were inhibited about 50% by 1mm-Ca(2+), whereas the ouabain-sensitive Mg(2+)-stimulated ATPase activity was activated by the same concentration of Ca(2+). The preparation was treated with ultrasonics at 20kcyc./sec. The 2min. ultrasonic treatment inactivated the ATPase activities by 50%. 7. The temperature coefficient Q(10) was 6.6 for K(+)-stimulated ATPase activity, 3.7 for (Na(+),K(+))-stimulated ATPase and 2.6 for Na(+)-stimulated ATPase. 8. Organic solvents inactivated the ATPase activities, to which treatment the K(+)-stimulated ATPase was the most resistant. 9. The phosphorylation of the enzyme preparation became less dependent on Na(+) with decreasing pH. This Na(+)-independent phosphorylation at low pH was sensitive to K(+) and hydroxylamine as well as the Na(+)-dependent phosphorylation at neutral pH.  相似文献   

8.
A family of aryl isothiouronium derivatives was designed as probes for cation binding sites of Na(+),K(+)-ATPase. Previous work showed that 1-bromo-2,4,6-tris(methylisothiouronium)benzene (Br-TITU) acts as a competitive blocker of Na(+) or K(+) occlusion. In addition to a high-affinity cytoplasmic site (K(D) < 1 microM), a low-affinity site (K(D) approximately 10 microM) was detected, presumably extracellular. Here we describe properties of Br-TITU as a blocker at the extracellular surface. In human red blood cells Br-TITU inhibits ouabain-sensitive Na(+) transport (K(D) approximately 30 microM) in a manner antagonistic with respect to extracellular Na(+). In addition, Br-TITU impairs K(+)-stimulated dephosphorylation and Rb(+) occlusion from phosphorylated enzyme of renal Na(+),K(+)-ATPase, consistent with binding to an extracellular site. Incubation of renal Na(+),K(+)-ATPase with Br-TITU at pH 9 irreversibly inactivates Na(+),K(+)-ATPase activity and Rb(+) occlusion. Rb(+) or Na(+) ions protect. Preincubation of Br-TITU with red cells in a K(+)-free medium at pH 9 irreversibly inactivates ouabain-sensitive (22)Na(+) efflux, showing that inactivation occurs at an extracellular site. K(+), Cs(+), and Li(+) ions protect against this effect, but the apparent affinity for K(+), Cs(+), or Li(+) is similar (K(D) approximately 5 mM) despite their different affinities for external activation of the Na(+) pump. Br-TITU quenches tryptophan fluorescence of renal Na(+),K(+)-ATPase or of digested "19 kDa membranes". After incubation at pH 9 irreversible loss of tryptophan fluorescence is observed and Rb(+) or Na(+) ions protect. The Br-TITU appears to interact strongly with tryptophan residue(s) within the lipid or at the extracellular membrane-water interface and interfere with cation occlusion and Na(+),K(+)-ATPase activity.  相似文献   

9.
1. The initial rate of uptake of glycine by the tumour cells was measured as a function of the Na(+) and K(+) concentrations in the solution in which the cells were suspended. When [Gly] was 1mm or 12mm, the rate in the absence of Na(+) was independent of [K(+)] and about 3% or 10% respectively of the rate when [Na(+)] was 150m-equiv./l. 2. The Na(+)-dependent glycine entry rate, v, at a given value of [Na(+)] was successively lowered when [K(+)] was increased from 8 to 47 to 96m-equiv./l. A kinetic analysis indicated that K(+) competitively inhibited the action of Na(+). The results were in fair agreement with previous determinations of the kinetic parameters. 3. The presence of 2mm-sodium cyanide and 10mm-2-deoxyglucose lowered the cellular ATP content to less than 3% of the value in the respiring cells. Although v was then about 50% smaller, the relative effects of K(+) and Na(+) on the system were similar to those observed during respiration. 4. A theoretical analysis indicated that the variation of v with [K(+)] is not a reliable guide to the extent to which the K(+) gradient between the cells and their environment may contribute to the net transport of glycine.  相似文献   

10.
1. The initial rate, v, of glycine uptake by ascites-tumour cells respiring their endogenous nutrient reserves was studied as a function of the respective extracellular concentrations of glycine, Na(+) and K(+). With the extracellular concentration of Na(+)+K(+) constant at 158m-equiv./l. and that of glycine either 4 or 12mm, v tended to zero as the extracellular concentration of Na(+) approached zero. Glycine appeared to enter the cells as a ternary complex with a carrier and Na(+). K(+) competed with Na(+) for one of the carrier sites, whereas glycine was bound at a second site. The values of the five relevant binding constants showed that the two sites interacted. 2. The glycine uptake rate at various extracellular concentrations of glycine and Na(+) was scarcely affected by starving the cells for 30min. in the presence of 2mm-sodium cyanide provided that cellular Na(+) and K(+) contents were kept at the normal values. When the cells took up Na(+), however, v decreased approximately threefold. 3. When their Na(+) content was relatively small and the extracellular concentration of Na(+) was large, the starved cells accumulated glycine in the presence of cyanide for about 15min. Glycine then tended to leave the cells. An average of about 5mumoles of glycine/ml. of cell water was taken up from a 1mm solution, representing about 20% of the accumulation observed during respiration. Studies with fluoride, 2,4-dinitrophenol and other metabolic inhibitors supported the view that ATP and similar compounds were not implicated. The relation between the transient accumulation of glycine that occurred in these circumstances and the normal mode of active transport was not established.  相似文献   

11.
12.
In contrast to the absolute Na(+) requirement for anaerobic growth of Aerobacter aerogenes on citrate as sole carbon source, aerobic growth of this microorganism did not require the presence of Na(+). However, Na(+) (optimal concentration, 10 mm) did increase the maximal amount of aerobic growth by 60%, even though it did not change the rate of growth. This increase in growth was specifically affected by Na(+), which could not be replaced by K(+), NH(4) (+), Li(+), Rb(+), or Cs(+). Enzyme profiles were determined in A. aerogenes cells grown aerobically on citrate in media of varying cationic composition. Cells grown in Na(+)-free medium possessed all the enzymes of the citric acid cycle including alpha-ketoglutarate dehydrogenase, which is repressed by anaerobic conditions of growth. The enzymes of the anaerobic citrate fermentation pathway, citritase and oxalacetate decarboxylase, were also present in these cells, but this pathway of citrate catabolism was effectively blocked by the absence of Na(+), which is essential for the activation of the oxalacetate decarboxylase step. Thus, in Na(+)-free medium, aerobic citrate catabolism proceeded solely via the citric acid cycle. Addition of 10 mm Na(+) to the aerobic citrate medium resulted in the activation of oxalacetate decarboxylase and the repression of alpha-ketoglutarate dehydrogenase, thereby diverting citrate catabolism from the (aerobic) citric acid cycle mechanism to the fermentation mechanism characteristic of anaerobic growth. The further addition of 2% potassium acetate to the medium caused repression of citritase and derepression of alpha-ketoglutarate dehydrogenase, switching citrate catabolism back into the citric acid cycle.  相似文献   

13.
Sodium is an obligate growth requirement for most currently recognized predominant species of rumen bacteria. The isoosmotic deletion of Na(+) from a nutritionally adequate defined medium completely eliminated growth of most species. Growth yields and rates were both a function of Na(+) concentration for Na(+)-requiring species, and Na(+) could not be replaced by Rb(+), Li(+), or Cs(+) when these ions were substituted for Na(+) at a concentration equivalent to an Na(+) concentration that supported abundant growth. Li(+), Cs(+), or Rb(+) was toxic at an Na(+)-replacing concentration (15 mM) but not at a K(+)-replacing concentration (0.65 mM). K(+) was also an obligate growth requirement for rumen bacteria in media containing Na(+) and K(+) as major monovalent cations, but K(+) could be replaced, for most species, by Rb(+). The quantities of Na(+) that support rapid and abundant growth of Na(+)-requiring rumen bacteria show that these organisms are slight halophiles. A growth requirement for Na(+) appears more frequent among nonmarine bacteria than has been previously believed.  相似文献   

14.
1. When dog semen is stored at 5 degrees for 24hr., K(+) is lost from the spermatozoa and Na(+) accumulates in the cells. 2. If at the end of the cold-storage period the semen is incubated at 37 degrees in the presence of added glucose there is a rapid uptake of K(+) and extrusion of Na(+) from the spermatozoa, the intracellular K(+) reaching a maximum within 30min. 3. When the semen is incubated at 20 degrees after cold storage there is an uptake of K(+) by the spermatozoa over 3hr. but no change in intracellular Na(+) concentration. 4. The extrusion of Na(+) and uptake of K(+) by dog spermatozoa has been shown to be inhibited by fluoride, iodoacetate, 2,4-dinitrophenol, and cetyltrimethylammonium bromide. 5. Uptake of K(+) is inhibited by ouabain and half maximum inhibition is obtained with a concentration of 50mmum. There is a slight stimulation of K(+) uptake in the presence of ouabain at about 0.3% of the concentration required for half maximum inhibition.  相似文献   

15.
Anaerobic growth of Aerobacter aerogenes on citrate as a carbon source required the presence of Na(+). The growth rate increased with increasing Na(+) concentration and was optimal at 0.10 m Na(+). The requirement was specific for Na(+), which could not be replaced by K(+), NH(4) (+), Li(+), Rb(+), or Cs(+). K(+) was required for growth in the presence of Na(+), the optimal K(+) concentration being 0.15 mm. Enzyme profiles were determined on cells grown in three different media: (i) intermediate Na(+), high K(+) concentration, (ii) high Na(+), high K(+) concentration, and (c) high Na(+), low K(+) concentration. All cells contained the enzymes of the citrate fermentation pathway, namely, citritase and the Na(+)-requiring oxalacetate (OAA) decarboxylase. All of the enzymes of the citric acid cycle were present, except alpha-ketoglutarate dehydrogenase which could not be detected. The incomplete citric acid cycle was, in effect, converted into two biosynthetic pathways leading to glutamate and succinate, respectively. The specific activities of citritase and OAA decarboxylase were lowest in medium (i), and under these conditions the activity of OAA decarboxylase appeared to be limited in vivo by the availability of Na(+). Failure of A. aerogenes to grow anaerobically on citrate in the absence of Na(+) can be explained at the enzymatic level by the Na(+) requirement of the OAA decarboxylase step of the citrate fermentation pathway and by the absence of an alternate pathway of citrate catabolism.  相似文献   

16.
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the oxidation of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate with the concomitant reduction of NAD to NADH. Escherichia coli IMPDH is activated by K(+), Rb(+), NH(+)(4), and Cs(+). K(+) activation is inhibited by Li(+), Na(+), Ca(2+), and Mg(2+). This inhibition is competitive versus K(+) at high K(+) concentrations, noncompetitive versus IMP, and competitive versus NAD. Thus monovalent cation activation is linked to the NAD site. K(+) increases the rate constant for the pre-steady-state burst of NADH production, possibly by increasing the affinity of NAD. Three mutant IMPDHs have been identified which increase the value of K(m) for K(+): Asp13Ala, Asp50Ala, and Glu469Ala. In contrast to wild type, both Asp13Ala and Glu469Ala are activated by all cations tested. Thus these mutations eliminate cation selectivity. Both Asp13 and Glu469 appear to interact with the K(+) binding site identified in Chinese hamster IMPDH. Like wild-type IMPDH, K(+) activation of Asp50Ala is inhibited by Li(+), Na(+), Ca(2+), and Mg(2+). However, this inhibition is noncompetitive with respect to K(+) and competitive with respect to both IMP and NAD. Asp50 interacts with residues that form a rigid wall in the IMP site; disruption of this wall would be expected to decrease IMP binding, and the defect could propagate to the proposed K(+) site. Alternatively, this mutation could uncover a second monovalent cation binding site.  相似文献   

17.
Pisa KY  Huber H  Thomm M  Müller V 《The FEBS journal》2007,274(15):3928-3938
The rotor subunit c of the A(1)A(O) ATP synthase of the hyperthermophilic archaeon Pyrococcus furiosus contains a conserved Na(+)-binding motif, indicating that Na(+) is a coupling ion. To experimentally address the nature of the coupling ion, we isolated the enzyme by detergent solubilization from native membranes followed by chromatographic separation techniques. The entire membrane-embedded motor domain was present in the preparation. The rotor subunit c was found to form an SDS-resistant oligomer. Under the conditions tested, the enzyme had maximal activity at 100 degrees C, had a rather broad pH optimum between pH 5.5 and 8.0, and was inhibited by diethystilbestrol and derivatives thereof. ATP hydrolysis was strictly dependent on Na(+), with a K(m) of 0.6 mM. Li(+), but not K(+), could substitute for Na(+). The Na(+) dependence was less pronounced at higher proton concentrations, indicating competition between Na(+) and H(+) for a common binding site. Moreover, inhibition of the ATPase by N',N'-dicyclohexylcarbodiimide could be relieved by Na(+). Taken together, these data demonstrate the use of Na(+) as coupling ion for the A(1)A(O) ATP synthase of Pyrococcus furiosus, the first Na(+) A(1)A(O) ATP synthase described.  相似文献   

18.
We have cloned, sequenced, and expressed a human cDNA encoding 1-d-myo-inositol-3-phosphate (MIP) synthase (hINO1). The encoded 62-kDa human enzyme converted d-glucose 6-phosphate to 1-d-myo-inositol 3-phosphate, the rate-limiting step for de novo inositol biosynthesis. Activity of the recombinant human MIP synthase purified from Escherichia coli was optimal at pH 8.0 at 37 degrees C and exhibited K(m) values of 0.57 mm and 8 microm for glucose 6-phosphate and NAD(+), respectively. NH(4)(+) and K(+) were better activators than other cations tested (Na(+), Li(+), Mg(2+), Mn(2+)), and Zn(2+) strongly inhibited activity. Expression of the protein in the yeast ino1Delta mutant lacking MIP synthase (ino1Delta/hINO1) complemented the inositol auxotrophy of the mutant and led to inositol excretion. MIP synthase activity and intracellular inositol were decreased about 35 and 25%, respectively, when ino1Delta/hINO1 was grown in the presence of a therapeutically relevant concentration of the anti-bipolar drug valproate (0.6 mm). However, in vitro activity of purified MIP synthase was not inhibited by valproate at this concentration, suggesting that inhibition by the drug is indirect. Because inositol metabolism may play a key role in the etiology and treatment of bipolar illness, functional conservation of the key enzyme in inositol biosynthesis underscores the power of the yeast model in studies of this disorder.  相似文献   

19.
Both Cs(+) and NH(4)(+) alter neuronal Cl(-) homeostasis, yet the mechanisms have not been clearly elucidated. We hypothesized that these two cations altered the operation of the neuronal K(+)-Cl(-) cotransporter (KCC2). Using exogenously expressed KCC2 protein, we first examined the interaction of cations at the transport site of KCC2 by monitoring furosemide-sensitive (86)Rb(+) influx as a function of external Rb(+) concentration at different fixed external cation concentrations (Na(+), Li(+), K(+), Cs(+), and NH(4)(+)). Neither Na(+) nor Li(+) affected furosemide-sensitive (86)Rb(+) influx, indicating their inability to interact at the cation translocation site of KCC2. As expected for an enzyme that accepts Rb(+) and K(+) as alternate substrates, K(+) was a competitive inhibitor of Rb(+) transport by KCC2. Like K(+), both Cs(+) and NH(4)(+) behaved as competitive inhibitors of Rb(+) transport by KCC2, indicating their potential as transport substrates. Using ion chromatography to measure unidirectional Rb(+) and Cs(+) influxes, we determined that although KCC2 was capable of transporting Cs(+), it did so with a lower apparent affinity and maximal velocity compared with Rb(+). To assess NH(4)(+) transport by KCC2, we monitored intracellular pH (pH(i)) with a pH-sensitive fluorescent dye after an NH(4)(+)-induced alkaline load. Cells expressing KCC2 protein recovered pH(i) much more rapidly than untransfected cells, indicating that KCC2 can mediate net NH(4)(+) uptake. Consistent with KCC2-mediated NH(4)(+) transport, pH(i) recovery in KCC2-expressing cells could be inhibited by furosemide (200 microM) or removal of external [Cl(-)]. Thermodynamic and kinetic considerations of KCC2 operating in alternate transport modes can explain altered neuronal Cl(-) homeostasis in the presence of Cs(+) and NH(4)(+).  相似文献   

20.
An investigation has been made to determine the effectiveness of univalent cations as cofactors for the inductive synthesis of nitrate reductase. In these experiments K(+) functions more effectively as the univalent cation activator than other univalent cations. Substitution of Rb(+) for K(+) resulted in enzyme formation at a rate of about one-half of that obtained with K(+). Sodium, Li(+), or NH(4) (+) either failed to stimulate or completely inhibited the inductive formation of the enzyme. When no univalent cations were present in the induction medium, enzyme formation was delayed for an initial 3-hour period in contrast to the normal one-hour delay in enzyme formation where adequate K(+) was present in the induction medium.During the period of inductive formation of nitrate reductase the activity of pyruvic kinase, a constitutive enzyme, was assayed under conditions where adequate K(+) was present. Results indicate that the presence of the different univalent cations in the induction medium had no striking effect on the activity of this enzyme during the induction period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号