首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
《Cell》2023,186(11):2456-2474.e24
  1. Download : Download high-res image (188KB)
  2. Download : Download full-size image
  相似文献   

2.
3.
4.
碱基编辑技术,以CRISPR/Cas系统为平台,引导胞嘧啶脱氨酶或腺嘌呤脱氨酶至特定的基因组靶点,产生靶向性的C至T或者A至G的碱基转换。自碱基编辑技术问世以来,全球多个科研团队通过优化改进得到了一系列高精准性、广靶向性、小编辑框、普适性的碱基编辑器。在应用方面,碱基编辑器能够在人体细胞、动植物细胞以及胚胎中进行高效的碱基转换,在治疗人类遗传病、构建动物疾病模型、植物育种等方面具有巨大的应用潜能。本文就碱基编辑技术的发展、优化和应用等方面进行综述和展望。  相似文献   

5.
近年来,基于CRISPR/Cas9的碱基编辑技术因其具有不产生DNA双链断裂、无需外源DNA模板、不依赖宿主同源重组修复的优势,已经逐渐发展成为一种强大的基因组编辑工具,在动物、植物、酵母和细菌中得到了开发和应用。研究团队前期已在重要的工业模式菌株谷氨酸棒杆菌中开发了一种多元自动化的碱基编辑技术MACBETH,为进一步优化该方法,提高碱基编辑技术在谷氨酸棒杆菌中的应用效率,本研究首先在谷氨酸棒杆菌中构建了基于绿色荧光蛋白(GFP)的检测系统:将GFP基因的起始密码子ATG人工突变为ACG,GFP无法正常表达,当该密码子的C经编辑后恢复为T,即实现GFP蛋白的复活,结合流式细胞仪分析技术,可快速衡量编辑效率。然后,构建针对靶标位点的碱基编辑工具,经测试,该位点可成功被编辑,在初始编辑条件下碱基编辑效率为(13.11±0.21)%。在此基础上,通过对不同培养基类型、诱导初始OD600、诱导时间、诱导物浓度进行优化,确定最优编辑条件是:培养基为CGXII,初始OD600为0.05,诱导时间为20 h,IPTG浓度为0.01 mmol/L。经过优化,编辑效率达到(30.35±0.75)%,较初始条件提高了1.3倍。最后,选取原编辑条件下编辑效率较低的位点,进行了优化后编辑条件下的编辑效率评估,结果显示,不同的位点在最优编辑条件下的编辑效率提高了1.7–2.5倍,进一步证实该优化条件的有效性及通用性。研究结果为碱基编辑技术在谷氨酸棒杆菌中更好的应用提供了重要的参考价值。  相似文献   

6.
《Cell》2022,185(10):1764-1776.e12
  1. Download : Download high-res image (136KB)
  2. Download : Download full-size image
  相似文献   

7.
徐鑫  刘明军 《生物工程学报》2021,37(7):2307-2321
CRISPR系统能够在基因组DNA中完成精准编辑,但依赖于细胞内的同源重组(Homology directed recombination,HDR)修复途径,且效率极低.基于CRISPR/Cas9系统开发的碱基编辑技术(Base editing)通过将失去切割活性的核酸酶与不同碱基脱氨基酶融合,构建了两套碱基编辑系统(...  相似文献   

8.
9.
碱基编辑器是近两年发展起来的新型基因组编辑工具,它将碱基脱氨酶的催化活性和CRISPR/Cas系统的靶向特异性进行结合,催化DNA或RNA链上特定位点的碱基发生脱氨基反应,进而完成碱基的替换。碱基编辑器分为DNA和RNA碱基编辑器两大类,其中DNA碱基编辑器分为两种:胞嘧啶碱基编辑器和腺嘌呤碱基编辑器;前者可以实现胞嘧啶到胸腺嘧啶的转换,而后者则可以将腺嘌呤突变为鸟嘌呤。由于DNA碱基编辑器不会造成DNA的双链断裂(DSB),也不依赖于宿主的非同源末端修复和同源重组途径,因此,大大减少了DSB相关的编辑副产物,如小片段插入或缺失等。基于CRISPR/Cas系统的RNA碱基编辑器,可以实现RNA链上腺嘌呤核苷到次黄苷的转换。本文对不同类型碱基编辑器的开发过程、适用范围和编辑特点等进行梳理,并对其在细菌基因组编辑中的应用进行了介绍;最后简要探讨了细菌中碱基编辑器的缺点以及将来可能的研究方向。  相似文献   

10.
《Molecular cell》2023,83(7):1125-1139.e8
  1. Download : Download high-res image (164KB)
  2. Download : Download full-size image
  相似文献   

11.
作为新型的基因组编辑工具,碱基编辑技术结合了CRISPR/Cas系统的定位功能和碱基脱氨酶的编辑功能,可实现特定位点的碱基突变,具有不产生双链DNA断裂,无需外源模板且不依赖染色体DNA同源重组的优势.目前,研究者们已在重要的工业生产菌株谷氨酸棒杆菌(Corynebacterium glutamicum)中开发了多种碱...  相似文献   

12.
13.
Oxidation of 5-methylcytosine by TET family proteins can induce DNA replication-dependent (passive) DNA demethylation and base excision repair (BER)-based (active) DNA demethylation. The balance of active vs. passive TET-induced demethylation remains incompletely determined. In the context of large scale DNA demethylation, active demethylation may require massive induction of the DNA repair machinery and thus compromise genome stability. To study this issue, we constructed a tetracycline-controlled TET-induced global DNA demethylation system in HEK293T cells. Upon TET overexpression, we observed induction of DNA damage and activation of a DNA damage response; however, BER genes are not upregulated to promote DNA repair. Depletion of TDG (thymine DNA glycosylase) or APEX1 (apurinic/apyrimidinic endonuclease 1), two key BER enzymes, enhances rather than impairs global DNA demethylation, which can be explained by stimulated proliferation. By contrast, growth arrest dramatically blocks TET-induced global DNA demethylation. Thus, in the context of TET-induction in HEK293T cells, the DNA replication-dependent passive mechanism functions as the predominant pathway for global DNA demethylation. In the same context, BER-based active demethylation is markedly restricted by limited BER upregulation, thus potentially preventing a disastrous DNA damage response to extensive active DNA demethylation.  相似文献   

14.
15.
DNA repair enzymes induce base flipping in the process of damage recognition. Endonuclease V initiates the repair of cis, syn thymine dimers (TD) produced in DNA by UV radiation. The enzyme is known to flip the base opposite the damage into a non-specific binding pocket inside the protein. Uracil DNA glycosylase removes a uracil base from G.U mismatches in DNA by initially flipping it into a highly specific pocket in the enzyme. The contribution of base flipping to specific recognition has been studied by molecular dynamics simulations on the closed and open states of undamaged and damaged models of DNA. Analysis of the distributions of bending and opening angles indicates that enhanced base flipping originates in increased flexibility of the damaged DNA and the lowering of the energy difference between the closed and open states. The increased flexibility of the damaged DNA gives rise to a DNA more susceptible to distortions induced by the enzyme, which lowers the barrier for base flipping. The free energy profile of the base-flipping process was constructed using a potential of mean force representation. The barrier for TD-containing DNA is 2.5 kcal mol(-1) lower than that in the undamaged DNA, while the barrier for uracil flipping is 11.6 kcal mol(-1) lower than the barrier for flipping a cytosine base in the undamaged DNA. The final barriers for base flipping are approximately 10 kcal mol(-1), making the rate of base flipping similar to the rate of linear scanning of proteins on DNA. These results suggest that damage recognition based on lowering the barrier for base flipping can provide a general mechanism for other DNA-repair enzymes.  相似文献   

16.
DNA sequences d-TGAGGAAAGAAGGT (a 14-mer) and d-CTCCTTTCTTCC (a 12-mer) are complementary in parallel orientation forming either Donahue (reverse Watson-Crick) base pairing at neutral pH or Hoogsteen base pairing at slightly acidic pH. The structure of the complex formed by dissolving the two strands in equimolar ratio in water has been investigated by nmr. At neutral pH, the system forms an ordered antiparallel duplex with five A : T and four G : C Watson-Crick base pairs and three mismatches, namely G-T, A-C, and T-C. The nuclear Overhauser effect cross-peak pattern suggests an overall B-DNA conformation with major structural perturbations near the mismatches. The duplex has a low melting point and dissociates directly into single strands with a broad melting profile. The hydrogen-bonding schemes in the mismatched base pairs have been investigated. It has been shown earlier that in acidic pH, the system prefers a triple-stranded structure with two pyrimidine strands and one purine strand. One of the pyrimidine strands has protonated cytosines, forms Hoogsteen base pairing, and is aligned parallel to the purine strand; the other has nonprotonated cytosines and has base-pairing scheme similar to the one discussed in this paper. The parallel duplex is therefore less stable than either the antiparallel duplex or the triplex, in spite of its perfect complementarity. © 1997 John Wiley & Sons, Inc. Biopoly 41: 773–784, 1997  相似文献   

17.
In many crop species, natural variation in eIF4E proteins confers resistance to potyviruses. Gene editing offers new opportunities to transfer genetic resistance to crops that seem to lack natural eIF4E alleles. However, because eIF4E are physiologically important proteins, any introduced modification for virus resistance must not bring adverse phenotype effects. In this study, we assessed the role of amino acid substitutions encoded by a Pisum sativum eIF4E virus‐resistance allele (W69L, T80D S81D, S84A, G114R and N176K) by introducing them independently into the Arabidopsis thaliana eIF4E1 gene, a susceptibility factor to the Clover yellow vein virus (ClYVV). Results show that most mutations were sufficient to prevent ClYVV accumulation in plants without affecting plant growth. In addition, two of these engineered resistance alleles can be combined with a loss‐of‐function eIFiso4E to expand the resistance spectrum to other potyviruses. Finally, we use CRISPR‐nCas9‐cytidine deaminase technology to convert the Arabidopsis eIF4E1 susceptibility allele into a resistance allele by introducing the N176K mutation with a single‐point mutation through C‐to‐G base editing to generate resistant plants. This study shows how combining knowledge on pathogen susceptibility factors with precise genome‐editing technologies offers a feasible solution for engineering transgene‐free genetic resistance in plants, even across species barriers.  相似文献   

18.
《Molecular cell》2022,82(4):852-867.e5
  1. Download : Download high-res image (132KB)
  2. Download : Download full-size image
  相似文献   

19.
20.
《Cell reports》2020,30(10):3280-3295.e6
  1. Download : Download high-res image (185KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号