首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low phytic acid grains can provide a solution to dietary micronutrient deficiency and environmental pollution. A low phytic acid 1-1 (lpa1-1) barley mutant was identified using forward genetics and the mutant gene was mapped to chromosome 2HL. Comparative genomic analysis revealed that the lpa1-1 gene was located in the syntenic region of the rice Os-lpa-MH86-1 gene on chromosome 4. The gene ortholog of rice Os-lpa-MH86-1 (designated as HvST) was isolated from barley using polymerase chain reaction and mapped to chromosome 2HL in a doubled haploid population of Clipper×Sahara. The results demonstrate the collinearity between the rice Os-lpa-MH86-1 gene and the barley lpa1-1 region. Sequence analysis of HvST revealed a single base pair substitution (C→T transition) in the last exon of the gene in lpa1-1 (M422), which resulted in a nonsense mutation. These results will facilitate our understanding of the molecular mechanisms controlling the low phytic acid phenotype and assist in the development of a diagnostic marker for the selection of the lpa1-1 gene in barley.  相似文献   

2.
A number of methods have recently been published that use phylogenetic information extracted from large multiple sequence alignments to detect sites that have changed properties in related protein families. In this study we use such methods to assess functional divergence between eukaryotic EF-1α (eEF-1α), archaebacterial EF-1α (aEF-1α) and two eukaryote-specific EF-1α paralogs—eukaryotic release factor 3 (eRF3) and Hsp70 subfamily B suppressor 1 (HBS1). Overall, the evolutionary modes of aEF-1α, HBS1 and eRF3 appear to significantly differ from that of eEF-1α. However, functionally divergent (FD) sites detected between aEF-1α and eEF-1α only weakly overlap with sites implicated as putative EF-1β or aminoacyl-tRNA (aa-tRNA) binding residues in EF-1α, as expected based on the shared ancestral primary translational functions of these two orthologs. In contrast, FD sites detected between eEF-1α and its paralogs significantly overlap with the putative EF-1β and/or aa-tRNA binding sites in EF-1α. In eRF3 and HBS1, these sites appear to be released from functional constraints, indicating that they bind neither eEF-1β nor aa-tRNA. These results are consistent with experimental observations that eRF3 does not bind to aa-tRNA, but do not support the ‘EF-1α-like’ function recently proposed for HBS1. We re-assess the available genetic data for HBS1 in light of our analyses, and propose that this protein may function in stop codon-independent peptide release.  相似文献   

3.
4.
Cyclin-dependent kinase inhibitor p21Waf1/Cip1 plays the key part in cell cycle arrest at the G1/S checkpoint in response to DNA damage, and is involved in the assembly of active cyclin–kinase complexes, in particular, cyclin D–Cdk4/6. Recent studies extended the range of known p21Waf1/Cip1 functions. In addition to the cell-cycle control, p21Waf1/Cip1 participates in important cell processes such as differentiation, senescence, and apoptosis. The balance of p21Waf1/Cip1 functional activity appears to shift depending on the cell state (senescence, exposure to stress, expression of viral oncogenes). This is due to direct or indirect interaction with various modulators or to modification (phosphorylation, partial proteolysis) of p21Waf1/Cip1. The review considers the structure of p21Waf1/Cip1, its posttranslational modification, interactions with various cell or viral proteins, and their effects on the p21Waf1/Cip1 function and on the cell.  相似文献   

5.
Decreased autophagic flux in cardiomyocytes is an important mechanism by which the β1-adrenoreceptor (β1-AR) autoantibody (β1-AA) induces heart failure. A previous study found that β1-AA imparts its biological effects via the β1-AR/Gs/AC/cAMP/PKA canonical signaling pathway, but PKA inhibition does not completely reverse β1-AA-induced reduction in autophagy in myocardial tissues, suggesting that other signaling molecules participate in this process. This study confirmed that Epac1 upregulation is indeed involved β1-AA-induced decreased cardiomyocyte autophagy through CE3F4 pretreatment, Epac1 siRNA transfection, western blot and immunofluorescence methods. On this basis, we constructed β1-AR and β2-AR knockout mice, and used receptor knockout mice, β1-AR selective blocker (atenolol), and the β2-AR/Gi-biased agonist ICI 118551 to show that β1-AA upregulated Epac1 expression through β1-AR and β2-AR to inhibit autophagy, and biased activation of β2-AR/Gi signaling downregulated myocardial Epac1 expression to reverse β1-AA-induced myocardial autophagy inhibition. This study aimed to test the hypothesis that Epac1 acts as another effector downstream of cAMP on β1-AA-induced reduction in cardiomyocyte autophagy, and β1-AA upregulates myocardial Epac1 expression through β1-AR and β2-AR, and biased activation of the β2-AR/Gi signaling pathway can reverse β1-AA-induced myocardial autophagy inhibition. This study provides new ideas and therapeutic targets for the prevention and treatment of cardiovascular diseases related to dysregulated autophagy.  相似文献   

6.
The COT1 and ZRC1 genes of Saccharomyces cerevisiae are structurally related dosage-dependent suppressors of metal toxicity. COT1 confers increased tolerance to high levels of cobalt; ZRC1 confers increased tolerance to high levels of zinc. The two genes are not linked and have been mapped; COT1 to chromosome XV and ZRC1 to chromosome XIII. Phenotypes related to metal homeostasis have been examined in strains with varied COT1 and ZRC1 gene doses. Overexpression of COT1 confers tolerance to moderately toxic levels of zinc and ZRC1 confers tolerance to moderately toxic levels of cobalt. Strains that carry null alleles at both loci are viable. The metal-hypersensitive phenotypes of mutations in either gene are largely unaffected by changes in dosage of the other. COT1 and ZRCI function independently in conferring tolerance to their respective metals, yet the uptake of cobalt ions by yeast cells is dependent on the gene dosage of ZRC1 as well as of COT1 Strains that overexpress ZRC1 have increased uptake of cobalt ions, while ZRCI null mutants exhibit decreased cobalt uptake. The defects in cobalt uptake due to mutations at COT1 and ZRC1 are additive, suggesting that the two genes are responsible for the majority of cobalt and zinc uptake in yeast cells. The function of either gene product seems to be more important in metal homeostasis than is the GRR1 gene product, which is also involved in metal metabolism. Mutations in the GRR1 gene have no effect on the cobalt-related phenotypes of strains that have altered gene dosage of either COT1 or ZRC1.  相似文献   

7.
Histone variant Htz1 substitution for H2A plays important roles in diverse DNA transactions. Histone chaperones Chz1 and Nap1 (nucleosome assembly protein 1) are important for the deposition Htz1 into nucleosomes. In literatures, it was suggested that Chz1 is a Htz1–H2B-specific chaperone, and it is relatively unstructured in solution but it becomes structured in complex with the Htz1–H2B histone dimer. Nap1 (nucleosome assembly protein 1) can bind (H3–H4)2 tetramers, H2A–H2B dimers and Htz1–H2B dimers. Nap1 can bind H2A–H2B dimer in the cytoplasm and shuttles the dimer into the nucleus. Moreover, Nap1 functions in nucleosome assembly by competitively interacting with non-nucleosomal histone–DNA. However, the exact roles of these chaperones in assembling Htz1-containing nucleosome remain largely unknown. In this paper, we revealed that Chz1 does not show a physical interaction with chromatin. In contrast, Nap1 binds exactly at the genomic DNA that contains Htz1. Nap1 and Htz1 show a preferential interaction with AG-rich DNA sequences. Deletion of chz1 results in a significantly decreased binding of Htz1 in chromatin, whereas deletion of nap1 dramatically increases the association of Htz1 with chromatin. Furthermore, genome-wide nucleosome-mapping analysis revealed that nucleosome occupancy for Htz1p-bound genes decreases upon deleting htz1 or chz1, suggesting that Htz1 is required for nucleosome structure at the specific genome loci. All together, these results define the distinct roles for histone chaperones Chz1 and Nap1 to regulate Htz1 incorporation into chromatin.  相似文献   

8.
Heterothallism in Cordyceps takaomontana   总被引:4,自引:0,他引:4  
Perithecium formation of an entomopathogenic fungus Cordyceps takaomontana was promoted by treating the mycelia with cell wall-degrading enzymes and PEG 4000. Perithecia were formed in the mixed culture of both mating-type strains MAT1 and MAT2, and not in the culture of MAT1 or MAT2 alone. The MAT1 strains did not possess a mating-type gene MAT1-1-3, but could produce perithecia. These results strongly suggested that C. takaomontana is heterothallic, and does not need MAT1-1-3 for the perithecium formation. MAT1-1-3 was also not found in another entomopathogenic fungus Cordyceps militaris. On the other hand, phytopathogenic fungi Balansia sp., Claviceps purpurea and Epichloë typhina possessed MAT1-1-3. The structures of mating-type locus MAT1-1 of these phytopathogenic fungi in the family Clavicipitaceae were similar to that of a phytopathogenic fungus Gibberella fujikuroi in the family Nectriaceae, which is closely related to Clavicipitaceae. These results suggested that phytopathogen might be more ancestral group than entomopathogen in Clavicipitaceae, and that MAT1-1-3 might be lost in the course of the host shift from plants to insects.  相似文献   

9.
10.

Background

The heparan sulfate proteoglycan syndecan-1 (CD138) was shown to regulate inflammatory responses by binding chemokines and cytokines and interacting with adhesion molecules, thereby modulating leukocyte trafficking to tissues. The objectives of this study were to examine the expression of syndecan-1 and its role in leukocyte recruitment and chemokine presentation in the microcirculation underlying the parietal peritoneum.

Methods

Wild-type BALB/c and syndecan-1 null mice were stimulated with an intraperitoneal injection of Staphylococcus aureus LTA, Escherichia coli LPS or TNFα and the microcirculation of the parietal peritoneum was examined by intravital microscopy after 4 hours. Fluorescence confocal microscopy was used to examine syndecan-1 expression in the peritoneal microcirculation using fluorescent antibodies. Blocking antibodies to adhesion molecules were used to examine the role of these molecules in leukocyte-endothelial cell interactions in response to LTA. To determine whether syndecan-1 co-localizes with chemokines in vivo, fluorescent antibodies to syndecan-1 were co-injected intravenously with anti-MIP-2 (CXCL2), anti-KC (CXCL1) or anti-MCP-1 (CCL2).

Results and Conclusion

Syndecan-1 was localized to the subendothelial region of peritoneal venules and the mesothelial layer. Leukocyte rolling was significantly decreased with LPS treatment while LTA and TNFα significantly increased leukocyte adhesion compared with saline control. Leukocyte-endothelial cell interactions were not different in syndecan-1 null mice. Antibody blockade of β 2 integrin (CD18), ICAM-1 (CD54) and VCAM-1 (CD106) did not decrease leukocyte adhesion in response to LTA challenge while blockade of P-selectin (CD62P) abrogated leukocyte rolling. Lastly, MIP-2 expression in the peritoneal venules was not dependent on syndecan-1 in vivo. Our data suggest that syndecan-1 is expressed in the parietal peritoneum microvasculature but does not regulate leukocyte recruitment and is not necessary for the presentation of the chemokine MIP-2 in this tissue.  相似文献   

11.
Aberrant DNA methylation is a feature of human cancer affecting gene expression and tumor phenotype. Here, we quantified promoter methylation of candidate genes and global methylation in 44 small intestinal-neuroendocrine tumors (SI-NETs) from 33 patients by pyrosequencing. Findings were compared with gene expression, patient outcome and known tumor copy number alterations. Promoter methylation was observed for WIF1, RASSF1A, CTNNB1, CXCL14, NKX2–3, P16, LAMA1, and CDH1. By contrast APC, CDH3, HIC1, P14, SMAD2, and SMAD4 only had low levels of methylation. WIF1 methylation was significantly increased (P = 0.001) and WIF1 expression was reduced in SI-NETs vs. normal references (P = 0.003). WIF1, NKX2–3, and CXCL14 expression was reduced in metastases vs. primary tumors (P < 0.02). Low expression of RASSF1A and P16 were associated with poor overall survival (P = 0.045 and P = 0.011, respectively). Global methylation determined by pyrosequencing of LINE1 repeats was reduced in tumors vs. normal references, and was associated with loss in chromosome 18. The tumors fell into three clusters with enrichment of WIF1 methylation and LINE1 hypomethylation in Cluster I and RASSF1A and CTNNB1 methylation and loss in 16q in Cluster II. In Cluster III, these alterations were low-abundant and NKX2-3 methylation was low. Similar analyses in the SI-NET cell lines HC45 and CNDT2 showed methylation for CDH1 and WIF1 and/or P16, CXCL14, NKX2-3, LAMA1, and CTNNB1. Treatment with the demethylating agent 5-azacytidine reduced DNA methylation and increased expression of these genes in vitro. In conclusion, promoter methylation of tumor suppressor genes is associated with suppressed gene expression and DNA copy number alterations in SI-NETs, and may be restored in vitro.  相似文献   

12.
Chan LK  Ko FC  Sze KM  Ng IO  Yam JW 《PloS one》2011,6(9):e25547

Background

Deleted in liver cancer 1 (DLC1) serves as an important RhoGTPase activating protein (RhoGAP) protein that terminates active RhoA signaling in human cancers. Increasing evidence has demonstrated that the tumor suppressive activity of DLC1 depends not only on RhoGAP activity, but also relies on proper focal adhesion localization through its interaction with tensin family proteins. Recently, there are reports showing that DLC1 can also be found in the nucleus; however, the existence and the relative tumor suppressive activity of nuclear DLC1 have never been clearly addressed.

Methodology and Principal Findings

We herein provide new evidence that DLC1 protein, which predominantly associated with focal adhesions and localized in cytosol, dynamically shuttled between cytoplasm and nucleus. Treatment of cells with nuclear export blocker, Leptomycin B (LMB), retained DLC1 in the nucleus. To understand the nuclear entry of DLC1, we identified amino acids 600–700 of DLC1 as a novel region that is important for its nuclear localization. The tumor suppressive activity of nuclear DLC1 was directly assessed by employing a nuclear localization signal (NLS) fusion variant of DLC1 (NLS-DLC1) with preferential nuclear localization. In SMMC-7721 HCC cells, expression of NLS-DLC1 failed to suppress colony formation and actin stress fiber formation in vitro. The abrogated tumor suppressive activity of nuclear DLC1 was demonstrated for the first time in vivo by subcutaneously injecting p53−/− RasV12 hepatoblasts with stable NLS-DLC1 expression in nude mice. The injected hepatoblasts with NLS-DLC1 expression effectively formed tumors when compared with the non-nuclear targeted DLC1.

Conclusions/Significance

Our study identified a novel region responsible for the nuclear entry of DLC1 and demonstrated the functional difference of DLC1 in different cellular compartments both in vitro and in vivo.  相似文献   

13.
Li J  Wang F  Zhou Q  Ou Z  Jia H  Deng X  He Y  Wu X 《Helicobacter》2011,16(3):246-251
Background: Polymorphisms of IL‐1 gene cluster are reported to be associated with histological changes and IL‐1β expression in the gastric mucosa in adults, especially in Helicobacter pylori–infected subjects. As H. pylori infecting adults and children own different virulence genotypes, the aim of this study was to investigate whether IL‐1 polymorphisms are risk factors in young children in South China. Materials and Methods: A total of 128 children with peptic symptoms were enrolled in this study. Polymorphisms of IL‐1B‐511 and IL‐1B‐31 were identified by dual fluorescence PCR. Variable number of tandem repeat region in IL‐1RN was detected by conventional PCR and IL‐1β mRNA expression by real‐time PCR ddCT assay. Results: IL‐1B‐31T and IL‐1B‐511C were completely linked in this study. Significant differences of IL‐1B‐511/‐31 genotypes were observed among different clinical outcomes (p = .001). The IL‐1B‐511TT/‐31CC was mostly found in the moderate gastritis and the above (severe gastritis or gastric ulcer) groups, with percentage of 60.7%. While no association was observed between IL‐1RN genotypes and the gastric mucosal histological changes (p = .128). Also no relationships were found between IL‐1 polymorphisms and H. pylori infection or gastric mucosal IL‐1β mRNA expression level. Conclusion: Children with IL‐1B‐511TT/‐31CC may have a risk to develop relatively severe gastric mucosal histological changes in South China.  相似文献   

14.
We have previously shown that lmx1b, a LIM homeodomain protein, is expressed in the pronephric glomus. We now show temporal and spatial expression patterns of lmx1b and its potential binding partners in both dissected pronephric anlagen and in individual dissected components of stage 42 pronephroi. Morpholino oligonucleotide knock-down of lmx1b establishes a role for lmx1b in the development of the pronephric components. Depletion of lmx1b results in the formation of a glomus with reduced size. Pronephric tubules were also shown to be reduced in structure and/or coiling whereas more distal tubule structure was unaffected. Over-expression of lmx1b mRNA resulted in no significant phenotype. Given that lmx1b protein is known to function as a heterodimer, we have over-expressed lmx1b mRNA alone or in combination with potential interacting molecules and analysed the effects on kidney structures. Phenotypes observed by over-expression of lim1 and ldb1 are partially rescued by co-injection with lmx1b mRNA. Animal cap experiments confirm that co-injection of lmx1b with potential binding partners can up-regulate pronephric molecular markers suggesting that lmx1b lies upstream of wt1 in the gene network controlling glomus differentiation. This places lmx1b in a genetic hierarchy involved in pronephros development and suggests that it is the balance in levels of binding partners together with restricted expression domains of lmx1b and lim1 which influences differentiation into glomus or tubule derivatives in vivo.  相似文献   

15.
The objective of this study was to evaluate the nitrogen (N) biogeochemistry of an 18–22 year old forested watershed in western Maryland. We hypothesized that this watershed should not exhibit symptoms of N saturation. This watershed was a strong source of nitrate (NO3 ) to the stream in all years, with a mean annual export of 9.5 kg N ha−1 year−1 and a range of 4.4–18.4 kg N ha−1 year−1. During the 2001 and 2002 water years, wet deposition of inorganic N was 9.0 kg N ha−1 year−1 and 6.3 kg N ha−1 year−1, respectively. Watershed N export rates in 2001 and 2002 water years were 4.2 kg N ha−1 year−1 and 5.3 kg N ha−1 year−1, respectively. During the wetter water years of 2003 and 2004, the watershed exported 15.0 kg N ha−1 year−1 and 18.4 kg N ha−1 year−1, rates that exceeded annual wet deposition of N by a factor of two (7.5 kg N ha−1 year−1 in 2003) and three (5.5 kg N ha−1 year−1 in 2004). Consistent with the high rates of N export, were high concentrations (2.1–3.3%) of N in foliage, wood (0.3%) and fine roots, low C:N ratios in the forest floor (17–24) and mineral soil (14), high percentages (83–96%) of the amount of mineralized N that was nitrified and elevated N concentrations (up to 3 mg N l−1) in soil solution. Although this watershed contained a young aggrading forest, it exhibited several symptoms of N saturation commonly observed in more mature forests.  相似文献   

16.
17.
Pentacyclic thio- (1) and seleno- (2) analogues of tetramethylrosamine (TMR) were prepared with a julolidyl fragment replacing the 3-dimethylamino substituent in the xanthylium core. The pentacylic structure increases the lipophilicity of 1 and 2 relative to TMR-S and TMR-Se and locks the lone-pair of electrons on the julolidyl N atom into conjugation with the xanthylium core. This conformational rigidization leads to longer wavelengths of absorption, but has little impact on other photophysical properties such as quantum yields for fluorescence and singlet-oxygen generation and fluorescence lifetimes in 1 and 2 relative to TMR-S and TMR-Se. Both 1 and 2 are effective photosensitizers against chemosensitive AUXB1 cells in vitro at 1 × 10−7 M and compound 2 is an effective photosensitizer against multidrug-resistant CR1R12 cells in vitro at 1 × 10−7 M. While the uptake TMR-S into CR1R12 cells as measured by fluorescence is significantly lower than uptake into chemosensitive AUXB1 cells, there is no significant difference in the uptake of 1 into either AUXB1 or CR1R12 cells. The addition of 2 × 10−4 M verapamil to the cells prior to treatment with 1 had no significant effect on the uptake of 1 into either AUXB1 or CR1R12 cells. Treating lipid-activated, purified Pgp with 2 and light gave complete inhibition of Pgp ATPase activity.  相似文献   

18.
An in vitro protocol was developed for the production of plants via somatic embryogenesis in callus cultures derived from petiole and leaf explants of Typhonium trilobatum. Optimum callus formation was achieved on semisolid Murashige and Skoog's [9] medium supplemented with 0.25 mg L–1 kinetin and 3.0 mgL–1 1-naphthaleneacetic acid (NAA) after 6 weeks of culture. Somatic embryogenesis was achieved upon transferring the callus to a medium containing 1.0 mg Lminus 1 kinetin and 0.25 mg Lminus 1 NAA. In vitro tuberization was also achieved on medium containing 1/2 strength MS basal salts supplemented with 1.0 mg L–1 Kinetin and 0.1 mg L–1 NAA. Embryo maturation and germination was achieved on the MS basal salts supplemented with 0.01 mg L–1 NAA and 2% (w/v) sucrose. Some thousands somatic embryo derived plantlets were hardened in the greenhouse and eventually planted in the open field.  相似文献   

19.
The effects of amino acid variants encoded by the human leukocyte antigen (HLA) class II on the development of classical type 1 diabetes (T1D) and latent autoimmune diabetes in adults (LADA) have not been fully elucidated. We retrospectively investigated the HLA-DRB1 and -DQB1 genes of 72 patients with classical T1D and 102 patients with LADA in the Japanese population and compared the frequencies of HLA-DRB1 and -DQB1 alleles between these patients and the Japanese populations previously reported by another institution. We also performed a blind association analysis with all amino acid positions in classical T1D and LADA, and compared the associations of HLA-DRB1 and -DQB1 amino acid positions in classical T1D and LADA. The frequency of DRß-Phe-13 was significantly higher and those of DRß-Arg-13 and DQß-Gly-70 were significantly lower in patients with classical T1D and LADA than in controls. The frequencies of DRß-His-13 and DQß-Glu-70 were significantly higher in classical T1D patients than in controls. The frequency of DRß-Ser-13 was significantly lower and that of DQß-Arg-70 was significantly higher in LADA patients than in controls. HLA-DRß1 position 13 and HLA-DQß1 position 70 could be critical amino acid positions in the development of classical T1D and LADA.  相似文献   

20.
Complex disease such as cancer results from interactions of multiple genetic and environmental factors. Studying these factors singularly cannot explain the underlying pathogenetic mechanism of the disease. Multi-analytical approach, including logistic regression (LR), classification and regression tree (CART) and multifactor dimensionality reduction (MDR), was applied in 188 lung cancer cases and 290 controls to explore high order interactions among xenobiotic metabolizing genes and environmental risk factors. Smoking was identified as the predominant risk factor by all three analytical approaches. Individually, CYP1A1*2A polymorphism was significantly associated with increased lung cancer risk (OR = 1.69;95%CI = 1.11–2.59,p = 0.01), whereas EPHX1 Tyr113His and SULT1A1 Arg213His conferred reduced risk (OR = 0.40;95%CI = 0.25–0.65,p<0.001 and OR = 0.51;95%CI = 0.33–0.78,p = 0.002 respectively). In smokers, EPHX1 Tyr113His and SULT1A1 Arg213His polymorphisms reduced the risk of lung cancer, whereas CYP1A1*2A, CYP1A1*2C and GSTP1 Ile105Val imparted increased risk in non-smokers only. While exploring non-linear interactions through CART analysis, smokers carrying the combination of EPHX1 113TC (Tyr/His), SULT1A1 213GG (Arg/Arg) or AA (His/His) and GSTM1 null genotypes showed the highest risk for lung cancer (OR = 3.73;95%CI = 1.33–10.55,p = 0.006), whereas combined effect of CYP1A1*2A 6235CC or TC, SULT1A1 213GG (Arg/Arg) and betel quid chewing showed maximum risk in non-smokers (OR = 2.93;95%CI = 1.15–7.51,p = 0.01). MDR analysis identified two distinct predictor models for the risk of lung cancer in smokers (tobacco chewing, EPHX1 Tyr113His, and SULT1A1 Arg213His) and non-smokers (CYP1A1*2A, GSTP1 Ile105Val and SULT1A1 Arg213His) with testing balance accuracy (TBA) of 0.6436 and 0.6677 respectively. Interaction entropy interpretations of MDR results showed non-additive interactions of tobacco chewing with SULT1A1 Arg213His and EPHX1 Tyr113His in smokers and SULT1A1 Arg213His with GSTP1 Ile105Val and CYP1A1*2C in nonsmokers. These results identified distinct gene-gene and gene environment interactions in smokers and non-smokers, which confirms the importance of multifactorial interaction in risk assessment of lung cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号