首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cyclic β-1,2-glucans (CβG) are periplasmic homopolysaccharides that have been shown to play an important role in several symbiotic and pathogenic relationships. Cyclic β-1,2-glucan synthase (Cgs), the enzyme responsible for the synthesis of CβG, is an integral membrane polyfunctional protein that catalyzes the four enzymatic activities (initiation, elongation, phosphorolysis, and cyclization) required for the synthesis of CβG. Recently, we have identified the glycosyltransferase and the β-1,2-glucooligosaccharide phosphorylase domains of Brucella abortus Cgs. In this study, we performed large-scale linker-scanning mutagenesis to gain further insight into the functional domains of Cgs. This analysis allowed us to construct a functional map of the enzyme and led to the identification of the minimal region required for the catalysis of initiation and elongation reactions. In addition, we identified the Cgs region (residues 991 to 1544) as being the protein domain required for cyclization and demonstrated that upon cyclization and releasing of the CβG, one or more glucose residues remain attached to the protein intermediate that serves as a primer for the next round of CβG synthesis. Finally, our results indicate that the overall control of the degree of polymerization of CβG is the result of a balance between elongation, phosphorolysis, and cyclization reactions.  相似文献   

3.
Analysis of a 2.4-kb cDNA of the cellulose-binding extracellular β-glucosidase (CBGL) from Phanerochaete chrysosporium suggested that CBGL is organized into two domains, an N-terminal cellulose-binding domain and a C-terminal catalytic domain. Genomic sequence analysis suggested that cbgl is encoded by 30 exons. Southern analysis of DNA from homokaryotic cultures indicated that CBGL is encoded by two alleles, cbgl-1 and cbgl-2, of a single gene.  相似文献   

4.
Lactobacillus reuteri strain 121 produces a unique, highly branched, soluble glucan in which the majority of the linkages are of the α-(1→4) glucosidic type. The glucan also contains α-(1→6)-linked glucosyl units and 4,6-disubstituted α-glucosyl units at the branching points. Using degenerate primers, based on the amino acid sequences of conserved regions from known glucosyltransferase (gtf) genes from lactic acid bacteria, the L. reuteri strain 121 glucosyltransferase gene (gtfA) was isolated. The gtfA open reading frame (ORF) was 5,343 bp, and it encodes a protein of 1,781 amino acids with a deduced Mr of 198,637. The deduced amino acid sequence of GTFA revealed clear similarities with other glucosyltransferases. GTFA has a relatively large variable N-terminal domain (702 amino acids) with five unique repeats and a relatively short C-terminal domain (267 amino acids). The gtfA gene was expressed in Escherichia coli, yielding an active GTFA enzyme. With respect to binding type and size distribution, the recombinant GTFA enzyme and the L. reuteri strain 121 culture supernatants synthesized identical glucan polymers. Furthermore, the deduced amino acid sequence of the gtfA ORF and the N-terminal amino acid sequence of the glucosyltransferase isolated from culture supernatants of L. reuteri strain 121 were the same. GTFA is thus responsible for the synthesis of the unique glucan polymer in L. reuteri strain 121. This is the first report on the molecular characterization of a glucosyltransferase from a Lactobacillus strain.  相似文献   

5.
There is increasing evidence that a fine-tuned integrin cross talk can generate a high degree of specificity in cell adhesion, suggesting that spatially and temporally coordinated expression and activation of integrins are more important for regulated cell adhesive functions than the intrinsic specificity of individual receptors. However, little is known concerning the molecular mechanisms of integrin cross talk. With the use of beta(1)-null GD25 cells ectopically expressing the beta(1)A integrin subunit, we provide evidence for the existence of a cross talk between beta(1) and alpha(V) integrins that affects the ratio of alpha(V)beta(3) and alpha(V)beta(5) integrin cell surface levels. In particular, we demonstrate that a down-regulation of alpha(V)beta(3) and an up-regulation of alpha(V)beta(5) occur as a consequence of beta(1)A expression. Moreover, with the use of GD25 cells expressing the integrin isoforms beta(1)B and beta(1)D, as well as two beta(1) cytoplasmic domain deletion mutants lacking either the entire cytoplasmic domain (beta(1)TR) or only its "variable" region (beta(1)COM), we show that the effects of beta(1) over alpha(V) integrins take place irrespective of the type of beta(1) isoform, but require the presence of the "common" region of the beta(1) cytoplasmic domain. In an attempt to establish the regulatory mechanism(s) whereby beta(1) integrins exert their trans-acting functions, we have found that the down-regulation of alpha(V)beta(3) is due to a decreased beta(3) subunit mRNA stability, whereas the up-regulation of alpha(V)beta(5) is mainly due to translational or posttranslational events. These findings provide the first evidence for an integrin cross talk based on the regulation of mRNA stability.  相似文献   

6.
7.
The cyclic β-(1,2)-glucans of Rhizobium meliloti and Agrobacterium tumefaciens play an important role during hypoosmotic adaptation, and the synthesis of these compounds is osmoregulated. Glucosyltransferase, the enzyme responsible for cyclic β-(1,2)-glucan biosynthesis, is present constitutively, suggesting that osmotic regulation of the biosynthesis of these glucans occurs through modulation of enzyme activity. In this study, we examined regulation of cyclic glucan biosynthesis in vitro with membrane preparations from R. meliloti. The results show that ionic solutes inhibit glucan synthesis, even when they are present at low concentrations (e.g., 10 mM). In contrast, neutral solutes (glucose, sucrose, and the compatible solutes glycine betaine and trehalose) were found to stimulate glucan synthesis in vitro when they were present at high concentrations (e.g., 1 M). Furthermore, high concentrations of these neutral solutes were shown to compensate for the inhibition of glucosyltransferase activity by ionic solutes. Consistent with their ionic character, the compatible solute potassium glutamate and the osmoprotectant choline chloride inhibited glucosyltransferase activity in vitro. The results suggest that intracellular ion concentrations, intracellular osmolarity, and intracellular concentrations of nonionic compatible solutes all act as important determinants of glucosyltransferase activity in vivo. Additional experiments were performed with an ndvA mutant defective for transport of cyclic glucans and an ndvB mutant that produces a C-terminal truncated glucosyltransferase. Cyclic β-(1,2)-glucan biosynthesis, although reduced, was found to be osmoregulated in both mutants. These results reveal that NdvA and the C terminus of NdvB are not required for osmotic regulation of cyclic β-(1,2)-glucan biosynthesis.  相似文献   

8.
In this article, we provide evidence for the presence of diglyceride kinase activity in cell extracts of Rhizobium meliloti 1021. Characterization of the rhizobial enzyme revealed that it shares many properties with the diglyceride kinase of Escherichia coli. A possible role for this enzyme during cyclic β-1,2-glucan biosynthesis is discussed.  相似文献   

9.
1. A preparation of pea seedlings has been obtained that will incorporate [2-(14)C]mevalonate into squalene, alpha- and beta-amyrin and the phytosterols. 2. The (14)C/(3)H ratio in alpha- and beta-amyrin biosynthesized in the presence of [2-(14)C,4R-(3)H]-mevalonate is the same as in the starting material and in squalene; this gives experimental support to the mechanism for the cyclization of squalene proposed by Ruzicka for the formation of these pentacyclic triterpenoids. 3. The (14)C/(3)H ratio for beta-sitosterol was 5:3, the same as that in cholesterol in liver. 4. As the absence of (3)H from C-3 in beta-sitosterol was demonstrated (3)H must be present in the side chain and thus the H at C-24 is not lost during alkylation of the side chain; it probably migrates to C-25.  相似文献   

10.
epsilon(34) Is a converting bacteriophage which brings about a glucosylation of the O antigen in the E group salmonella, thus producing antigen 34. Uridine diphosphate glucose is the precursor of antigen 34 and a glucosyl-lipid is an essential intermediate in this process. Mutants of epsilon(34) which cannot produce antigen 34 have been isolated. Cells lysogenic for these mutants are of two types. Type 1 mutant lysogens cannot form the glucosyl-lipid intermediate; those of type 2 can form glucosyl-lipid but are unable to transfer glucose from the lipid to the O antigen.  相似文献   

11.
An extracellular β-fructofuranosidase from the yeast Xanthophyllomyces dendrorhous was characterized biochemically, molecularly, and phylogenetically. This enzyme is a glycoprotein with an estimated molecular mass of 160 kDa, of which the N-linked carbohydrate accounts for 60% of the total mass. It displays optimum activity at pH 5.0 to 6.5, and its thermophilicity (with maximum activity at 65 to 70°C) and thermostability (with a T50 in the range 66 to 71°C) is higher than that exhibited by most yeast invertases. The enzyme was able to hydrolyze fructosyl-β-(2→1)-linked carbohydrates such as sucrose, 1-kestose, or nystose, although its catalytic efficiency, defined by the kcat/Km ratio, indicates that it hydrolyzes sucrose approximately 4.2 times more efficiently than 1-kestose. Unlike other microbial β-fructofuranosidases, the enzyme from X. dendrorhous produces neokestose as the main transglycosylation product, a potentially novel bifidogenic trisaccharide. Using a 41% (wt/vol) sucrose solution, the maximum fructooligosaccharide concentration reached was 65.9 g liter−1. In addition, we isolated and sequenced the X. dendrorhous β-fructofuranosidase gene (Xd-INV), showing that it encodes a putative mature polypeptide of 595 amino acids and that it shares significant identity with other fungal, yeast, and plant β-fructofuranosidases, all members of family 32 of the glycosyl-hydrolases. We demonstrate that the Xd-INV could functionally complement the suc2 mutation of Saccharomyces cerevisiae and, finally, a structural model of the new enzyme based on the homologous invertase from Arabidopsis thaliana has also been obtained.  相似文献   

12.
13.
14.
15.
An α-amylase gene (AMY) was cloned from Schwanniomyces occidentalis CCRC 21164 into Saccharomyces cerevisiae AH22 by inserting Sau3AI-generated DNA fragments into the BamHI site of YEp16. The 5-kilobase insert was shown to direct the synthesis of α-amylase. After subclones containing various lengths of restricted fragments were screened, a 3.4-kilobase fragment of the donor strain DNA was found to be sufficient for α-amylase synthesis. The concentration of α-amylase in culture broth produced by the S. cerevisiae transformants was about 1.5 times higher than that of the gene donor strain. The secreted α-amylase was shown to be indistinguishable from that of Schwanniomyces occidentalis on the basis of molecular weight and enzyme properties.  相似文献   

16.
Post-translational modifications to tubulin are important for many microtubule-based functions inside cells. It was recently shown that methylation of tubulin by the histone methyltransferase SETD2 occurs on mitotic spindle microtubules during cell division, with its absence resulting in mitotic defects. However, the catalytic mechanism of methyl addition to tubulin is unclear. We used a truncated version of human wild type SETD2 (tSETD2) containing the catalytic SET and C-terminal Set2–Rpb1–interacting (SRI) domains to investigate the biochemical mechanism of tubulin methylation. We found that recombinant tSETD2 had a higher activity toward tubulin dimers than polymerized microtubules. Using recombinant single-isotype tubulin, we demonstrated that methylation was restricted to lysine 40 of α-tubulin. We then introduced pathogenic mutations into tSETD2 to probe the recognition of histone and tubulin substrates. A mutation in the catalytic domain (R1625C) allowed tSETD2 to bind to tubulin but not methylate it, whereas a mutation in the SRI domain (R2510H) caused loss of both tubulin binding and methylation. Further investigation of the role of the SRI domain in substrate binding found that mutations within this region had differential effects on the ability of tSETD2 to bind to tubulin versus the binding partner RNA polymerase II for methylating histones in vivo, suggesting distinct mechanisms for tubulin and histone methylation by SETD2. Finally, we found that substrate recognition also requires the negatively charged C-terminal tail of α-tubulin. Together, this study provides a framework for understanding how SETD2 serves as a dual methyltransferase for both histone and tubulin methylation.  相似文献   

17.
Two Salmonella typhimurium strains, which could be used as sources for the leucine biosynthetic intermediates α- and β-isopropylmalate were constructed by a series of P22-mediated transductions. One strain, JK527 [flr-19 leuA2010 Δ(leuD-ara)798 fol-162], accumulated and excreted α-isopropylmalate, whereas the second strain, JK553 (flr-19 leuA2010 leuB698), accumulated and excreted α- and β-isopropylmalate. The yield of α-isopropylmalate isolated from the culture medium of JK527 was more than five times the amount obtained from a comparable volume of medium in which Neurospora crassa strain FLR92-1-216 (normally used as the source for α- and β-isopropylmalate) was grown. Not only was the yield greater, but S. typhimurium strains are much easier to handle and grow to saturation much faster than N. crassa strains. The combination of the two regulatory mutations flr-19, which results in constitutive expression of the leucine operon, and leuA2010, which renders the first leucine-specific biosynthetic enzyme insensitive to feedback inhibition by leucine, generated limitations in the production of valine and pantothenic acid. The efficient, irreversible, and unregulated conversion of α-ketoisovaleric acid into α-isopropylmalate (α-isopropylmalate synthetase Km for α-ketoisovaleric acid, 6 × 10−5 M) severely restricted the amount of α-ketoisovaleric acid available for conversion into valine and pantothenic acid (ketopantoate hydroxymethyltransferase Km for α-ketoisovaleric acid, 1.1 × 10−3 M; transaminase B Km for α-ketoisovaleric acid, 2 × 10−3 M).  相似文献   

18.
Constitutive beta-glucosidases from Saccharomyces fragilis (Y-18) and S. dobzhanskii (Y-19) precipitated at the same concentration of ammonium sulfate. The partially purified enzymes had similar activation energies, molecular weights, affinities for certain natural and synthetic beta-glucosides, and optimal pH values for substrate hydrolysis, and they were stable over approximately the same pH range. The enzymes, however, could be clearly distinguished by other criteria. Affinities of the synthetic, sulfur-containing beta-glucosides for Y-18 enzyme were many times greater than for Y-19 enzyme. The latter enzyme was more resistant to heat. The two enzymes eluted from diethylaminoethyl cellulose at different concentrations of sodium chloride. In precipitin tests, homologous enzyme-antisera systems were highly specific. The beta-glucosidase synthesized by a hybrid, S. fragilis x S. dobzhanskii (Y-42), was unique. Characterization of this enzyme produced values which were intermediate to those for the enzymes from the parental yeast strains. Heat-inactivation slopes and Lineweaver-Burk plots for the Y-42 enzyme were anomalous. It is suggested that hydrolytic activity in Y-42 preparations is due to a spectrum of hybrid enzyme molecules composed of varying amounts of two distinct polypeptides. It is further suggested that these polypeptides may be identical to those synthesized by the parental Y-18 and Y-19 yeast strains.  相似文献   

19.
20.
Type IV collagen is a major component of basement membranes. We have characterized 11 mutations in emb-9, the α1(IV) collagen gene of Caenorhabditis elegans, that result in a spectrum of phenotypes. Five are substitutions of glycines in the Gly-X-Y domain and cause semidominant, temperature-sensitive lethality at the twofold stage of embryogenesis. One is a glycine substitution that causes recessive, non–temperature-sensitive larval lethality. Three putative null alleles, two nonsense mutations and a deletion, all cause recessive, non–temperature-sensitive lethality at the threefold stage of embryogenesis. The less severe null phenotype indicates that glycine substitution containing mutant chains dominantly interfere with the function of other molecules. The emb-9 null mutants do not stain with anti–EMB-9 antisera and show intracellular accumulation of the α2(IV) chain, LET-2, indicating that LET-2 assembly and/or secretion requires EMB-9. Glycine substitutions in either EMB-9 or LET-2 cause intracellular accumulation of both chains. The degree of intracellular accumulation differs depending on the allele and temperature and correlates with the severity of the phenotype. Temperature sensitivity appears to result from reduced assembly/secretion of type IV collagen, not defective function in the basement membrane. Because the dominant interference of glycine substitution mutations is maximal when type IV collagen secretion is totally blocked, this interference appears to occur intracellularly, rather than in the basement membrane. We suggest that the nature of dominant interference caused by mutations in type IV collagen is different than that caused by mutations in fibrillar collagens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号