首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cyclic β-(1,2)-glucans of Rhizobium meliloti and Agrobacterium tumefaciens play an important role during hypoosmotic adaptation, and the synthesis of these compounds is osmoregulated. Glucosyltransferase, the enzyme responsible for cyclic β-(1,2)-glucan biosynthesis, is present constitutively, suggesting that osmotic regulation of the biosynthesis of these glucans occurs through modulation of enzyme activity. In this study, we examined regulation of cyclic glucan biosynthesis in vitro with membrane preparations from R. meliloti. The results show that ionic solutes inhibit glucan synthesis, even when they are present at low concentrations (e.g., 10 mM). In contrast, neutral solutes (glucose, sucrose, and the compatible solutes glycine betaine and trehalose) were found to stimulate glucan synthesis in vitro when they were present at high concentrations (e.g., 1 M). Furthermore, high concentrations of these neutral solutes were shown to compensate for the inhibition of glucosyltransferase activity by ionic solutes. Consistent with their ionic character, the compatible solute potassium glutamate and the osmoprotectant choline chloride inhibited glucosyltransferase activity in vitro. The results suggest that intracellular ion concentrations, intracellular osmolarity, and intracellular concentrations of nonionic compatible solutes all act as important determinants of glucosyltransferase activity in vivo. Additional experiments were performed with an ndvA mutant defective for transport of cyclic glucans and an ndvB mutant that produces a C-terminal truncated glucosyltransferase. Cyclic β-(1,2)-glucan biosynthesis, although reduced, was found to be osmoregulated in both mutants. These results reveal that NdvA and the C terminus of NdvB are not required for osmotic regulation of cyclic β-(1,2)-glucan biosynthesis.  相似文献   

2.
3.
The intracellular pathogen Brucella abortus survives and replicates inside host cells within an endoplasmic reticulum (ER)-derived replicative organelle named the “Brucella-containing vacuole” (BCV). Here, we developed a subcellular fractionation method to isolate BCVs and characterize for the first time the protein composition of its replicative niche. After identification of BCV membrane proteins by 2 dimensional (2D) gel electrophoresis and mass spectrometry, we focused on two eukaryotic proteins: the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the small GTPase Rab 2 recruited to the vacuolar membrane of Brucella. These proteins were previously described to localize on vesicular and tubular clusters (VTC) and to regulate the VTC membrane traffic between the endoplasmic reticulum (ER) and the Golgi. Inhibition of either GAPDH or Rab 2 expression by small interfering RNA strongly inhibited B. abortus replication. Consistent with this result, inhibition of other partners of GAPDH and Rab 2, such as COPI and PKC ι, reduced B. abortus replication. Furthermore, blockage of Rab 2 GTPase in a GDP-locked form also inhibited B. abortus replication. Bacteria did not fuse with the ER and instead remained in lysosomal-associated membrane vacuoles. These results reveal an essential role for GAPDH and the small GTPase Rab 2 in B. abortus virulence within host cells.  相似文献   

4.
Both CCL20 and human β-defensin 2 (hBD2) interact with the same membrane receptor and display chemotactic and antimicrobial activities. They are produced by airway epithelia in response to infectious agents and proinflammatory cytokines. Whereas Brucella spp. can infect humans through inhalation, their ability to induce CCL20 and hBD2 in lung cells is unknown. Here we show that B. abortus induces CCL20 expression in human alveolar (A549) or bronchial (Calu-6) epithelial cell lines, primary alveolar epithelial cells, primary human monocytes, monocyte-derived macrophages and the monocytic cell line THP-1. CCL20 expression was mainly mediated by JNK1/2 and NF-kB in both Calu-6 and THP-1 cells. CCL20 secretion was markedly induced in A549, Calu-6 and THP-1 cells by heat-killed B. abortus or a model Brucella lipoprotein (L-Omp19) but not by the B. abortus lipopolysaccharide (LPS). Accordingly, CCL20 production by B. abortus-infected cells was strongly TLR2-dependent. Whereas hBD2 expression was not induced by B. abortus infection, it was significantly induced in A549 cells by conditioned media from B. abortus-infected THP-1 monocytes (CMB). A similar inducing effect was observed on CCL20 secretion. Experiments using blocking agents revealed that IL-1β, but not TNF-α, was involved in the induction of hBD2 and CCL20 secretion by CMB. In the in vitro antimicrobial assay, the lethal dose (LD) 50 of CCL20 for B. abortus (>50 μg/ml) was markedly higher than that against E. coli (1.5 μg/ml) or a B. abortus mutant lacking the O polysaccharide in its LPS (8.7 ug/ml). hBD2 did not kill any of the B. abortus strains at the tested concentrations. These results show that human lung epithelial cells secrete CCL20 and hBD2 in response to B. abortus and/or to cytokines produced by infected monocytes. Whereas these molecules do not seem to exert antimicrobial activity against this pathogen, they could recruit immune cells to the infection site.  相似文献   

5.
α(1-3) glucan is a main component of the Aspergillus fumigatus cell wall. In spite of its importance, synthesis of this amorphous polymer has not been investigated to date. Two genes in A. fumigatus, AGS1 and AGS2, are highly homologous to the AGS genes of Schizosaccharomyces pombe, which encode putative α(1-3) glucan synthases. The predicted Ags proteins of A. fumigatus have an estimated molecular mass of 270 kDa. AGS1 and AGS2 were disrupted in A. fumigatus. Both Δags mutants have similar altered hyphal morphologies and reduced conidiation levels. Only Δags1 presented a reduction in the α(1-3) glucan content of the cell wall. These results showed that Ags1p and Ags2p were functionally different. The cellular localization of the two proteins was in agreement with their different functions: Ags1p was localized at the periphery of the cell in connection with the cell wall, whereas Ags2p was intracellularly located. An original experimental model of invasive aspergillosis based on mixed infection and quantitative PCR was developed to analyze the virulence of A. fumigatus mutant and wild-type strains. Using this model, it was shown that the cell wall and morphogenesis defects of Δags1 and Δags2 were not associated with a reduction in virulence in either mutant. This result showed that a 50% reduction in the content of the cell wall α(1-3) glucan does not play a significant role in A. fumigatus pathogenicity.  相似文献   

6.
Brucella, the etiological agent of animal and human brucellosis, is a bacterium with the capacity to modulate the inflammatory response. Cyclic β-1,2-glucan (CβG) is a virulence factor key for the pathogenesis of Brucella as it is involved in the intracellular life cycle of the bacteria. Using comparative studies with different CβG mutants of Brucella, cgs (CβG synthase), cgt (CβG transporter) and cgm (CβG modifier), we have identified different roles for this polysaccharide in Brucella. While anionic CβG is required for bacterial growth in low osmolarity conditions, the sole requirement for a successful Brucella interaction with mammalian host is its transport to periplasmic space. Our results uncover a new role for CβG in promoting splenomegaly in mice. We showed that CβG-dependent spleen inflammation is the consequence of massive cell recruitment (monocytes, dendritics cells and neutrophils) due to the induction of pro-inflammatory cytokines such as IL-12 and TNF-α and also that the reduced splenomegaly response observed with the cgs mutant is not the consequence of changes in expression levels of the characterized Brucella PAMPs LPS, flagellin or OMP16/19. Complementation of cgs mutant with purified CβG increased significantly spleen inflammation response suggesting a direct role for this polysaccharide.  相似文献   

7.
Enrico Cabib 《Eukaryotic cell》2009,8(11):1626-1636
Previous work, using solubilization of yeast cell walls by carboxymethylation, before or after digestion with β(1-3)- or β(1-6)glucanase, followed by size chromatography, showed that the transglycosylases Crh1p and Crh2p/Utr2p were redundantly required for the attachment of chitin to β(1-6)glucan. With this technique, crh1Δ crh2Δ mutants still appeared to contain a substantial percentage of chitin linked to β(1-3)glucan. Two novel procedures have now been developed for the analysis of polysaccharide cross-links in the cell wall. One is based on the affinity of curdlan, a β(1-3)glucan, for β(1-3)glucan chains in carboxymethylated cell walls. The other consists of in situ deacetylation of cell wall chitin, generating chitosan, which can be extracted with acetic acid, either directly (free chitosan) or after digestion with different glucanases (bound chitosan). Both methodologies indicated that all of the chitin in crh1Δ crh2Δ strains is free. Reexamination of the previously used procedure revealed that the β(1-3)glucanase preparation used (zymolyase) is contaminated with a small amount of endochitinase, which caused erroneous results with the double mutant. After removing the chitinase from the zymolyase, all three procedures gave coincident results. Therefore, Crh1p and Crh2p catalyze the transfer of chitin to both β(1-3)- and β(1-6)glucan, and the biosynthetic mechanism for all chitin cross-links in the cell wall has been established.The fungal cell wall protects the cell against internal turgor pressure and external mechanical injury. To fulfill these functions, it must be endowed with a resilient structure. Presumably, the cell wall strength is largely due to the cross-links that bind together its components, mainly polysaccharides, giving rise to a tightly knit mesh (6, 11-13). Interestingly, the cross-links must be created outside the plasma membrane, because most of the polysaccharides are extruded as they are synthesized at the membrane; therefore, they do not exist inside the cell. This posits a thermodynamic problem, because there are no obvious sources of energy in the periplasmic space. About 20 years ago we proposed that the free energy may come from existing bonds in the polysaccharide chains and that the new cross-links may be originated by transglycosylation, thus creating a new linkage for each one that is broken (5).Ascertaining the mechanism of cross-link formation seemed a worthwhile endeavor, both because of the theoretical implications and because the cell wall is a proven target for antifungal compounds; therefore, more knowledge about its synthesis can be of practical interest. For this type of investigation to proceed, it was necessary to devise some method for the quantitative analysis of cell wall cross-links. We developed such a procedure for the evaluation of the proportion of cell wall chitin that is free or bound to β(1-3)- or β(1-6)glucan (4). In this methodology, chitin was specifically labeled in vivo with [14C]glucosamine; cell walls were isolated, and their proteins were eliminated by alkali treatment. The insoluble residue was solubilized by carboxymethylation and analyzed by size fractionation chromatography. By treating the cell walls with different glucanases before carboxymethylation and comparing the chromatographic profiles, we were able to determine the amount of chitin bound to the different glucans, as well as the fraction that was free (4). Armed with this procedure, we could now analyze the cell wall of different mutants that appeared to be candidates for cross-links defects. In this way we found that the two putative transglycosylases Crh1p and Crh2p were redundantly required for the formation of the chitin-β(1-6)glucan linkage. A double mutant crh1Δ crh2Δ had no chitin attached to β(1-6)glucan, although it still contained apparently normal amounts of chitin-β(1-3)glucan complex (7). Further work supported the notion that Crh1p and Crh2p function as transglycosylases, transferring portions of chitin chains to glucan (8). This confirmed our earlier hypothesis.With the initial intention of finding easier and faster methods, I devised two novel procedures for cell wall analysis. One is based on the affinity between β(1-3)glucan chains, the other on the conversion of chitin in situ into its deacetylated product, chitosan, followed by extraction of the chitosan with acetic acid before or after treatment with specific glucanases. With a wild-type strain, both procedures gave similar results to those of the carboxymethylation-chromatography technique. However, in the double mutant crh1Δ crh2Δ all of the chitin appeared to be free with both new methods. Further investigation showed that the older procedure led to erroneous results for the double mutant, because of the presence of a small amount of chitinase in the β(1-3)glucanase preparation used. After reconciling the results, I conclude that Crh1p and Crh2p are necessary for the formation of cross-links between chitin and either β(1-6) or β(1-3)glucan.  相似文献   

8.
The G protein α subunits Gpa1, Gpa2, and Gpa3 mediate signal transduction and are important in the growth and virulence of Cryptococcus neoformans. To understand how Gpa1 functions without a conventional Gβ subunit, we characterized a resistance to inhibitors of cholinesterase 8 (Ric8) homolog from C. neoformans, which shares amino acid sequence homology with other Ric8 proteins that exhibit guanine nucleotide exchange factor (GEF) activity toward Gα. We found that the ric8 mutant was reduced in capsule size and melanin formation, which could be suppressed by cyclic AMP (cAMP) supplementation or by introducing the activated GPA1Q284L allele. Consistent with the fact that Ric8 participates in cAMP signaling to regulate virulence, the ric8 mutant was attenuated in virulence toward mice. Interestingly, disruption of RIC8 also resulted in opposing effects on pheromone signaling, as the ric8 mutant showed reduced mating but an enhanced ability to induce the pheromone response in the mating partner. To identify Ric8 functional mechanisms, we examined the interactions between Ric8 and the three Gα proteins. Ric8 interacted with Gpa1 and Gpa2, but not Gpa3. The presence of Gpa1Q284L negatively affected its interaction with Ric8, whereas the activated Gpa2Q203L allele abolished the interaction. Collectively, these findings suggest that Ric8 functions as a GEF to facilitate the activation of Gpa1-cAMP signaling and to promote Gpa2, affecting mating efficiency. Our study highlights the distinct and conserved characteristics associated with G protein signaling and contributes to our overall understanding of how G protein α subunits function with or without a canonical Gβ partner in C. neoformans.  相似文献   

9.
Outer membrane vesicles (OMVs) released by some Gram-negative bacteria have been shown to exert immunomodulatory effects that favor the establishment of the infection. The aim of the present study was to assess the interaction of OMVs from Brucella abortus with human epithelial cells (HeLa) and monocytes (THP-1), and the potential immunomodulatory effects they may exert. Using confocal microscopy and flow cytometry, FITC-labeled OMVs were shown to be internalized by both cell types. Internalization was shown to be partially mediated by clathrin-mediated endocytosis. Pretreatment of THP-1 cells with Brucella OMVs inhibited some cytokine responses (TNF-α and IL-8) to E. coli LPS, Pam3Cys or flagellin (TLR4, TLR2 and TLR5 agonists, respectively). Similarly, pretreatment with Brucella OMVs inhibited the cytokine response of THP-1 cells to B. abortus infection. Treatment of THP-1 cells with OMVs during IFN-γ stimulation reduced significantly the inducing effect of this cytokine on MHC-II expression. OMVs induced a dose-dependent increase of ICAM-1 expression on THP-1 cells and an increased adhesion of these cells to human endothelial cells. The addition of OMVs to THP-1 cultures before the incubation with live B. abortus resulted in increased numbers of adhered and internalized bacteria as compared to cells not treated with OMVs. Overall, these results suggest that OMVs from B. abortus exert cellular effects that promote the internalization of these bacteria by human monocytes, but also downregulate the innate immune response of these cells to Brucella infection. These effects may favor the persistence of Brucella within host cells.  相似文献   

10.
Bacterial cyclic glucans are glucose polymers that concentrate within the periplasm of alpha-proteobacteria. These molecules are necessary to maintain the homeostasis of the cell envelope by contributing to the osmolarity of Gram negative bacteria. Here, we demonstrate that Brucella β 1,2 cyclic glucans are potent activators of human and mouse dendritic cells. Dendritic cells activation by Brucella β 1,2 cyclic glucans requires TLR4, MyD88 and TRIF, but not CD14. The Brucella cyclic glucans showed neither toxicity nor immunogenicity compared to LPS and triggered antigen-specific CD8+ T cell responses in vivo. These cyclic glucans also enhanced antigen-specific CD4+ and CD8+ T cell responses including cross-presentation by different human DC subsets. Brucella β 1,2 cyclic glucans increased the memory CD4+ T cell responses of blood mononuclear cells exposed to recombinant fusion proteins composed of anti-CD40 antibody and antigens from both hepatitis C virus and Mycobacterium tuberculosis. Thus cyclic glucans represent a new class of adjuvants, which might contribute to the development of effective antimicrobial therapies.  相似文献   

11.
Here we report on the overexpression and in vitro characterization of a recombinant form of ExoM, a putative β1-4 glucosyltransferase involved in the assembly of the octasaccharide repeating subunit of succinoglycan from Sinorhizobium meliloti. The open reading frame exoM was isolated by PCR and subcloned into the expression vector pET29b, allowing inducible expression under the control of the T7 promoter. Escherichia coli BL21(DE3)/pLysS containing exoM expressed a novel 38-kDa protein corresponding to ExoM in N-terminal fusion with the S-tag peptide. Cell fractionation studies showed that the protein is expressed in E. coli as a membrane-bound protein in agreement with the presence of a predicted C-terminal transmembrane region. E. coli membrane preparations containing ExoM were shown to be capable of transferring glucose from UDP-glucose to glycolipid extracts from an S. meliloti mutant strain which accumulates the ExoM substrate (Glcβ1-4Glcβ1-3Gal-pyrophosphate-polyprenol). Thin-layer chromatography of the glycosidic portion of the ExoM product showed that the oligosaccharide formed comigrates with an authentic standard. The oligosaccharide produced by the recombinant ExoM, but not the starting substrate, was sensitive to cleavage with a specific cellobiohydrolase, consistent with the formation of a β1-4 glucosidic linkage. No evidence for the transfer of multiple glucose residues to the glycolipid substrate was observed. It was also found that ExoM does not transfer glucose to an acceptor substrate that has been hydrolyzed from the polyprenol anchor. Furthermore, neither glucose, cellobiose, nor the trisaccharide Glcβ1-4Glcβ1-3Glc inhibited the transferase activity, suggesting that some feature of the lipid anchor is necessary for activity.  相似文献   

12.
13.
The β(1-3)glucanosyltransferase GEL family of Aspergillus fumigatus contains 7 genes, among which only 3 are expressed during mycelial growth. The role of the GEL4 gene was investigated in this study. Like the other Gelps, it encodes a glycosylphosphatidylinositol (GPI)-anchored protein. In contrast to the other β(1-3)glucanosyltransferases analyzed to date, it is essential for this fungal species.β(1-3)Glucan is the main component of the fungal cell wall (11). In fungi, β(1-3)glucans are synthesized by a plasma membrane-bound glucan synthase complex. Neosynthesized glucans are then extruded into the periplasmic space (2, 3, 9), where they become branched and covalently linked to other cell wall components, resulting in the formation of three-dimensional rigid structures. In the search of transglycosidase in the filamentous fungus Aspergillus fumigatus, β(1-3)glucanosyltransferases were identified and classified as a unique family (GH72) in the Carbohydrate-Active enZYmes database (http://www.cazy.org/). These enzymes cleave the β(1-3) bond of a β(1-3)glucan oligosaccharide with at least 10 glucose units and transfer the newly formed reducing end (>5 glucose units) to the nonreducing end of another β(1-3)glucan oligosaccharide, resulting in the elongation of the β(1-3)glucans. This reaction can proceed in vitro until the neosynthetized β(1-3)glucan becomes insoluble. Initially demonstrated biochemically, the requirement for long-chain β(1-3)glucan oligosaccharide has now been confirmed by the analysis of the first crystal structure obtained in this transglycosidase family (7, 8). First discovered in Aspergillus fumigatus and named Gelp for glucan elongase, this activity has been found in all fungal species investigated to date and could be assigned to orthologous proteins, such as Gasp or Phrp, that were known to be involved in cell wall integrity but were endowed with an unknown biochemical function (12, 13, 14).  相似文献   

14.
Macrophages metabolic reprogramming in response to microbial insults is a major determinant of pathogen growth or containment. Here, we reveal a distinct mechanism by which stimulator of interferon genes (STING), a cytosolic sensor that regulates innate immune responses, contributes to an inflammatory M1-like macrophage profile upon Brucella abortus infection. This metabolic reprogramming is induced by STING-dependent stabilization of hypoxia-inducible factor-1 alpha (HIF-1α), a global regulator of cellular metabolism and innate immune cell functions. HIF-1α stabilization reduces oxidative phosphorylation and increases glycolysis during infection with B. abortus and, likewise, enhances nitric oxide production, inflammasome activation and IL-1β release in infected macrophages. Furthermore, the induction of this inflammatory profile participates in the control of bacterial replication since absence of HIF-1α renders mice more susceptible to B. abortus infection. Mechanistically, activation of STING by B. abortus infection drives the production of mitochondrial reactive oxygen species (mROS) that ultimately influences HIF-1α stabilization. Moreover, STING increases the intracellular succinate concentration in infected macrophages, and succinate pretreatment induces HIF-1α stabilization and IL-1β release independently of its cognate receptor GPR91. Collectively, these data demonstrate a pivotal mechanism in the immunometabolic regulation of macrophages during B. abortus infection that is orchestrated by STING via HIF-1α pathway and highlight the metabolic reprogramming of macrophages as a potential treatment strategy for bacterial infections.  相似文献   

15.
The legume symbiont Sinorhizobium meliloti expresses a plethora of small noncoding RNAs (sRNAs) whose function is mostly unknown. Here, we have functionally characterized two tandemly encoded S. meliloti Rm1021 sRNAs that are similar in sequence and structure. Homologous sRNAs (designated AbcR1 and AbcR2) have been shown to regulate several ABC transporters in the related α-proteobacteria Agrobacterium tumefaciens and Brucella abortus. In Rm1021, AbcR1 and AbcR2 exhibit divergent unlinked regulation and are stabilized by the RNA chaperone Hfq. AbcR1 is transcribed in actively dividing bacteria, either in culture, rhizosphere or within the invasion zone of mature alfalfa nodules. Conversely, AbcR2 expression is induced upon entry into stationary phase and under abiotic stress. Only deletion of AbcR1 resulted into a discrete growth delay in rich medium, but both are dispensable for symbiosis. Periplasmic proteome profiling revealed down-regulation of the branched-chain amino acid binding protein LivK by AbcR1, but not by AbcR2. A double-plasmid reporter assay confirmed the predicted specific targeting of the 5′-untranslated region of the livK mRNA by AbcR1 in vivo. Our findings provide evidences of independent regulatory functions of these sRNAs, probably to fine-tune nutrient uptake in free-living and undifferentiated symbiotic rhizobia.  相似文献   

16.
The brucellae are Gram-negative bacteria that cause an important zoonosis. Studies with the main Brucella species have shown that the O-antigens of the Brucella smooth lipopolysaccharide are α-(1→2) and α-(1→3)-linked N-formyl-perosamine polysaccharides that carry M, A and C (A = M, A>M and A<M) epitopes relevant in serodiagnosis and typing. We report that, in contrast to the B. suis biovar 1 O-antigen used as a reference or to all described Brucella O-antigens, B. suis biovar 2 O-antigen failed to bind monoclonal antibodies of C (A = M), C (M>A) and M specificities. However, the biovar 2 O-antigen bound monoclonal antibodies to the Brucella A epitope, and to the C/Y epitope shared by brucellae and Yersinia enterocolitica O:9, a bacterium that carries an N-formyl-perosamine O-antigen in exclusively α-(1→2)-linkages. By 13C NMR spectroscopy, B. suis biovar 1 but not B. suis biovar 2 or Y. enterocolitica O:9 polysaccharide showed the signal characteristic of α-(1→3)-linked N-formyl-perosamine, indicating that biovar 2 may altogether lack this linkage. Taken together, the NMR spectroscopy and monoclonal antibody analyses strongly suggest a role for α-(1→3)-linked N-formyl-perosamine in the C (A = M) and C (M>A) epitopes. Moreover, they indicate that B. suis biovar 2 O-antigen lacks some lipopolysaccharide epitopes previously thought to be present in all smooth brucellae, thus representing a new brucella serovar that is M-negative, C-negative. Serologically and structurally this new serovar is more similar to Y. enterocolitica O:9 than to other brucellae.  相似文献   

17.
18.
Tsai CM  Hassid WZ 《Plant physiology》1973,51(6):998-1001
UDP-d-glucose, at a micromolar level in the presence of MgCl2 and oat (Avena sativa) coleoptile particulate enzyme which contains both β-(1 → 3) and β-(1 → 4) glucan synthetases, produces glucan with mainly β-(1 → 4) glucosyl linkages. An activation of β-(1 → 3) glucan synthetase by UDP-d-glucose and a decrease in the formation of β-(1 → 3) glucan in the presence of MgCl2 have been observed. However, at high substrate concentration (≥ 10−4m), the activation of β-(1 → 3) glucan synthetase is so pronounced that the formation of β-(1 → 3) glucosyl linkage predominates in synthesized glucan regardless of the presence of MgCl2. These observations may explain the striking shift in the composition of glucan of particulate enzyme from a β-(1 → 4) to β-(1 → 3) glucosyl linkage when UDP-d-glucose concentration is raised from a low concentration (≤ 10−5m) to a higher concentration (≥ 10−4m).  相似文献   

19.
CWH41, a gene involved in the assembly of cell wall β-1,6-glucan, has recently been shown to be the structural gene for Saccharomyces cerevisiae glucosidase I that is responsible for initiating the trimming of terminal α-1,2-glucose residue in the N-glycan processing pathway. To distinguish between a direct or indirect role of Cwh41p in the biosynthesis of β-1,6-glucan, we constructed a double mutant, alg5Δ (lacking dolichol-P-glucose synthase) cwh41Δ, and found that it has the same phenotype as the alg5Δ single mutant. It contains wild-type levels of cell wall β-1,6-glucan, shows moderate underglycosylation of N-linked glycoproteins, and grows at concentrations of Calcofluor White (which interferes with cell wall assembly) that are lethal to cwh41Δ single mutant. The strong genetic interactions of CWH41 with KRE6 and KRE1, two other genes involved in the β-1,6-glucan biosynthetic pathway, disappear in the absence of dolichol-P-glucose synthase (alg5Δ). The triple mutant alg5Δcwh41Δkre6Δ is viable, whereas the double mutant cwh41Δkre6Δ in the same genetic background is not. The severe slow growth phenotype and 75% reduction in cell wall β-1,6-glucan, characteristic of the cwh41Δkre1Δ double mutant, are not observed in the triple mutant alg5Δcwh41Δkre1Δ. Kre6p, a putative Golgi glucan synthase, is unstable in cwh41Δ strains, and its overexpression renders these cells Calcofluor White resistant. These results demonstrate that the role of glucosidase I (Cwh41p) in the biosynthesis of cell wall β-1,6-glucan is indirect and that dolichol-P-glucose is not an intermediate in this pathway.  相似文献   

20.
The Brucella cell envelope contains the zwitterionic phospholipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Synthesis of PC occurs exclusively via the PC synthase pathway, implying that the pathogen depends on the choline synthesized by the host cell to form PC. Notably, PC is necessary to sustain a chronic infection process, which suggests that the membrane lipid content is relevant for Brucella virulence. In this study we investigated the first step of PE biosynthesis in B. abortus, which is catalyzed by phosphatidylserine synthase (PssA). Disruption of pssA abrogated the synthesis of PE without affecting the growth in rich complex medium. In minimal medium, however, the mutant required choline supplementation for growth, suggesting that at least PE or PC is necessary for Brucella viability. The absence of PE altered cell surface properties, but most importantly, it impaired several virulence traits of B. abortus, such as intracellular survival in both macrophages and HeLa cells, the maturation of the replicative Brucella-containing vacuole, and mouse colonization. These results suggest that membrane phospholipid composition is critical for the interaction of B. abortus with the host cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号