首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Alzheimer Disease (AD) is the most common neurodegenerative disorder worldwide, and account for 60% to 70% of all cases of progressive cognitive impairment in elderly patients. At the microscopic level distinctive features of AD are neurons and synapses degeneration, together with extensive amounts of senile plaques and neurofibrillars tangles. The degenerative process probably starts 20–30 years before the clinical onset of the disease. Senile plaques are composed of a central core of amyloid β peptide, Aβ, derived from the metabolism of the larger amyloid precursor protein, APP, which is expressed not only in the brain, but even in non neuronal tissues. More than 30 years ago, some studies reported that human platelets express APP and all the enzymatic activities necessary to process this protein through the same pathways described in the brain. Since then a large number of evidence has been accumulated to suggest that platelets may be a good peripheral model to study the metabolism of APP, and the pathophysiology of the onset of AD. In this review, we will summarize the current knowledge on the involvement of platelets in Alzheimer Disease. Although platelets are generally accepted as a suitable model for AD, the current scientific interest on this model is very high, because many concepts still remain debated and controversial. At the same time, however, these still unsolved divergences mirror a difficulty to establish constant parameters to better defined the role of platelets in AD.  相似文献   

3.
Neurofibrillary tangles (aggregates of cytoskeletal Tau protein) and senile plaques (aggregates mainly formed by amyloid β peptide) are two landmark lesions in Alzheimer׳s disease. Some researchers have proposed tangles, whereas others have proposed plaques, as primary lesions. For a long time, these were thought of as independent mechanisms. However, experimental evidence suggests that both lesions are intimately related. We review here some molecular pathways linking amyloid β and Tau toxicities involving, among others, glycogen synthase kinase 3β, p38, Pin1, cyclin-dependent kinase 5, and regulator of calcineurin 1. Understanding amyloid β and Tau toxicities as part of a common pathophysiological mechanism may help to find molecular targets to prevent or even treat the disease.  相似文献   

4.
TREM2 in Alzheimer’s disease   总被引:1,自引:0,他引:1  
Recent works have demonstrated a rare functional variant (R47H) in triggering receptor expressed on myeloid cells (TREM) 2 gene, encoding TREM2 protein, increase susceptibility to late-onset Alzheimer’s disease (AD), with an odds ratio similar to that of the apolipoprotein E ε4 allele. The reduced function of TREM2 was speculated to be the main cause in the pathogenic effects of this risk variant, and TREM2 is highly expressed in white matter, as well as in the hippocampus and neocortex, which is partly consistent with the pathological features reported in AD brain, indicating the possible involvement of TREM2 in AD pathogenesis. Emerging evidence has demonstrated that TREM2 could suppress inflammatory response by repression of microglia-mediated cytokine production and secretion, which may prevent inflammation-induced bystander damage of neurons. TREM2 also participates in the regulation of phagocytic pathways that are responsible for the removal of neuronal debris. In this article, we review the recent epidemiological findings of TREM2 that related with late-onset AD and speculate the possible roles of TREM2 in progression of this disease. Based on the potential protective actions of TREM2 in AD pathogenesis, targeting TREM2 might provide new opportunities for AD treatment.  相似文献   

5.
6.
Alzheimer’s disease (AD) is the most common form of dementia. At the diagnostic stage, the AD brain is characterized by the accumulation of extracellular amyloid plaques, intracellular neurofibrillary tangles and neuronal loss. Despite the large variety of therapeutic approaches, this condition remains incurable, since at the time of clinical diagnosis, the brain has already suffered irreversible and extensive damage. In recent years, it has become evident that AD starts decades prior to its clinical presentation. In this regard, transgenic animal models can shed much light on the mechanisms underlying this “pre-clinical” stage, enabling the identification and validation of new therapeutic targets. This paper summarizes the formidable efforts to create models mimicking the various aspects of AD pathology in the rat. Transgenic rat models offer distinctive advantages over mice. Rats are physiologically, genetically and morphologically closer to humans. More importantly, the rat has a well-characterized, rich behavioral display. Consequently, rat models of AD should allow a more sophisticated and accurate assessment of the impact of pathology and novel therapeutics on cognitive outcomes.  相似文献   

7.
Purinergic Signalling - Alzheimer’s disease (AD) is the most common dementia in the elderly and its increasing prevalence presents treatment challenges. Despite a better understanding of the...  相似文献   

8.
Molecular Biology Reports - Estrogens are hormones that play a critical role during development and growth for the adequate functioning of the reproductive system of women, as well as for...  相似文献   

9.
Recent evidence has indicated that type 2 diabetes mellitus (T2DM) increases the risk of developing Alzheimer’s disease (AD). Therefore, it is crucial to investigate the potential common processes that could explain this relation between AD and T2DM. In the recent decades, an abundance of evidence has emerged demonstrating that chronic inflammatory processes may be the major factors contributing to the development and progression of T2DM and AD. In this article, we have discussed the molecular underpinnings of inflammatory process that contribute to the pathogenesis of T2DM and AD and how they are linked to these two diseases. In depth understanding of the inflammatory mechanisms through which AD and T2DM are associated to each other may help the researchers to develop novel and more effective strategies to treat together AD and T2DM. Several treatment options have been identified which spurn the inflammatory processes and discourage the production of inflammatory mediators, thereby preventing or slowing down the onset of T2DM and AD.  相似文献   

10.
Reactive oxidative species (ROS) toxicity remains an undisputed cause and link between Alzheimer’s disease (AD) and Type-2 Diabetes Mellitus (T2DM). Patients with both AD and T2DM have damaged, oxidized DNA, RNA, protein and lipid products that can be used as possible disease progression markers. Although the oxidative stress has been anticipated as a main cause in promoting both AD and T2DM, multiple pathways could be involved in ROS production. The focus of this review is to summarize the mechanisms involved in ROS production and their possible association with AD and T2DM pathogenesis and progression. We have also highlighted the role of current treatments that can be linked with reduced oxidative stress and damage in AD and T2DM.  相似文献   

11.
12.
The β-amyloid (Aβ) peptide has been postulated to be a key determinant in the pathogenesis of Alzheimer’s disease (AD). Aβ is produced through sequential cleavage of the β-amyloid precursor protein (APP) by β- and γ-secretases. APP and relevant secretases are transmembrane proteins and traffic through the secretory pathway in a highly regulated fashion. Perturbation of their intracellular trafficking may affect dynamic interactions among these proteins, thus altering Aβ generation and accelerating disease pathogenesis. Herein, we review recent progress elucidating the regulation of intracellular trafficking of these essential protein components in AD.  相似文献   

13.
Confirming that synaptic loss is directly related to cognitive deficit in Alzheimer’s disease (AD) has been the focus of many studies. Compensation mechanisms counteract synaptic loss and prevent the catastrophic amnesia induced by synaptic loss via maintaining the activity levels of neural circuits. Here we investigate the interplay between various synaptic degeneration and compensation mechanisms, and abnormal cortical oscillations based on a large-scale network model consisting of 100,000 neurons exhibiting several cortical firing patterns, 8.5 million synapses, short-term plasticity, axonal delays and receptor kinetics. The structure of the model is inspired by the anatomy of the cerebral cortex. The results of the modelling study suggest that cortical oscillations respond differently to compensation mechanisms. Local compensation preserves the baseline activity of theta (5–7 Hz) and alpha (8–12 Hz) oscillations whereas delta (1–4 Hz) and beta (13–30 Hz) oscillations are maintained via global compensation. Applying compensation mechanisms independently shows greater effects than combining both compensation mechanisms in one model and applying them in parallel. Consequently, it can be speculated that enhancing local compensation might recover the neural processes and cognitive functions that are associated with theta and alpha oscillations whereas inducing global compensation might contribute to the repair of neural (cognitive) processes which are associated with delta and beta band activity. Compensation mechanisms may vary across cortical regions and the activation of inappropriate compensation mechanism in a particular region may fail to recover network dynamics and/or induce secondary pathological changes in the network.  相似文献   

14.
Various innovative diagnostic methods for Alzheimer’s disease (AD) have been developed in view of the increasing preva-lence and consequences of later-life dementia. Biomarkers in cerebrospinal fluid (CSF) and blood for AD are primarily based on the detection of components derived from amyloid plaques and neurofibrillary tangles (NFTs). Published reports on CSF and blood biomarkers in AD indicate that although biomarkers in body fluids may be utilized in the clinical diagnosis of AD, there are no specific markers that permit accurate and reliable diagnosis of early-stage AD or the monitoring of disease pro-gression.  相似文献   

15.
16.
Chasing genes in Alzheimer’s and Parkinson’s disease   总被引:4,自引:0,他引:4  
Alzheimers disease (AD), the most common type of dementia, and Parkinsons disease (PD), the most common movement disorder, are both neurodegenerative adult-onset diseases characterized by the progressive loss of specific neuronal populations and the accumulation of intraneuronal inclusions. The search for genetic and environmental factors that determine the fate of neurons during the ageing process has been a widespread approach in the battle against neurodegenerative disorders. Genetic studies of AD and PD initially focused on the search for genes involved in the aetiological mechanisms of monogenic forms of these diseases. They later expanded to study hundreds of patients, affected relative-pairs and population-based studies, sometimes performed on special isolated populations. A growing number of genes (and pathogenic mutations) is being identified that cause or increase susceptibility to AD and PD. This review discusses the way in which strategies of gene hunting have evolved during the last few years and the significance of finding genes such as the presenilins, -synuclein, parkin and DJ-1. In addition, we discuss possible links between these two neurodegenerative disorders. The clinical, pathological and genetic presentation of AD and PD suggests the involvement of a few overlapping interrelated pathways. Their imbricate features point to a spectrum of neurodegeneration (tauopathies, synucleinopathies, amyloidopathies) that need further intense investigation to find the missing links.  相似文献   

17.
Alzheimer’s disease (AD) is the most common form of neurodegenerative disease. The brain is particularly vulnerable to oxidative damage induced by unregulated redox-active metals such as copper and iron, and the brains of AD patients display evidence of metal dyshomeostasis and increased oxidative stress. The colocalisation of copper and amyloid β (Aβ) in the glutamatergic synapse during NMDA-receptor-mediated neurotransmission provides a microenvironment favouring the abnormal interaction of redox-potent Aβ with copper under conditions of copper dysregulation thought to prevail in the AD brain, resulting in the formation of neurotoxic soluble Aβ oligomers. Interactions between Aβ oligomers and copper can further promote the aggregation of Aβ, which is the core component of extracellular amyloid plaques, a central pathological hallmark of AD. Copper dysregulation is also implicated in the hyperphosphorylation and aggregation of tau, the main component of neurofibrillary tangles, which is also a defining pathological hallmark of AD. Therefore, tight regulation of neuronal copper homeostasis is essential to the integrity of normal brain functions. Therapeutic strategies targeting interactions between Aβ, tau and metals to restore copper and metal homeostasis are discussed.  相似文献   

18.
Alzheimer’s disease (AD) is characterized by cognitive impairment, progressive neurodegeneration, and Aβ accumulation. Aβ oligomers can lead to synaptic damage via alterations in glutamate receptors and excitotoxicity, as well as mitochondrial dysfunction. AD is associated with various biological indicators, including (1) predisposing factors such as genetic risk factors, (2) laboratory markers such as Aβ and tau protein, and (3) diagnostic markers such as MRI and PET findings. However, these markers are not confirmed, invasive, or expensive. In the present study, we employed nuclear magnetic resonance (NMR) methods that are inexpensive, time-efficient, and can be performed using samples obtained from various easily accessible sources such as cerebrospinal fluid, plasma, and peripheral tissue, thus highlighting the clinical utility of this approach. NMR analyses of blood metabolites showed that glutamine, glutamate, leucine, oxaloacetate, aspartate, isoleucine, and 3-hydroxyisovalerate are increased in patients with AD compared with control individuals. These metabolites seem to be related to mitochondrial dysfunction. Our data indicated that 3-hydroxyisovalerate, which is linked to known pathologic processes associated with mitochondrial dysfunction and accelerated neurodegeneration, was increased in the blood samples of patients with AD.  相似文献   

19.
Protein complexes are known to play a major role in controlling cellular activity in a living being. Identifying complexes from raw protein–protein interactions (PPIs) is an important area of research. Earlier work has been limited mostly to yeast and a few other model organisms. Such protein complex identification methods, when applied to large human PPIs often give poor performance. We introduce a novel method called ComFiR to detect such protein complexes and further rank diseased complexes based on a query disease. We have shown that it has better performance in identifying protein complexes from human PPI data. This method is evaluated in terms of positive predictive value, sensitivity and accuracy. We have introduced a ranking approach and showed its application on Alzheimer’s disease.  相似文献   

20.
Epigenetic mechanisms have emerged as important components of a variety of human diseases, including cancer and central nervous system disorders. Despite recent studies highlighting the role of epigenetic mechanisms in several neurodegenerative and neuropsychiatric disorders, to date, there has been a paucity of studies exploring the role of epigenetic factors in Parkinson’s disease (PD). PD is a progressive neurological disorder with characteristic motor and non-motor symptoms, including a range of neuropsychiatric features, for which neither preventative nor effective long-term treatment strategies are available. It is one of the most common neurodegenerative disorders and the second most prevalent after Alzheimer’s disease. In this review, we present several lines of evidence suggesting that epigenetic factors may play an important role in the pathogenesis of PD and propose on this basis a framework to guide future investigations into epigenetic mechanisms and systems biology of PD. These notions, together with technical advances in the ability to perform genome-wide analysis of epigenomic states, and newly available small-molecule probes targeting chromatin-modifying enzymes, may help design new treatment strategies for PD and other human diseases involving epigenetic dysregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号