首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Evolutionary changes in reproductive mode may affect co‐evolving traits, such as dispersal, although this subject remains largely underexplored. The shift from aquatic oviparous or larviparous reproduction to terrestrial viviparous reproduction in some amphibians entails skipping the aquatic larval stage and, thus, greater independence from water. Accordingly, amphibians exhibiting terrestrial viviparous reproduction may potentially disperse across a wider variety of suboptimal habitats and increase population connectivity in fragmented landscapes compared to aquatic‐breeding species. We investigated this hypothesis in the fire salamander (Salamandra salamandra), which exhibits both aquatic‐ (larviparity) and terrestrial‐breeding (viviparity) strategies. We genotyped 426 larviparous and 360 viviparous adult salamanders for 13 microsatellite loci and sequenced a mitochondrial marker for 133 larviparous and 119 viviparous individuals to compare population connectivity and landscape resistance to gene flow within a landscape genetics framework. Contrary to our predictions, viviparous populations exhibited greater differentiation and reduced genetic connectivity compared to larviparous populations. Landscape genetic analyses indicate viviparity may be partially responsible for this pattern, as water courses comprised a significant barrier only in viviparous salamanders, probably due to their fully terrestrial life cycle. Agricultural areas and, to a lesser extent, topography also decreased genetic connectivity in both larviparous and viviparous populations. This study is one of very few to explicitly demonstrate the evolution of a derived reproductive mode affects patterns of genetic connectivity. Our findings open avenues for future research to better understand the eco‐evolutionary implications underlying the emergence of terrestrial reproduction in amphibians.  相似文献   

2.
Reproduction is intimately linked with dispersal, but the effects of changes in reproductive strategies on dispersal have received little attention. Such changes have occurred in many taxonomic groups, resulting in profound alterations in life-history. In amphibians, many species shifted from oviparous/larviparous aquatic reproduction (deposition of eggs or pre-metamorphic larvae in water) to pueriparous terrestrial reproduction (parturition of terrestrial juveniles). The latter provides greater independence from water by skipping the aquatic larval stage; however, the eco-evolutionary implications of this evolutionary step have been underexplored, largely because reproductive modes rarely vary at the intraspecific level, preventing meaningful comparisons. We studied the effects of a transition to pueriparity on dispersal and fine-scale genetic structure in the fire salamander (Salamandra salamandra), a species exhibiting two co-occurring reproductive modes: larviparity and pueriparity. We performed genetic analyses (parentage and genetic spatial autocorrelation) using 11 microsatellite loci to compare dispersal and fine-scale genetic structure in three larviparous and three pueriparous populations (354 individuals in total). We did not find significant differences between reproductive modes, but in some larviparous populations movement patterns may be influenced by site-specific features (type of water bodies), possibly due to passive water-borne dispersal of larvae along streams. Additionally, females (especially larviparous ones) appeared to be more philopatric, while males showed greater variation in dispersal distances. This study also points to future avenues of research to better understand the eco-evolutionary implications of changes in reproductive modes in amphibians.  相似文献   

3.
The mechanisms that underlie the diversification of Neotropical primates remain contested. One mechanism that has found support is the riverine barrier hypothesis (RBH), which postulates that large rivers impede gene flow between populations on opposite riverbanks and promote allopatric speciation. Ayres and Clutton-Brock (1992) demonstrated that larger Amazonian rivers acted as barriers, delineating the distribution limits of primate species. However, profound changes in taxonomy and species concepts have led to the proliferation of Neotropical primate taxa, which may have reduced support for their results. Using the most recent taxonomic assessments and distribution maps, we tested the effect of increasing river size on the similarity of opposite riverbank primate communities in the Amazon. First, we conducted a literature review of primate taxonomy and developed a comprehensive spatial database, then applied geographical information system to query mapped primate ranges against the riverine geography of the Amazon watershed to produce a similarity index for opposite riverbank communities. Finally, we ran models to test how measures of river size predicted levels of similarity. We found that, almost without exception, similarity scores were lower than scores from Ayres and Clutton-Brock (1992) for the same rivers. Our model showed a significant negative relationship between streamflow and similarity in all tests, and found river width significant for the segmented Amazon, but not for multiple Amazon watershed rivers. Our results support the RBH insofar as they provide evidence for the prediction that rivers with higher streamflow act as more substantial barriers to dispersal, and accordingly exhibit greater variation in community composition between riverbanks.  相似文献   

4.
5.
Wallace's riverine barrier hypothesis postulates that large rivers, such as the Amazon and its tributaries, reduce or prevent gene flow between populations on opposite banks, leading to allopatry and areas of species endemism occupying interfluvial regions. Several studies have shown that two major tributaries, Rio Branco and Rio Negro, are important barriers to gene flow for birds, amphibians and primates. No botanical studies have considered the potential role of the Rio Branco as a barrier, while a single botanical study has evaluated the Rio Negro as a barrier. We studied an Amazon shrub, Amphirrhox longifolia (A. St.‐Hil.) Spreng (Violaceae), as a model to test the riverine barrier hypothesis. Twenty‐six populations of A. longifolia were sampled on both banks of the Rio Branco and Rio Negro in the core Amazon Basin. Double‐digest RADseq was used to identify 8,010 unlinked SNP markers from the nuclear genome of 156 individuals. Data relating to population structure support the hypothesis that the Rio Negro acted as a significant genetic barrier for A. longifolia. On the other hand, no genetic differentiation was detected among populations spanning the narrower Rio Branco, which is a tributary of the Rio Negro. This study shows that the strength of riverine barriers for Amazon plants is dependent on the width of the river separating populations and species‐specific dispersal traits. Future studies of plants with contrasting life history traits will further improve our understanding of the landscape genetics and allopatric speciation history of Amazon plant diversity.  相似文献   

6.
Linear landscape elements such as roads, railways and rivers have been shown to act as barriers to dispersal and gene flow, hence impeding functional connectivity and increasing genetic differentiation between individuals or populations on opposite sides of the barrier. Such putative barriers act through a confluence of mechanisms, including crossing mortality, barrier avoidance and modifications to organisms’ effective dispersal patterns. Small, terrestrial animals such as amphibians are predicted to be vulnerable to the effects of such barriers given their limited locomotive performance and their dependence on spatially distinct breeding habitats. Here, we examined the effects of highways and a wide river on Ichthyosaura alpestris in three regions of northern Switzerland by measuring the genetic differentiation between local populations and describing the spatial genetic structure. Moreover, we estimated effective population sizes as an indicator for the susceptibility of populations to random genetic drift. Based on genetic differentiation, we found evidence to suggest that the highways and river acted as barriers to gene flow for the newt in the study regions, but results were inconsistent when ignoring breeding ponds with low samples sizes. Admixture-based genetic clustering suggested the delineation of the genotypes to rough regional clusters, with only weak structure inferred within these clusters. Thus, results suggest that at present, highways and rivers do not substantially affect the genetic structure of I. alpestris within northern Switzerland in a negative manner. Alternatively, the lack of a distinct genetic structure in regional newt populations may be explained by, e.g., large effective population sizes.  相似文献   

7.
The Riverine Barriers Hypothesis (RBH) posits that tropical rivers can be effective barriers to gene flow, based on observations that range boundaries often coincide with river barriers. Over the last 160 years, the RBH has received attention from various perspectives, with a particular focus on vertebrates in the Amazon Basin. To our knowledge, no molecular assessment of the RBH has been conducted on birds in the Afrotropics, despite its rich avifauna and many Afrotropical bird species being widely distributed across numerous watersheds and basins. Here, we provide the first genetic evidence that an Afrotropical river has served as a barrier for birds and for their lice, based on four understory bird species collected from sites north and south of the Congo River. Our results indicate near‐contemporaneous, Pleistocene lineage diversification across the Congo River in these species. Our results further indicate differing levels of genetic variation in bird lice; the extent of this variation appears linked to the life‐history of both the host and the louse. Extensive cryptic diversity likely is being harbored in Afrotropical forests, in both understory birds and their lice. Therefore, these forests may not be “museums” of old lineages. Rather, substantial evolutionary diversification may have occurred in Afrotropical forests throughout the Pleistocene, supporting the Pleistocene Forest Refuge Hypothesis. Strong genetic variation in birds and their lice within a small part of the Congo Basin forest indicates that we may have grossly underestimated diversity in the Afrotropics, making these forests home of substantial biodiversity in need of conservation.  相似文献   

8.
Patterns of phenotypic evolution can abruptly shift as species move between adaptive zones. Extant salamanders display three distinct life cycle strategies that range from aquatic to terrestrial (biphasic), to fully aquatic (paedomorphic) and to fully terrestrial (direct development). Life cycle variation is associated with changes in body form such as loss of digits, limb reduction or body elongation. However, the relationships among these traits and life cycle strategy remain unresolved. Here, we use a Bayesian modelling approach to test whether life cycle transitions by salamanders have influenced rates, optima and integration of primary locomotory structures (limbs and trunk). We show that paedomorphic salamanders have elevated rates of limb evolution with optima shifted towards smaller size and fewer digits compared to all other salamanders. Rate of hindlimb digit evolution is shown to decrease in a gradient as life cycles become more terrestrial. Paedomorphs have a higher correlation between hindlimb digit loss and increases in vertebral number, as well as reduced correlations between limb lengths. Our results support the idea that terrestrial plantigrade locomotion constrains limb evolution and, when lifted, leads to higher rates of trait diversification and shifts in optima and integration. The basic tetrapod body form of most salamanders and the independent losses of terrestrial life stages provide an important framework for understanding the evolutionary and developmental mechanisms behind major shifts in ecological zones as seen among early tetrapods during their transition from water to land.  相似文献   

9.
Abstract: We assessed dispersal behavior of 78 radiotagged adult spotted salamanders (Ambystoma maculatum) at a 36-hole golf course in southeastern Connecticut, USA. Lake of Isles Golf Course is atypical of most golf courses in North America because it is much larger (461 ha) than average 18-hole golf courses (54 ha) and deciduous forests accounted for 70% landscape composition on the course. We tracked individuals an average of 164 days as they emigrated from 3 seasonal pools surrounded by golf course fairways and one pool located in contiguous forest (control pool) from March through December 2004. Males and females dispersed similar distances at the control pool, averaging 71 ± 10 m. However, females migrating across the golf course dispersed twice as far (214 ± 25 m) as males on the golf course (102 ± 15 m) and both genders at the control pool. Over 40% the salamanders at the golf course crossed fairways; thus, fairways were not a dispersal barrier to adult spotted salamanders. Previous researchers have suggested establishing a 164-m life zone around breeding ponds to protect pond-breeding amphibian populations. Our results suggest that strategies that protect core upland habitat within 164 m of wetland boundaries would include 82% of adult males and only 50% of adult females. Empirical estimates based on our telemetry study suggest that core terrestrial habitat would have to extend 370 m to protect 95% of adult females, which is much farther than previous estimates.  相似文献   

10.
Rivers can act as both islands of mesic refugia for terrestrial organisms during times of aridification and barriers to gene flow, though evidence for long-term isolation by rivers is mixed. Understanding the extent to which riverine barrier effects can be heightened for populations trapped in mesic refugia can help explain maintenance and generation of diversity in the face of Pleistocene climate change. Herein, we implement phylogenetic and population genetic approaches to investigate the phylogeographic structure and history of the ground skink, Scincella lateralis , using mtDNA and eight nuclear loci. We then test several predictions of a river–refugia model of diversification. We recover 14 well-resolved mtDNA lineages distributed east–west along the Gulf Coast with a subset of lineages extending northward. In contrast, ncDNA exhibits limited phylogenetic structure or congruence among loci. However, multilocus population structure is broadly congruent with mtDNA patterns and suggests that deep coalescence rather than differential gene flow is responsible for mtDNA–ncDNA discordance. The observed patterns suggest that most lineages originated from population vicariance due to riverine barriers strengthened during the Plio–Pleistocene by a climate-induced coastal distribution. Diversification due to rivers is likely a special case, contingent upon other environmental or biological factors that reinforce riverine barrier effects.  相似文献   

11.
S. Zhao  Q. Dai  & J. Fu 《Journal of Zoology》2009,279(3):270-276
Using the plateau wood frog Rana kukunoris from the Hengduan Mountains as a model system, we tested whether rivers form significant genetic barriers (the riverine barrier hypothesis) to high elevation amphibians. Samples were collected from eight sites across three major river drainages, the Min, the Dadu and the Yalong Rivers, and the population genetic structure of these frogs was evaluated with data from eight microsatellite DNA loci. A large amount of genetic structure was found, and the pairwise F ST ranged from 0.022 to 0.508 and a global F ST was 0.215. Both analysis of molecular variance and isolation by distance analysis suggested that rivers, mountain ridges and geographic distances all contributed significantly to the population structure. However, no single landscape has prominent barrier effect to the plateau wood frog populations. An assignment analysis using the computer program Structure grouped the eight populations into four population clusters, and no single type of landscape can sufficiently explain the clustering. In conclusion, rivers do not appear to be the leading genetic barriers for the plateau wood frog. The strong population genetic structure is likely the consequence of attributes of the species, as opposed to environmental fragmentation, and the barrier effect of the landscapes is largely swamped by the large amount of intrinsic population structure.  相似文献   

12.
The riverine barrier hypothesis proposes that large rivers represent geographical barriers to gene flow for terrestrial organisms, leading to population differentiation and ultimately allopatric speciation. Here we assess for the first time if the subtropical Paraná–Paraguay River system in the Del Plata basin, second in size among South American drainages, acts as a barrier to gene flow for birds. We analysed the degree of mitochondrial and nuclear genomic differentiation in seven species with known subspecies divided by the Paraná–Paraguay River axis. Only one species showed genetic differentiation concordant with the current river channel, but another five species have an east/west genetic split broadly coincident with the Paraná River's dynamic palaeochannel, suggesting this fluvial axis has had a past role in shaping present‐day genetic structure. Moreover, dating analyses show that these splits have been asynchronous, with species responding differently to the riverine barrier. Comparisons informed by the geological history of the Paraná River and its influence on the ecological and climatic differences among ecoregions in the study area further bolster the finding that responses to this geographical barrier have been species‐specific.  相似文献   

13.
Oncorhynchus mykiss have a diverse array of life history types, and understanding the relationship among types is important for management of the species. Patterns of gene flow between sympatric freshwater resident O. mykiss, commonly known as rainbow trout, and anadromous O. mykiss, commonly known as steelhead, populations are complex and poorly understood. In this study, we attempt to determine the occurrence and pathways of gene flow and the degree of genetic similarity between sympatric resident and anadromous O. mykiss in three river systems, and investigate whether resident O. mykiss are producing anadromous offspring in these rivers, two of which have complete barriers to upstream migration. We found that the population structure of the O. mykiss in these rivers appears to be influenced more by the presence of a barrier to upstream migration than by life history type. The sex ratio of resident O. mykiss located above a barrier, and smolts captured in screw traps was significantly skewed in favor of females, whereas the reverse was true below the barriers, suggesting that male resident O. mykiss readily migrate downstream over the barrier, and that precocious male maturation may be occurring in the anadromous populations. Through paternity analyses, we also provide direct confirmation that resident O. mykiss can produce offspring that become anadromous. Most (89%) of the resident O. mykiss that produced anadromous offspring were males. Our results add to the growing body of evidence that shows that gene flow does readily occur between sympatric resident and anadromous O. mykiss life history types, and indicates that resident O. mykiss populations may be a potential repository of genes for the anadromous life history type.  相似文献   

14.
The identification of ecological and evolutionary mechanisms that might account for the elevated biotic diversity in tropical forests is a central theme in evolutionary biology. This issue is especially relevant in the Neotropical region, where biological diversity is the highest in the world, but where few studies have been conducted to test factors causing population differentiation and speciation. We used mtDNA sequence data to examine the genetic structure within white‐backed fire‐eye (Pyriglena leuconota) populations along the Tocantins River valley in the south‐eastern Amazon Basin, and we confront the predictions of the river and the Pleistocene refuge hypotheses with patterns of genetic variation observed in these populations. We also investigated whether these patterns reflect the recently detected shift in the course of the Tocantins River. We sampled a total of 32 individuals east of, and 52 individuals west of, the Tocantins River. Coalescent simulations and phylogeographical and population genetics analytical approaches revealed that mtDNA variation observed for fire‐eye populations provides little support for the hypothesis that populations were isolated in glacial forest refuges. Instead, our data strongly support a key prediction of the river hypothesis. Our study shows that the Tocantins River has probably been the historical barrier promoting population divergence in fire‐eye antbirds. Our results have important implications for a better understanding of the importance of large Amazonian rivers in vertebrate diversification in the Neotropics.  相似文献   

15.
Sundaland, a biogeographic region of Southeast Asia, is a major biodiversity hotspot. However, little is known about the relative importance of Pleistocene habitat barriers and rivers in structuring populations and promoting diversification here. We sampled 16 lowland rainforest bird species primarily from peninsular Malaysia and Borneo to test the long‐standing hypothesis that animals on different Sundaic landmasses intermixed extensively when lower sea‐levels during the Last Glacial Maximum (LGM) exposed land‐bridges. This hypothesis was rejected in all but five species through coalescent simulations. Furthermore, we detected a range of phylogeographic patterns; Bornean populations are often genetically distinct from each other, despite their current habitat connectivity. Environmental niche modeling showed that the presence of unsuitable habitats between western and eastern Sundaland during the LGM coincided with deeper interpopulation genetic divergences. The location of this habitat barrier had been hypothesized previously based on other evidence. Paleo‐riverine barriers are unlikely to have produced such a pattern, but we cannot rule out that they acted with habitat changes to impede population exchanges across the Sunda shelf. The distinctiveness of northeastern Borneo populations may be underlied by a combination of factors such as rivers, LGM expansion of montane forests and other aspects of regional physiography.  相似文献   

16.

Background

Although some mechanisms of habitat adaptation of conspecific populations have been recently elucidated, the evolution of female preference has rarely been addressed as a force driving habitat adaptation in natural settings. Habitat adaptation of fire salamanders (Salamandra salamandra), as found in Middle Europe (Germany), can be framed in an explicit phylogeographic framework that allows for the evolution of habitat adaptation between distinct populations to be traced. Typically, females of S. salamandra only deposit their larvae in small permanent streams. However, some populations of the western post-glacial recolonization lineage use small temporary ponds as larval habitats. Pond larvae display several habitat-specific adaptations that are absent in stream-adapted larvae. We conducted mate preference tests with females from three distinct German populations in order to determine the influence of habitat adaptation versus neutral genetic distance on female mate choice. Two populations that we tested belong to the western post-glacial recolonization group, but are adapted to either stream or pond habitats. The third population is adapted to streams but represents the eastern recolonization lineage.

Results

Despite large genetic distances with FST values around 0.5, the stream-adapted females preferred males from the same habitat type regardless of genetic distance. Conversely, pond-adapted females did not prefer males from their own population when compared to stream-adapted individuals of either lineage.

Conclusion

A comparative analysis of our data showed that habitat adaptation rather than neutral genetic distance correlates with female preference in these salamanders, and that habitat-dependent female preference of a specific pond-reproducing population may have been lost during adaptation to the novel environmental conditions of ponds.  相似文献   

17.
The European wildcat (Felis silvestris silvestris) underwent a severe decline across Europe in the early twentieth century. Remaining populations are often very small and isolated, though there are indications that wildcat populations are currently expanding their range. However, linear landscape elements such as rivers and roads are thought to present barriers to dispersal, inhibiting gene flow and, thus, affecting the recolonization process. In this study, we investigated the fine-scale genetic structure of wildcats in the Upper Rhine Valley. We specifically analysed wildcats on both sides of the Rhine River by genotyping 55 individual wildcats, using 20 microsatellite loci. Genetic differentiation was weak and positive spatial autocorrelation was found up to a distance of 10 km (females: 5 km, males: 10 km) indicating substantial gene flow among sampling sites. High levels of gene flow, even across the Rhine River, indicated that the water body itself does not necessarily have a strong barrier effect, which is in contrast to other studies. Our findings could best be explained by the populations’ history, a local extinction east of the River Rhine and a current ongoing population expansion. Our study highlights that potential barriers, such as rivers, may have different effects in different local wildcat populations and that the history of the populations is important to interpret genetic results. As many wildcats still occur in isolated and patchy forest fragments, maintaining connectivity between populations is crucial to ensure their viability in the long term.  相似文献   

18.
Disentangling the impact of landscape features such as rivers and historical events on dispersal is a challenging but necessary task to gain a comprehensive picture of the evolution of diverse biota such as that found in Amazonia. Adenomera andreae, a small, territorial, terrestrial frog species of the Amazonian forest represents a good model for such studies. We combined cytochrome b sequences with 12 microsatellites to investigate the genetic structure at two contrasted spatial scales in French Guiana: along a ~6‐km transect, to evaluate dispersal ability, and between paired bank populations along a ~65‐km stretch of the Approuague river, to test the effect of rivers as barriers to dispersal. We observed significant spatial genetic structure between individuals at a remarkably small geographical scale, and conclude that the species has a restricted dispersal ability that is probably tied to its life‐history traits. Mitochondrial and microsatellite data also indicate a high level of differentiation among populations on opposite banks of the river, and, in some cases, among populations on the same riverbank. These results suggest that the observed population structure in A. andreae is the result of restricted dispersal abilities combined with the action of rivers and Quaternary population isolation. Given that Amazonia hosts a great portion of anurans, as well as other small vertebrates, that display life‐history traits comparable with A. andreae, we argue that our analyses provide new insights into the complex interactions among evolutionary processes shaping Amazonian biodiversity. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 356–373.  相似文献   

19.
Evaluating the permeability of potential barriers to movement, dispersal and gene exchanges can help describe spreading patterns of wildlife diseases. Here, we used landscape genetics methods to assess the genetic structure of the striped skunk (Mephitis mephitis), which is a frequent vector of rabies, a lethal zoonosis of great concern for public health. Our main objective was to identify landscape elements shaping the genetic structure of this species in Southern Québec, Canada, in an area where the raccoon rabies variant has been detected. We hypothesised that geographic distance and landscape barriers, such as highways and major rivers, would modulate genetic structure. We genotyped a total of 289 individuals sampled across a large area (22,000 km2) at nice microsatellite loci. Genetic structure analyses identified a single genetic cluster in the study area. Major rivers and highways, however, influenced the genetic relatedness among sampled individuals. Sex-specific analyses revealed that rivers significantly limited dispersal only for females while highways only had marginal effects. Rivers and highways did not significantly affect male dispersal. These results support the contention that female skunks are more philopatric than males. Overall, our results suggest that the effects of major rivers and highways on dispersal are sex-specific and rather weak and are thus unlikely to prevent the spread of rabies within and among striped skunk populations.  相似文献   

20.
Little is known about what controls effective sizes and migration rates among parasite populations. Such data are important given the medical, veterinary, and economic (e.g., fisheries) impacts of many parasites. The autogenic-allogenic hypothesis, which describes ecological patterns of parasite distribution, provided the foundation on which we studied the effects of life cycles on the distribution of genetic variation within and among parasite populations. The hypothesis states that parasites cycling only in freshwater hosts (autogenic life cycle) will be more limited in their dispersal ability among aquatic habitats than parasites cycling through freshwater and terrestrial hosts (allogenic life cycle). By extending this hypothesis to the level of intraspecific genetic variation, we examined the effects of host dispersal on parasite gene flow. Our a priori prediction was that for a given geographic range, autogenic parasites would have lower gene flow among subpopulations. We compared intraspecific mitochondrial DNA variation for three described species of trematodes that infect salmonid fishes. As predicted, autogenic species had much more highly structured populations and much lower gene flow among subpopulations than an allogenic species sampled from the same locations. In addition, a cryptic species was identified for one of the autogenic trematodes. These results show how variation in life cycles can shape parasite evolution by predisposing them to vastly different genetic structures. Thus, we propose that knowledge of parasite life cycles will help predict important evolutionary processes such as speciation, coevolution, and the spread of drug resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号