首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human skin has continuous self-renewal potential throughout adult life and serves as first line of defence. Its cellular components such as human epidermal keratinocytes (HEKs) and dermal mesenchymal stromal cells (DMSCs) are valuable resources for wound healing applications and cell based therapies. Here we show a simple, scalable and cost-effective method for sequential isolation and propagation of HEKs and DMSCs under defined culture conditions. Human skin biopsy samples obtained surgically were cut into fine pieces and cultured employing explant technique. Plated skin samples attached and showed outgrowth of HEKs. Gross microscopic examination displayed polygonal cells with a granular cytoplasm and H&E staining revealed archetypal HEK morphology. RT–PCR and immunocytochemistry authenticated the presence of key HEK markers including trans-membrane protein epithelial cadherin (E-cadherin), keratins and cytokeratin. After collection of HEKs by trypsin–EDTA treatment, mother explants were left intact and cultured further. Interestingly, we observed the appearance of another cell type with fibroblastic or stromal morphology which were able to grow up to 15 passages in vitro. Growth pattern, expression of cytoskeletal protein vimentin, surface proteins such as CD44, CD73, CD90, CD166 and mesodermal differentiation potential into osteocytes, adipocytes and chondrocytes confirmed their bonafide mesenchymal stem cell like status. These findings albeit preliminary may open up significant opportunities for novel applications in wound healing.  相似文献   

2.
3.
Molecular Biology Reports - Classical methods used for culture of adipose-derived mesenchymal stromal cells (ADSCs) use xenobiotic components, which may present a potential risk for biological...  相似文献   

4.
Stem cells with the ability to differentiate into insulin-producing cells (IPCs) are becoming the most promising therapy for diabetes mellitus and reduce the major limitations of availability and allogeneic rejection of beta cell transplantations. Mesenchymal stem cells (MSCs) are pluripotent stromal cells with the ability to proliferate and differentiate into a variety of cell types including endocrine cells of the pancreas. This study sought to inspect the in vitro differentiation of human adipose-derived tissue stem cells into IPCs which could provide an abundant source of cells for the purpose of diabetic cell therapy in addition to avoid immunological rejection. Adipose-derived MSCs were obtained from liposuction aspirates and induced to differentiate into insulin-secreting cells under a three-stage protocol based on a combination of low-glucose DMEM medium, β-mercaptoethanol, and nicotinamide for pre-induction and high-glucose DMEM, β-mercaptoethanol, nicotinamide, and exendin-4 for induction stages of differentiation. Differentiation was evaluated by the analysis of morphology, dithizone staining, RT-PCR, and immunocytochemistry. Morphological changes including typical islet-like cell clusters were observed by phase-contrast microscope at the end of differentiation protocol. Based on dithizone staining, differentiated cells were positive and undifferentiated cells were not stained. Furthermore, RT-PCR results confirmed the expression of insulin, PDX1, Ngn3, PAX4, and GLUT2 in differentiated cells. Moreover, insulin production by the IPCs was confirmed by immunocytochemistry analysis. It is concluded that adipose-derived MSCs could differentiate into insulin-producing cells in vitro.  相似文献   

5.
Multipotent mesenchymal stromal cells (MMSCs) isolated from human adipose tissue have been subcultured for over 50 population doublings. In three cultures that experienced more than 50 cellular doublings, there appeared cells lacking contact inhibition upon reaching the monolayer. Karyotype analysis (GTG banding) showed a normal diploid karyotype, and aneuploidy and restructurings were not registered. Flow-cytometric analysis of 20 surface antigens on MMSCs in early and late passages revealed changes in the share of cells positively stained with antibodies against CD10 (a zinc depended metalloproteinase); CD34 (sialomucin); CD49 a, d, f, (α1, α4, α6, integrins); and CD71 (a transferrin receptor). Long-term cultivation influenced cell adhesion to proteins of the extracellular matrix (ECM), such as fibronectin and laminin (ligands to α, integrins), as well as the functional abilities of MMSCs to form cells of adipose and bone tissues in vitro. These findings extend our knowledge of cell behavior in culture and allow us to get closer to a deeper understanding of the processes happening to precursor cells in vitro.  相似文献   

6.
Multipotent mesenchymal stromal cells (MSC) are capable of multi-lineage differentiation and support regenerative processes. In bacterial infections, resident MSC can come intocontact with and need to react to bacterial components. Lipopolysaccharide (LPS), a typical structure of Gram-negative bacteria, increases the proliferation and osteogenic differentiation of MSC. LPS is usually recognized by the toll-like receptor (TLR) 4 and induces pro-inflammatory reactions in numerous cell types. In this study, we quantified the protein expression of TLR4 and CD14 on adipose-derived MSC (adMSC) in osteogenic differentiation and investigated the effect of TLR4 activation by LPS on NF-κB activation, proliferation and osteogenic differentiation of adMSC. We found that TLR4 is expressed on adMSC whereas CD14 is not, and that osteogenic differentiation induced an increase of the amount of TLR4 protein whereas LPS stimulation did not. Moreover, we could show that NF-κB activation via TLR4 occurs upon LPS treatment. Furthermore, we were able to show that competitive inhibition of TLR4 completely abolished the stimulatory effect of LPS on the proliferation and osteogenic differentiation of adMSC. In addition, the inhibition of TLR4 leads to the complete absence of osteogenic differentiation of adMSC, even when osteogenically stimulated. Thus, we conclude that LPS induces proliferation and osteogenic differentiation of adMSC in vitro through the activation of TLR4 and that the TLR4 receptor seems to play a role during osteogenic differentiation of adMSC.  相似文献   

7.
The cell surface proteome of human mesenchymal stromal cells   总被引:1,自引:0,他引:1  

Background

Multipotent human mesenchymal stromal cells (hMSCs) are considered as promising biological tools for regenerative medicine. Their antibody-based isolation relies on the identification of reliable cell surface markers.

Methodology/Principal Findings

To obtain a comprehensive view of the cell surface proteome of bone marrow-derived hMSCs, we have developed an analytical pipeline relying on cell surface biotinylation of intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin to enrich the plasma membrane proteins and mass spectrometry for identification with extremely high confidence. Among the 888 proteins identified, we found ≈200 bona fide plasma membrane proteins including 33 cell adhesion molecules and 26 signaling receptors. In total 41 CD markers including 5 novel ones (CD97, CD112, CD239, CD276, and CD316) were identified. The CD markers are distributed homogenously within plastic-adherent hMSC populations and their expression is modulated during the process of adipogenesis or osteogenesis. Moreover, our in silico analysis revealed a significant difference between the cell surface proteome of hMSCs and that of human embryonic stem cells reported previously.

Conclusions/Significance

Collectively, our analytical methods not only provide a basis for further studies of mechanisms maintaining the multipotency of hMSCs within their niches and triggering their differentiation after signaling, but also a toolbox for a refined antibody-based identification of hMSC populations from different tissues and their isolation for therapeutic intervention.  相似文献   

8.
9.
10.
Mesenchymal stromal cells (MSCs) are a promising tool in regenerative medicine. MSC migration to damaged inflammatory sites (homing) is essential for tissue repair. We have studied the migration properties of adipose-tissue-derived MSCs (AT-MSC) after their cocultivation with activated monocytes from the THP-1 cell line. We observed the increased migration rate of AT-MSC in vitro with the lack of chemoattractant gradient and to the platelet-derived growth factor (PDGF BB), which is a well-known chemoattractant for cells of mesenchymal origin. Moreover, the rate of directional AT-MSC migration through fibronectin was also increased. We demonstrated that signaling via PDGFR-β activated through the binding of integrin receptors with an extracellular matrix is a possible mechanism for stimulation of cellular migration under simulated inflammatory conditions.  相似文献   

11.
12.
13.
《Cytotherapy》2014,16(1):64-73
Background aimsMesenchymal stromal cells (MSCs) cultivated from the corneal limbus (L-MSCs) provide a potential source of cells for corneal repair. In the present study, we investigated the immunosuppressive properties of human L-MSCs and putative rabbit L-MSCs to develop an allogeneic therapy and animal model of L-MSC transplantation.MethodsMSC-like cultures were established from the limbal stroma of human and rabbit (New Zealand white) corneas using either serum-supplemented medium or a commercial serum-free MSC medium (MesenCult-XF Culture Kit; Stem Cell Technologies, Melbourne, Australia). L-MSC phenotype was examined by flow cytometry. The immunosuppressive properties of L-MSC cultures were assessed using mixed leukocyte reactions. L-MSC cultures were also tested for their ability to support colony formation by primary limbal epithelial (LE) cells.ResultsHuman L-MSC cultures were typically CD34, CD45 and HLA-DR and CD73+, CD90+, CD105+ and HLA-ABC+. High levels (>80%) of CD146 expression were observed for L-MSC cultures grown in serum-supplemented medium but not cultures grown in MesenCult-XF (approximately 1%). Rabbit L-MSCs were approximately 95% positive for major histocompatibility complex class I and expressed lower levels of major histocompatibility complex class II (approximately 10%), CD45 (approximately 20%), CD105 (approximately 60%) and CD90 (<10%). Human L-MSCs and rabbit L-MSCs suppressed human T-cell proliferation by up to 75%. Conversely, L-MSCs from either species stimulated a 2-fold to 3-fold increase in LE cell colony formation.ConclusionsL-MSCs display immunosuppressive qualities in addition to their established non-immunogenic profile and stimulate LE cell growth in vitro across species boundaries. These results support the potential use of allogeneic L-MSCs in the treatment of corneal disorders and suggest that the rabbit would provide a useful pre-clinical model.  相似文献   

14.
Background aimsMultipotent mesenchymal stromal cells (MSCs) are clinically useful because of their immunomodulatory and regenerative properties, but MSC therapies are limited by the loss of self-renewal and cell plasticity associated with ex vivo expansion culture and, on transplantation, increased immunogenicity from xenogen exposure during culture. Recently, pooled human platelet lysate (hPL) has been used as a culture supplement to promote MSC growth; however, the effects of hPL on MSCs after fetal bovine serum (FBS) exposure remain unknown.MethodsMSCs were cultured in medium containing FBS or hPL for up to 16 passages, and cell size, doubling time and immunophenotype were determined. MSC senescence was assessed by means of a fluorometric assay for endogenous β-galactosidase expression. MSCs cultured with FBS for different numbers of passages were switched to hPL conditions to evaluate the ability of hPL to “rescue” the proliferative capacity of MSCs.ResultshPL culture resulted in more rapid cell proliferation at earlier passages (passage 5 or earlier) than remove FBS; by day 4, hPL (5%) yielded an MSC doubling time of 1.28 days compared with 1.52 days in 16% FBS. MSCs cultured first in FBS and switched to hPL proliferated more and demonstrated less β-galactosidase production and smaller cell sizes than remove MSCs continuously propagated in FBS.ConclusionshPL enables rapid expansion of MSCs without adversely affecting immunophenotype. hPL culture of aged and senescent MSCs demonstrated cellular rejuvenation, reflected by decreased doubling time and smaller cell size. These results suggest that expansion of MSCs in hPL after FBS exposure can enhance cell phenotype and proliferative capacity.  相似文献   

15.
16.
17.
Background aimsTherapeutic promises of adult stem cells have been overshadowed by an elicited immune response, low maintenance of implanted cells or concerns regarding their migration to non-target sites. These problems might be lessened by the use of immune privilege cells and tissues for implantation.MethodsIn this study, human adipose-derived mesenchymal stromal cells (hADMSCs) were stably transfected with a vector containing Turbo green fluorescent protein (GFP) and JRed, which allows tracing the cells after transplantation. Labeled hADMSCs were transplanted into the adult rat brain followed by assessment of their survival and migration during 6 months after transplantation.ResultsResults indicate that there were no postsurgical complications, and the animals thrived after transplantation. The lesions of the surgical process were remarkable at the first weeks, and a high number of transplanted cells were accumulated around them. Cell populations declined over time as they partly migrated away from the injection sites; nonetheless, they were detectable at each examination time point. Although the cells could survive and remain at the injection site for up to 6 months, some of them drifted to spleen, which is an indication of their ability to cross the blood-brain barrier.ConclusionsDespite the high survival rate of hADMSCs in the xenogenic condition, which is an ideal criterion in cell therapy, irregular migration tendency must be handled with caution.  相似文献   

18.
19.
Heterogeneity of mesenchymal stromal cell preparations   总被引:1,自引:0,他引:1  
Ho AD  Wagner W  Franke W 《Cytotherapy》2008,10(4):320-330
As an archetype of human adult stem cells that can readily be harvested, enriched and expanded in vitro, mesenchymal stromal cells (MSC) have been reported to be of significance for regenerative medicine. The literature is replete with reports on their developmental potentials in pre-clinical model systems. Different preparative protocols have been shown to yield MSC-like cell cultures or even cell lines, from starting materials as diverse as bone marrow, fat tissue, fetal cord blood and peripheral blood. However, MSC are still ill-defined by physical, phenotypic and functional properties. The quality of preparations from different laboratories varies tremendously and the cell products are notoriously heterogeneous. The source and freshness of the starting material, culture media used, presence of animal sera, cytokines, cell density, number of passages upon culture, etc., all have a significant impact on the (1) cell type components and heterogeneity of the initial population, (2) differential expansion of specific subsets, with different potentials of the end products, and (3) long-term functional fate of MSC as well as other types of progenitor cells that are co-cultivated with them. Consequently, there is an urgent need for the development of reliable reagents, common guidelines and standards for MSC preparations and of precise molecular and cellular markers to define subpopulations with diverse pathways of differentiation and divergent potentials.  相似文献   

20.
The expression of several genes which functions are associated with cellular senescence was analyzed in multipotent mesenchymal stromal cells during long-term cultivation at different oxygen levels (20, 5, and 1%) using the RT² Profiler? PCR Array Human Cellular Senescence system (Qiagen, United States). It was established that replicative senescence processes develop most actively in the cells cultured under the standard conditions (20% O2). The most significant changes were observed in the expression of CCND1, ID1, IGF1, PIK3CA, and SERPINE1 genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号