首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multipotent mesenchymal stromal cells (MSC) and MSC-derived products have emerged as promising therapeutic tools. To fully exploit their potential, further mechanistic studies are still necessary and bioprocessing needs to be optimized, which requires an abundant supply of functional MSC for basic research. To address this need, here we used a novel technology to establish a human adipose-derived MSC line with functional characteristics representative of primary MSC. Primary MSC were isolated and subjected to lentiviral transduction with a library of expansion genes. Clonal cell lines were generated and evaluated on the basis of their morphology, immunophenotype, and proliferation potential. One clone (K5 iMSC) was then selected for further characterization. This clone had integrated a specific transgene combination including genes involved in stemness and maintenance of adult stem cells. Favorably, the K5 iMSC showed cell characteristics resembling juvenile MSC, as they displayed a shorter cell length and enhanced migration and proliferation compared with the non-immortalized original primary MSC (p < 0.05). Still, their immunophenotype and differentiation potential corresponded to the original primary MSC and the MSC definition criteria, and cytogenetic analyses revealed no clonal aberrations. We conclude that the technology used is applicable to generate functional MSC lines for basic research and possible future bioprocessing applications.  相似文献   

2.
Human skin has continuous self-renewal potential throughout adult life and serves as first line of defence. Its cellular components such as human epidermal keratinocytes (HEKs) and dermal mesenchymal stromal cells (DMSCs) are valuable resources for wound healing applications and cell based therapies. Here we show a simple, scalable and cost-effective method for sequential isolation and propagation of HEKs and DMSCs under defined culture conditions. Human skin biopsy samples obtained surgically were cut into fine pieces and cultured employing explant technique. Plated skin samples attached and showed outgrowth of HEKs. Gross microscopic examination displayed polygonal cells with a granular cytoplasm and H&E staining revealed archetypal HEK morphology. RT–PCR and immunocytochemistry authenticated the presence of key HEK markers including trans-membrane protein epithelial cadherin (E-cadherin), keratins and cytokeratin. After collection of HEKs by trypsin–EDTA treatment, mother explants were left intact and cultured further. Interestingly, we observed the appearance of another cell type with fibroblastic or stromal morphology which were able to grow up to 15 passages in vitro. Growth pattern, expression of cytoskeletal protein vimentin, surface proteins such as CD44, CD73, CD90, CD166 and mesodermal differentiation potential into osteocytes, adipocytes and chondrocytes confirmed their bonafide mesenchymal stem cell like status. These findings albeit preliminary may open up significant opportunities for novel applications in wound healing.  相似文献   

3.
4.
Molecular Biology Reports - Classical methods used for culture of adipose-derived mesenchymal stromal cells (ADSCs) use xenobiotic components, which may present a potential risk for biological...  相似文献   

5.
Stem cells with the ability to differentiate into insulin-producing cells (IPCs) are becoming the most promising therapy for diabetes mellitus and reduce the major limitations of availability and allogeneic rejection of beta cell transplantations. Mesenchymal stem cells (MSCs) are pluripotent stromal cells with the ability to proliferate and differentiate into a variety of cell types including endocrine cells of the pancreas. This study sought to inspect the in vitro differentiation of human adipose-derived tissue stem cells into IPCs which could provide an abundant source of cells for the purpose of diabetic cell therapy in addition to avoid immunological rejection. Adipose-derived MSCs were obtained from liposuction aspirates and induced to differentiate into insulin-secreting cells under a three-stage protocol based on a combination of low-glucose DMEM medium, β-mercaptoethanol, and nicotinamide for pre-induction and high-glucose DMEM, β-mercaptoethanol, nicotinamide, and exendin-4 for induction stages of differentiation. Differentiation was evaluated by the analysis of morphology, dithizone staining, RT-PCR, and immunocytochemistry. Morphological changes including typical islet-like cell clusters were observed by phase-contrast microscope at the end of differentiation protocol. Based on dithizone staining, differentiated cells were positive and undifferentiated cells were not stained. Furthermore, RT-PCR results confirmed the expression of insulin, PDX1, Ngn3, PAX4, and GLUT2 in differentiated cells. Moreover, insulin production by the IPCs was confirmed by immunocytochemistry analysis. It is concluded that adipose-derived MSCs could differentiate into insulin-producing cells in vitro.  相似文献   

6.
《Cytotherapy》2022,24(4):393-404
Background aimsGiven their low immunogenicity, immunoregulatory effects and multiple differentiation capacity, mesenchymal stromal cells (MSCs) have the potential to be used for “off-the-shelf” cell therapy to treat various diseases. However, the allorejection of MSCs indicates that they are not fully immune-privileged. In this study, the authors investigated the immunogenicity of human adipose-derived MSCs (Ad-MSCs) and identified potential immunogenic molecules.MethodsTo evaluate the immunogenicity of human Ad-MSCs in vivo, cells were transplanted into humanized mice (hu-mice), then T-cell infiltration and clearance of human Ad-MSCs were observed by immunofluorescence and bioluminescence imaging. One-way mixed lymphocyte reaction and flow cytometry were performed to evaluate the immunogenicity of human Ad-MSCs in vitro. High-throughput T-cell receptor (TCR) repertoire sequencing and mass spectrometry were applied to identified potential immunogenic molecules.ResultsThe authors observed that allogeneic Ad-MSCs recruited human T cells and caused faster clearance in hu-mice than non-humanized NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ (NSG) mice. The proliferation and activation of T cells were significantly enhanced during in vitro co-culture with human Ad-MSCs. In addition, the level of HLA-II expression on human Ad-MSCs was dramatically increased after co-culture with human peripheral blood mononuclear cells (PBMCs). High-throughput sequencing was applied to analyze the TCR repertoire of the Ad-MSC-recruited T cells to identify dominant TCR CDR3 sequences. Using synthesized TCR CDR3 peptides, the authors identified several potential immunogenic candidates, including alpha-enolase (ENO1). The ENO1 expression level of Ad-MSCs significantly increased after co-culture with PBMCs, whereas ENO1 inhibitor (ENOblock) treatment decreased the expression level of ENO1 and Ad-MSC-induced proliferation of T cells.ConclusionsThe authors’ findings improve the understanding of the immunogenicity of human Ad-MSCs and provide a theoretical basis for the safe clinical application of allogeneic MSC therapy.  相似文献   

7.
Multipotent mesenchymal stromal cells (MMSCs) isolated from human adipose tissue have been subcultured for over 50 population doublings. In three cultures that experienced more than 50 cellular doublings, there appeared cells lacking contact inhibition upon reaching the monolayer. Karyotype analysis (GTG banding) showed a normal diploid karyotype, and aneuploidy and restructurings were not registered. Flow-cytometric analysis of 20 surface antigens on MMSCs in early and late passages revealed changes in the share of cells positively stained with antibodies against CD10 (a zinc depended metalloproteinase); CD34 (sialomucin); CD49 a, d, f, (α1, α4, α6, integrins); and CD71 (a transferrin receptor). Long-term cultivation influenced cell adhesion to proteins of the extracellular matrix (ECM), such as fibronectin and laminin (ligands to α, integrins), as well as the functional abilities of MMSCs to form cells of adipose and bone tissues in vitro. These findings extend our knowledge of cell behavior in culture and allow us to get closer to a deeper understanding of the processes happening to precursor cells in vitro.  相似文献   

8.
《Cytotherapy》2023,25(1):33-45
Background aimsMesenchymal stromal cells (MSCs) are a multipotent cell population of clinical interest because of their ability to migrate to injury and tumor sites, where they may participate in tissue repair and modulation of immune response. Although the processes regulating MSC function are incompletely understood, it has been shown that stimulation of Toll-like receptors (TLRs) can alter MSC activity. More specifically, it has been reported that human bone marrow-derived MSCs can be “polarized” by TLR priming into contrasting immunomodulatory functions, with opposite (supportive or suppressive) roles in tumor progression and inflammation. Adipose-derived MSCs (ASCs) represent a promising alternative MSC subpopulation for therapeutic development because of their relative ease of isolation and higher abundance compared with their bone marrow-derived counterparts; however, the polarization of ASCs remains unreported.MethodsIn this study, we evaluated the phenotypic and functional consequences of short-term, low-level stimulation of ASCs with TLR3 and TLR4 agonists.ResultsIn these assays, we identified transient gene expression changes resembling the reported pro-inflammatory and anti-inflammatory MSC phenotypes. Furthermore, these priming strategies led to changes in the functional properties of ASCs, affecting their ability to migrate and modulate immune-mediated responses to prostate cancer cells in vitro.ConclusionsTLR3 stimulation significantly decreased ASC migration, and TLR4 stimulation increased ASC immune-mediated killing potential against prostate cancer cells.  相似文献   

9.
10.
11.
Multipotent mesenchymal stromal cells (MSC) are capable of multi-lineage differentiation and support regenerative processes. In bacterial infections, resident MSC can come intocontact with and need to react to bacterial components. Lipopolysaccharide (LPS), a typical structure of Gram-negative bacteria, increases the proliferation and osteogenic differentiation of MSC. LPS is usually recognized by the toll-like receptor (TLR) 4 and induces pro-inflammatory reactions in numerous cell types. In this study, we quantified the protein expression of TLR4 and CD14 on adipose-derived MSC (adMSC) in osteogenic differentiation and investigated the effect of TLR4 activation by LPS on NF-κB activation, proliferation and osteogenic differentiation of adMSC. We found that TLR4 is expressed on adMSC whereas CD14 is not, and that osteogenic differentiation induced an increase of the amount of TLR4 protein whereas LPS stimulation did not. Moreover, we could show that NF-κB activation via TLR4 occurs upon LPS treatment. Furthermore, we were able to show that competitive inhibition of TLR4 completely abolished the stimulatory effect of LPS on the proliferation and osteogenic differentiation of adMSC. In addition, the inhibition of TLR4 leads to the complete absence of osteogenic differentiation of adMSC, even when osteogenically stimulated. Thus, we conclude that LPS induces proliferation and osteogenic differentiation of adMSC in vitro through the activation of TLR4 and that the TLR4 receptor seems to play a role during osteogenic differentiation of adMSC.  相似文献   

12.
The cell surface proteome of human mesenchymal stromal cells   总被引:1,自引:0,他引:1  

Background

Multipotent human mesenchymal stromal cells (hMSCs) are considered as promising biological tools for regenerative medicine. Their antibody-based isolation relies on the identification of reliable cell surface markers.

Methodology/Principal Findings

To obtain a comprehensive view of the cell surface proteome of bone marrow-derived hMSCs, we have developed an analytical pipeline relying on cell surface biotinylation of intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin to enrich the plasma membrane proteins and mass spectrometry for identification with extremely high confidence. Among the 888 proteins identified, we found ≈200 bona fide plasma membrane proteins including 33 cell adhesion molecules and 26 signaling receptors. In total 41 CD markers including 5 novel ones (CD97, CD112, CD239, CD276, and CD316) were identified. The CD markers are distributed homogenously within plastic-adherent hMSC populations and their expression is modulated during the process of adipogenesis or osteogenesis. Moreover, our in silico analysis revealed a significant difference between the cell surface proteome of hMSCs and that of human embryonic stem cells reported previously.

Conclusions/Significance

Collectively, our analytical methods not only provide a basis for further studies of mechanisms maintaining the multipotency of hMSCs within their niches and triggering their differentiation after signaling, but also a toolbox for a refined antibody-based identification of hMSC populations from different tissues and their isolation for therapeutic intervention.  相似文献   

13.
《Cytotherapy》2020,22(2):82-90
BackgroundHuman mesenchymal stromal cells (hMSCs) have become attractive candidates for advanced medical cell-based therapies. An in vitro expansion step is routinely used to reach the required clinical quantities. However, this is influenced by many variables including donor characteristics, such as age and gender, and culture conditions, such as cell seeding density and available culture surface area. Computational modeling in general and machine learning in particular could play a significant role in deciphering the relationship between the individual donor characteristics and their growth dynamics.MethodsIn this study, hMSCs obtained from 174 male and female donors, between 3 and 64 years of age with passage numbers ranging from 2 to 27, were studied. We applied a Random Forests (RF) technique to model the cell expansion procedure by predicting the population doubling time (PDT) for each passage, taking into account individual donor-related characteristics.ResultsUsing the RF model, the mean absolute error between model predictions and experimental results for the PDT in passage 1 to 4 is significantly lower compared with the errors obtained with theoretical estimates or historical data. Moreover, statistical analysis indicate that the PD and PDT in different age categories are significantly different, especially in the youngest group (younger than 10 years of age) compared with the other age groups.DiscussionIn summary, we introduce a predictive computational model describing in vitro cell expansion dynamics based on individual donor characteristics, an approach that could greatly assist toward automation of a cell expansion culture process.  相似文献   

14.
Mesenchymal stem-like cells identified in different tissues reside in a perivascular niche. In the present study, we investigated the putative niche of adipose-derived stromal/stem cells (ASCs) using markers, associated with mesenchymal and perivascular cells, including STRO-1, CD146, and 3G5. Immunofluorescence staining of human adipose tissue sections, revealed that STRO-1 and 3G5 co-localized with CD146 to the perivascular regions of blood vessels. FACS was used to determine the capacity of the CD146, 3G5, and STRO-1 specific monoclonal antibodies to isolate clonogenic ASCs from disassociated human adipose tissue. Clonogenic fibroblastic colonies (CFU-F) were found to be enriched in those cell fractions selected with either STRO-1, CD146, or 3G5. Flow cytometric analysis revealed that cultured ASCs exhibited similar phenotypic profiles in relation to their expression of cell surface markers associated with stromal cells (CD44, CD90, CD105, CD106, CD146, CD166, STRO-1, alkaline phosphatase), endothelial cells (CD31, CD105, CD106, CD146, CD166), haematopoietic cells (CD14, CD31, CD45), and perivascular cells (3G5, STRO-1, CD146). The immunoselected ASCs populations maintained their characteristic multipotential properties as shown by their capacity to form Alizarin Red positive mineralized deposits, Oil Red O positive lipid droplets, and Alcian Blue positive proteoglycan-rich matrix in vitro. Furthermore, ASCs cultures established from either STRO-1, 3G5, or CD146 selected cell populations, were all capable of forming ectopic bone when transplanted subcutaneously into NOD/SCID mice. The findings presented here, describe a multipotential stem cell population within adult human adipose tissue, which appear to be intimately associated with perivascular cells surrounding the blood vessels.  相似文献   

15.
16.
17.
18.
Jeong JA  Ko KM  Park HS  Lee J  Jang C  Jeon CJ  Koh GY  Kim H 《Proteomics》2007,7(22):4181-4191
Mesenchymal stromal cells (MSCs) have proven useful for cell and immune therapy, but the molecular constituents responsible for their functionalities, in particular, those on the plasma membrane, remain largely unknown. Here we employed both gel and nongel based MS to analyze human MSCs' membrane proteome before and after adipogenesis. 2-DE of cells that were pretreated with membrane impermeable fluorescent dyes revealed that both the whole cell proteome and the cell surface subproteome were independent of donors. LC coupled with tandem MS analysis of the plasma membrane-containing fraction allowed us to identify 707 proteins, approximately half of which could be annotated as membrane-related proteins. Of particular interest was a subset of ectodomain-containing membrane-bound proteins that encompass most known surface markers for MSCs, but also contain a multitude of solute carriers and ATPases. Upon adipogenic differentiation, this proteomic profile was amended to include several proteins involved in lipid metabolism and trafficking, at the expense of, most noticeably, ectoenzymes. Our results here provide not only a basis for future studies of MSC-specific molecular mechanisms, but also a molecular inventory for the development of antibody-based cell isolation and identification procedures.  相似文献   

19.
20.
Background aimsMultipotent mesenchymal stromal cells (MSCs) are clinically useful because of their immunomodulatory and regenerative properties, but MSC therapies are limited by the loss of self-renewal and cell plasticity associated with ex vivo expansion culture and, on transplantation, increased immunogenicity from xenogen exposure during culture. Recently, pooled human platelet lysate (hPL) has been used as a culture supplement to promote MSC growth; however, the effects of hPL on MSCs after fetal bovine serum (FBS) exposure remain unknown.MethodsMSCs were cultured in medium containing FBS or hPL for up to 16 passages, and cell size, doubling time and immunophenotype were determined. MSC senescence was assessed by means of a fluorometric assay for endogenous β-galactosidase expression. MSCs cultured with FBS for different numbers of passages were switched to hPL conditions to evaluate the ability of hPL to “rescue” the proliferative capacity of MSCs.ResultshPL culture resulted in more rapid cell proliferation at earlier passages (passage 5 or earlier) than remove FBS; by day 4, hPL (5%) yielded an MSC doubling time of 1.28 days compared with 1.52 days in 16% FBS. MSCs cultured first in FBS and switched to hPL proliferated more and demonstrated less β-galactosidase production and smaller cell sizes than remove MSCs continuously propagated in FBS.ConclusionshPL enables rapid expansion of MSCs without adversely affecting immunophenotype. hPL culture of aged and senescent MSCs demonstrated cellular rejuvenation, reflected by decreased doubling time and smaller cell size. These results suggest that expansion of MSCs in hPL after FBS exposure can enhance cell phenotype and proliferative capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号