首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Gram-negative rod shaped bacterium Myxococcus xanthus DK1622 produces a smooth-type LPS. The structure of the polysaccharide O-chain and the core-lipid A region of the LPS has been determined by chemical and spectroscopic methods. The O-chain was built up of disaccharide repeating units having the following structure: -->6)-alpha-D-Glcp-(1-->4)-alpha-D-GalpNAc6oMe*-(1--> with partially methylated GalNAc residue. The core region consisted of a phosphorylated hexasaccharide, containing one Kdo residue, unsubstituted at O-4, and no heptose residues. The lipid A component consisted of beta-GlcN-(1-->6)-alpha-GlcN1P disaccharide, N-acylated with 13-methyl-C14-3OH (iso-C15-3OH), C16-3OH, and 15-methyl-C16-3OH (iso-C17-3OH) acids. The lipid portion contained O-linked iso-C16 acid.  相似文献   

2.
The O-chain polysaccharide (O-PS) of Aeromonas salmonicida was studied by a combination of compositional, methylation, CE-ESMS and one- and two-dimensional NMR analyses. It was found to be a branched polymer of trisaccharide-repeating units composed of L-rhamnose (Rha), D-glucose (Glc), 2-acetamido-2-deoxy-D-mannose (ManNAc) and O-acetyl group (OAc) and having the following structure: CE-ESMS analysis of A. salmonicida cells from strains A449, 80204 and 80204-1 grown under different conditions confirmed that the O-PS structure was conserved. ELISA-based serological study with native LPS-specific antisera performed on the native O-PS and its O-deacetylated and periodate-oxidized derivatives confirmed the importance of the O-PS backbone structure as an immunodominant determinant.  相似文献   

3.
Lipopolysaccharides (LPS) were isolated by hot phenol-water extraction from Danish Helicobacter pylori strains D1, D3, and D6, which were nontypeable using a variety of anti-Lewis and anti-blood-group monoclonal antibodies. An atypical O-chain polysaccharide (PS) was liberated from the LPS of the three strains by acid under mild conditions and found to contain D-rhamnose (D-Rha), L-rhamnose (L-Rha), and a branched sugar, 3-C-methyl-D-mannose (D-Man3CMe). The last sugar, which has not hitherto been found in Nature, was identified using GLC-MS of the derived alditol acetate and the partially methylated alditol acetate, and (1)H and (13)C NMR spectroscopy, including NOESY and (1)H,(13)C HMBC experiments. The following structure of the trisaccharide repeating unit of the PS was established: -->2)-alpha-D-Manp3CMe-(1-->3)-alpha-L-Rhap-(1-->3)-alpha-D- Rhap-(1-- >. In contrast to the pathogenic importance of the Lewis antigen mimicry exhibited by the PS of H. pylori strains previously investigated, the biological relevance of the atypical PS for H. pylori pathogenesis is unclear. The production of a differing surface PS may represent a form of antigenic variation by these particular H. pylori strains and/or may reflect the adaptation of these strains to a particular human population.  相似文献   

4.
We describe a re-investigation of the structure of the lipopolysaccharide (LPS) from Helicobacter pylori genomic strain 26695 and its corresponding HP0826::Kan mutant lacking the O-chain component based on the in-depth NMR analysis of the oligosaccharide products obtained through the use of various degradation procedures performed on the purified LPS from both strains, as well as CE–MS data. New structural evidence indicates the presence of the linear arrangement of glucan and heptan portions of the LPS attached through -6-α-ddHep-3-α-l-Fuc-3-β-GlcNAc- fragment to the inner core dd-heptose residue. This structure differs from previously reported structures of the H. pylori 26695 LPS in several aspects.  相似文献   

5.
6.
Rhizobium etli CE3 bacteroids were isolated from Phaseolus vulgaris root nodules. The lipopolysaccharide (LPS) from the bacteroids was purified and compared with the LPS from laboratory-cultured R. etli CE3 and from cultures grown in the presence of anthocyanin. Comparisons were made of the O-chain polysaccharide, the core oligosaccharide, and the lipid A. Although LPS from CE3 bacteria and bacteroids are structurally similar, it was found that bacteroid LPS had specific modifications to both the O-chain polysaccharide and lipid A portions of their LPS. Cultures grown with anthocyanin contained modifications only to the O-chain polysaccharide. The changes to the O-chain polysaccharide consisted of the addition of a single methyl group to the 2-position of a fucosyl residue in one of the five O-chain trisaccharide repeat units. This same change occurred for bacteria grown in the presence of anthocyanin. This methylation change correlated with the inability of bacteroid LPS and LPS from anthocyanin-containing cultures to bind the monoclonal antibody JIM28. The core oligosaccharide region of bacteroid LPS and from anthocyanin-grown cultures was identical to that of LPS from normal laboratory-cultured CE3. The lipid A from bacteroids consisted exclusively of a tetraacylated species compared with the presence of both tetra- and pentaacylated lipid A from laboratory cultures. Growth in the presence of anthocyanin did not affect the lipid A structure. Purified bacteroids that could resume growth were also found to be more sensitive to the cationic peptides, poly-l-lysine, polymyxin-B, and melittin.  相似文献   

7.
Altman E  Chandan V  Li J  Vinogradov E 《The FEBS journal》2011,278(18):3484-3493
In this study, we describe a reinvestigation of the lipopolysaccharide (LPS) structure of Helicobacter pylori strain Sydney (SS1) based on the NMR analysis of oligosaccharides obtained through the use of various degradations of the LPS as well as capillary electrophoresis-MS data. The results of the analysis indicated that the core region of a major H. pylori SS1 LPS glycoform consists of a backbone core oligosaccharide substituted at the D-glycero-D-manno-heptose (DD-Hep) residue by a linear chain composed of a trisaccharide fragment α-ddHep-3-α-L-Fuc-3-β-GlcNAc, as previously demonstrated for H. pylori strain 26695, further elongated by consecutively added α-Glc and β-Gal residues, and terminating in a novel linear chain consisting of 1,2-linked β-ribofuranosyl residues, where the last β-ribofuranosyl residue provides a point of attachment for the O-chain polysaccharide: [Formula: see text] where [2-β-Ribf-](n) is a short (three to five residues) oligomer of 1,2-linked β-ribofuranose (riban), and PS is a polysaccharide chain consisting of N-acetyllactosamine, substituted with α-Fuc to form Lewis (Le)-type structures. In addition to the previously identified LacNAc, Le(y) and Le(x) components, the O-chain polysaccharide of H. pylori SS1 LPS was found to contain a novel LacNAc unit carrying a phosphoethanolamine substituent at the O-6 position of β-GlcNAc residues.  相似文献   

8.
Lipopolysaccharide (LPS) oligosaccharide epitopes are major virulence factors of Haemophilus influenzae. The structure of LPS glycoforms of H. influenzae type b strain Eagan containing a mutation in the gene lgtC is investigated. LgtC is involved in the biosynthesis of globoside trisaccharide [alpha-D-Galp-(1-->4)-beta-d-Galp-(1-->4)-beta-D-Glcp-(1-->], an LPS epitope implicated in the virulence of this organism. Glycose and methylation analyses provided information on the composition while electrospray ionization mass spectrometry (ESI-MS) on O-deacylated LPS (LPS-OH) indicated the major glycoform to contain 4 hexoses attached to the common H. influenzae triheptosyl inner-core unit. The structure of the Hex4 glycoform in LPS-OH and core oligosaccharide samples was determined by NMR. It consists of an l-alpha-D-HepIIIp-(1-->2)-[PEtn-->6]-l-alpha-D-HepIIp-(1-->3)-l-alpha-D-HepIp-(1-->5)-[P-->4]-alpha-D-Kdop-(2--> to which a beta-D-Glcp-(1-->4)-alpha-D-Glcp disaccharide unit is extended from HepII at the C-3 position, while HepI and HepIII are substituted at the C-4 and C-2 positions with beta-D-Glcp and beta-D-Galp, respectively. This structure corresponds to that expressed as a subpopulation in the parent strain. 31P NMR studies permitted the identification of subpopulations of LPS containing Kdo substituted at the C-4 position with monophosphate or pyrophosphoethanolamine (PPEtn). HepIII was found to be substituted with either phosphate at the C-4 position or acetate at the C-3 position, but not both of them together in the same subpopulation. The subpopulations containing phosphate and acetate at HepIII and their location have not previously been reported.  相似文献   

9.
Coccolith, a calcified scale with species-specific fine structure produced by marine unicellular coccolithophorid algae, consists of calcium carbonate (CaCO(3)) crystals and a small amount of organic matrices. A novel polysaccharide named coccolith matrix acidic polysaccharide (CMAP) was isolated from the coccolith of a coccolithophorid alga, Pleurochrysis haptonemofera. The structure of CMAP was determined by chemical analysis and NMR spectroscopy including COSY, TOCSY, HMQC, and HMBC to be a polysaccharide composed of the following unit: -->4) l-iduronic acid (alpha1-->2) meso-tartaric acid (3-->1) glyoxylic acid (1-->. It has four carboxyl groups per a disaccharide unit as observed in another polysaccharide PS-2 characterized previously in Pleurochrysis carterae. CMAP showed a strong inhibitory activity on CaCO(3) precipitation. These results suggest that CMAP serves as a regulator in the calcification of the coccolith.  相似文献   

10.
The lipopolysaccharide (LPS) of Hafnia alvei strain PCM 1195 was obtained by the hot phenol/water method. The O-specific polysaccharide was released by mild acidic hydrolysis and isolated by gel filtration. The structure of the O-specific polysaccharide was investigated by 1H, 13C, and 31P NMR spectroscopy, MALDI-TOF MS, and GC-MS, accompanied by monosaccharide and methylation analysis. It was concluded that the O-specific polysaccharide is composed of a hexasaccharide repeating units interlinked with a phosphate group: {→4-α-d-Glcp-(1→3)-α-l-FucpNAc-(1→3)-[α-d-Glcp-(1→4)]-α-d-GlcpNAc-(1→3)-α-l-FucpNAc-(1→4)-α-d-Glcp-(1→P}n.  相似文献   

11.
The point of attachment of the O-chain in the outer core region of Pseudomonas aeruginosa serotype O5 lipopolysaccharide (LPS) was determined following a detailed analysis of the extended core oligosaccharide, containing one trisaccharide O-chain repeating unit, present in both the wild-type strain PAO1 and O-chain deficient mutant strains AK1401 and PAO-rfc. The structure of the extended core oligosaccharide was determined by various mass spectrometric methods as well as one-dimensional and two-dimensional NMR spectroscopy. Furthermore, the one-dimensional analogues of NOESY and TOCSY experiments were applied to confirm the structure of the outer core region in the O-chain polysaccharide. In both the extended core oligosaccharide and the core of the smooth LPS, a loss of one of the beta-glucosyl residues and the translocation of the alpha-rhamnosyl residue, followed by the attachment of the first O-chain repeating unit was observed. This process is complicated and could involve two distinct rhamnosyltransferases, one with alpha-1, 6-linkage specificity and another with alpha-1,3-linkage specificity. It is also plausible that an alpha-1,3 rhamnosyltransferase facilitates the addition of the 'new' alpha-rhamnosyl residue that will act as a receptor for the attachment of the single O-antigen repeating unit in the LPS of the semi-rough mutant. The 2-amino-2-deoxy-fucosyl residue of the first O-chain repeating unit directly attached to the core was found to have a beta-anomeric configuration instead of an alpha configuration, characteristic for this residue as a component of the O-chain polysaccharide. The results of this study provide the first example of the mechanistic implications of the structure of the outer core region in a fully assembled O-chain containing LPS, differing from the O-chain deficient rough LPS.  相似文献   

12.
Defined mutants of the galactose biosynthetic (Leloir) pathway were employed to investigate lipopolysaccharide (LPS) oligosaccharide expression in Haemophilus influenzae type b strain Eagan. The structures of the low-molecular-mass LPS glycoforms from strains with mutations in the genes that encode galactose epimerase (galE) and galactose kinase (galK) were determined by NMR spectroscopy on O- and N-deacylated and dephosphorylated LPS-backbone, and O-deacylated oligosaccharide samples in conjunction with electrospray mass spectrometric, glycose and methylation analyses. The structural profile of LPS glycoforms from the galK mutant was found to be identical to that of the galactose and glucose-containing Hex5 glycoform previously identified in the parent strain [Masoud, H.; Moxon, E. R.; Martin, A.; Krajcarski, D.; Richards, J. C. Biochemistry1997, 36, 2091-2103]. LPS from the H. influenzae strain bearing mutations in both galK and galE (galE/galK double mutant) was devoid of galactose. In the double mutant, Hex3 and Hex4 glycoforms containing di- and tri-glucan side chains from the central heptose of the triheptosyl inner-core unit were identified as the major glycoforms. The triglucoside chain extension, β-d-Glcp-(1→4)-β-d-Glcp-(1→4)-α-d-Glcp, identified in the Hex4 glycoform has not been previously reported as a structural element of H. influenzae LPS. In the parent strain, it is the galactose-containing trisaccharide, β-d-Galp-(1→4)-β-d-Glcp-(1→4)-α-d-Glcp, and further extended analogues thereof, that substitute the central heptose. When grown in galactose deficient media, the galE single mutant was found to expresses the same population of LPS glycoforms as the double mutant.  相似文献   

13.
The structure of the lipid A and core region of the lipopolysaccharide (LPS) from Francisella tularensis (ATCC 29684) was analysed using NMR, mass spectrometry and chemical methods. The LPS contains a beta-GlcN-(1-6)-GlcN lipid A backbone, but has a number of unusual structural features; it apparently has no substituent at O-1 of the reducing end GlcN residue in the lipid part in the major part of the population, no substituents at O-3 and O-4 of beta-GlcN, and no substituent at O-4 of the Kdo residue. The largest oligosaccharide, isolated after strong alkaline deacylation of NaBH4 reduced LPS had the following structure: where Delta-GalNA-(1-3)-beta-QuiNAc represents a modified fragment of the O-chain repeating unit. Two shorter oligosaccharides lacking the O-chain fragment were also identified. A minor amount of the disaccharide beta-GlcN-(1-6)-alpha-GlcN-1-P was isolated from the same reaction mixture, indicating the presence of free lipid A, unsubstituted by Kdo and with phosphate at the reducing end. The lipid A, isolated from the products of mild acid hydrolysis, had the structure 2-N-(3-O-acyl4-acyl2)-beta-GlcN-(1-6)-2-N-acyl1-3-O-acyl3-GlcN where acyl1, acyl2 and acyl3 are 3-hydroxyhexadecanoic or 3-hydroxyoctadecanoic acids, acyl4 is tetradecanoic or (minor) hexadecanoic acids. No phosphate substituents were found in this compound. OH-1 of the reducing end glucosamine, and OH-3 and OH-4 of the nonreducing end glucosamine residues were not substituted. LPS of F. tularensis exhibits unusual biological properties, including low endoxicity, which may be related to its unusual lipid A structure.  相似文献   

14.
High-molecular-mass polysaccharides were released by mild acid degradation of the lipopolysaccharides of two wild-type Vibrio vulnificus strain, a flagellated motile strain CECT 5198 and a non-flagellated non-motile strain S3-I2-36. Studies by sugar analysis and partial acid hydrolysis along with 1H and 13C NMR spectroscopies showed that the polysaccharides from both strains have the same trisaccharide repeating unit of the following structure:→4)-β-d-GlcpNAc3NAcylAN-(1→4)-α-l-GalpNAmA-(1→3)-α-d-QuipNAc-(1→where QuiNAc stands for 2-acetamido-2,6-dideoxyglucose, GalNAmA for 2-acetimidoylamino-2-deoxygalacturonic acid, GlcNAc3NAcylAN for 2-acetamido-3-acylamino-2,3-dideoxyglucuronamide and acyl for 4-d-malyl (∼30%) or 2-O-acetyl-4-d-malyl (∼70%). The structure of the polysaccharide studied resembles much that of a marine bacterium Pseudoalteromonas rubra ATCC 29570 reinvestigated in this work. The latter differs in (i) the absolute configuration of malic acid (l vs d), (ii) 3-O-acetylation of GalNAmA and (iii) replacement of QuiNAc with its 4-keto biosynthetic precursor.  相似文献   

15.
In hypersaline environments there are plenty of microorganisms belonging to both Bacteria and Archaea domains. These extremophiles have developed biochemical adaptations which comprise the accumulation of molar concentrations of potassium and chloride and the biosynthesis and/or the accumulation of organic osmotic solutes (osmolytes) within the cytoplasm. Moreover, to maintain the turgor of the cells halophiles enhance the production of anionic phospholipids and alter the fatty acid composition of the membrane lipids, but very little is known about adaptational structural changes of the lipopolysaccharides (LPS), the main constituent of the outer leaflet of the outer membrane of Gram-negative bacteria. The aim of this work is to investigate the chemical structure of these LPS in order to provide insight into the adaptation mechanism of halophiles to live at high salt concentration. For this, Halomonas alkaliantarctica, a haloalkaliphilic Gram-negative bacterium isolated from salt sediments of a saline lake in Cape Russell in the Antarctic continent, was cultivated and the LPS were extracted and analysed. The structure of the O-chain of the LPS from H. alkaliantarctica was determined by chemical analysis, 1-D and 2-D NMR spectroscopy. The polysaccharide was constituted of a linear trisaccharidic repeating unit as follows:→3)-β-l-Rhap-(1→4)-α-l-Rhap-(1→3)-α-l-Rhap-(1→A comparison among the O-chain structures of H. alkaliantarctica and other Halomonas species is also reported.  相似文献   

16.
The conformational preferences of azaphenylalanine-containing peptide were investigated using a model compound, Ac-azaPhe-NHMe with ab initio method at the HF/3-21G and HF/6-31G(*) levels, and the seven minimum energy conformations with trans orientation of acetyl group and the 4 minimum energy conformations with cis orientation of acetyl group were found at the HF/6-31G(*) level if their mirror images were not considered. An average backbone dihedral angle of the 11 minimum energy conformations is phi=+/-91 degrees +/-24 degrees , psi =+/-18 degrees +/-10 degrees (or +/-169 degrees +/-8 degrees ), corresponding to the i+2 position of beta-turn (delta(R)) or polyproline II (beta(P)) structure, respectively. The chi(1) angle in the aromatic side chain of azaPhe residue adopts preferentially between +/-60 degrees and +/-130 degrees, which reflect a steric hindrance between the N-terminal carbonyl group or the C-terminal amide group and the aromatic side chain with respect to the configuration of the acetyl group. These conformational preferences of Ac-azaPhe-NHMe predicted theoretically were compared with those of For-Phe-NHMe to characterize the structural role of azaPhe residue. Four tripeptides containing azaPhe residue, Boc-Xaa-azaPhe-Ala-OMe [Xaa=Gly(1), Ala(2), Phe(3), Asn(4)] were designed and synthesized to verify whether the backbone torsion angles of azaPhe reside are still the same as compared with theoretical conformations and how the preceding amino acids of azaPhe residue perturb the beta-turn skeleton in solution. The solution conformations of these tripeptide models containing azaPhe residue were determined in CDCl(3) and DMSO solvents using NMR and molecular modeling techniques. The characteristic NOE patterns, the temperature coefficients of amide protons and small solvent accessibility for the azapeptides 1-4 reveal to adopt the beta-turn structure. The structures of azapeptides containing azaPhe residue from a restrained molecular dynamics simulation indicated that average dihedral angles [(phi(1), psi(1)), (phi(2), psi(2))] of Xaa-azaPhe fragment in azapeptide, Boc-Xaa-azaPhe-Ala-OMe were [(-68 degrees, 135 degrees ), (116 degrees, -1 degrees )], and this implies that the intercalation of an azaPhe residue in tripeptide induces the betaII-turn conformation, and the volume change of a preceding amino acid of azaPhe residue in tripeptides would not perturb seriously the backbone dihedral angle of beta-turn conformation. We believe such information could be critical in designing useful molecules containing azaPhe residue for drug discovery and peptide engineering.  相似文献   

17.
Synthesis of the trisaccharide, allyl α-l-rhamnopyranosyl-(1→3)-2-acetamido-2-deoxy-β-d-glucopyranosyl-(1→4)-α-l-rhamnopyranoside related to O-chain glycans isolated from the deaminated LPSs of Klebsiella pneumoniae serotype 012, was achieved through condensation of suitably synthesized disaccharide, allyl 4,6-O-benzylidene-2-deoxy-2-phthalimido-β-d-glucopyranosyl-(1→4)-2,3-di-O-benzoyl-α-l-rhamnopyranoside and donor, ethyl 2,3,4-tri-O-acetyl-1-thio α-l-rhamnopyranoside starting from l-rhamnose and d-glucosamine hydrochloride. The trisaccharide can be utilized for the synthesis of neoglycoconjugates for use as a synthetic vaccine by coupling it with a suitable protein after deprotection. Various regio- and stereoselective protecting group strategies have been carefully considered, as protecting groups can influence the reactivity of the electrophile and nucleophile in glycosylation reactions on the basis of steric and electronic requirements.  相似文献   

18.
19.
This study describes the molecular makeup of the cell-wall lipopolysaccharides (LPSs) (O-chain polysaccharide-->core oligosaccharide-->lipid A) from five Helicobacter pylori strains: H. pylori 26695 and J99, the complete genome sequences of which have been published, the established mouse model Sydney strain (SS1), and the symptomatic strains P466 and UA915. All chemical and serological experiments were performed on the intact LPSs. H. pylori 26695 and SS1 possessed either a low-Mr semi-rough-form LPS carrying mostly a single Ley type-2 blood-group determinant in the O-chain region covalently attached to the core oligosaccharide or a high-Mr smooth-form LPS, as did strain J99, with an elongated partially fucosylated type-2 N-acetyllactosamine (polyLacNAc) O-chain polymer, terminated mainly by a Lex blood-group determinant, connected to the core oligosaccharide. In the midst of semi-rough-form LPS glycoforms, H. pylori 26695 and SS1 also expressed in the O-chain region a difucosylated antigen, alpha-L-Fucp(1-3)-alpha-L-Fucp(1-4)-beta-D-GlcpNAc, and the cancer-cell-related type-1 or type-2 linear B-blood-group antigen, alpha-D-Galp(1-3)-beta-D-Galp(1-3 or 4)-beta-D-GlcpNAc. The LPS of H. pylori strain P466 carried the cancer-associated type-2 sialyl Lex blood-group antigen, and the LPS from strain UA915 expressed a type-1 Leb blood-group unit. These findings should aid investigations that focus on identifying and characterizing genes responsible for LPS biosynthesis in genomic strains 26695 and J99, and in understanding the role of H. pylori LPS in animal model studies. The LPSs from the H. pylori strains studied to date were grouped into specific glycotype families.  相似文献   

20.
Alloiococcus otitidis is a recently discovered Gram-positive bacterium that has been linked with otitis media (middle ear infections). In this study, we describe the structure of a novel capsular polysaccharide (PS) expressed by the type-strain of A. otitidis, ATCC 51267, and the synthesis of a glycoconjugate composed of the capsule PS and bovine serum albumin (BSA). The capsule PS of A. otitidis type-strain was determined to be a repeating trisaccharide composed of 3-substituted N-acetyl-D-glucosamine (GlcpNAc), 6-substituted N-acetyl-D-galactosamine (GalpNAc), and 4-substituted D-glucuronic acid (GlcpA), of which the majority was amidically decorated with L-glutamic acid (Glu): {-->6)-beta-GalpNAc-(1-->4)-[Glup-->6]-beta-GlcpA-(1-->3)-beta-GlcpNAc-(1}n. Monomeric analysis performed on other A. otitidis strains revealed that similar components were variably expressed, but Glu appeared to be a regular constituent in all the strains examined. Due to the suitable presence of GlcpA and Glu, our approach for glycoconjugate synthesis employed a carbodiimide-based strategy with activation of available carboxyl groups by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC), which afforded direct coupling between the capsule PS and BSA. Analysis by mass spectrometry indicated that this A. otitidis capsule PS-BSA conjugate was composed of BSA units that carried up to seven capsule PSs. This work represents the first report in the literature describing an A. otitidis cell-surface carbohydrate and the synthesis of a glycoconjugate preparation thereof. Presently, we are formulating plans to immunologically evaluate this A. otitidis glycoconjugate vaccine in animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号