首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Observations made on Amoeba proteus during total inanition revealed the following changes: Dry weight declined progressively, but at a decreasing rate to about 45 per cent of the initial levels when determined in surviving members of a dying population. Protein fell to about 70 per cent of the initial level. A hexane-alcohol extractable component fell during early starvation then rose to about its initial absolute level in the dying cells. While initially most of this component is probably lipide, it is not certain that other materials are not extracted during cell degeneration. Survival as a function of cell size was studied. No advantage in survival was apparent for any size class. Nucleate cell "halves" likewise showed no survival time differential, unlike a highly significant decrease in the survival of enucleate portions. The maintenance of the initial variance about the mean population weight (after hexane-alcohol extraction) during starvation, likewise supports the idea that survival depends largely on concentration parameters.  相似文献   

2.
The content of dipicolinic acid (DPA) was assayed in the spores of Bacillus anthracoides 96 during various stages of its growth. The content of DPA was ca. 10.7 per cent of the dry biomass weight in the seven-day-old culture containing 96 to 99 per cent of the spores in a "starvation" medium. The morphology of the culture was modified, and the content of DPA in the spores fell to 3.6 per cent half an hour after the inoculation into the medium favourable for the growth (MPA). During the following one to four hours of the germination, the refraction index of the spores and the content of DPA in them decreased (the content of DPA to 2 per cent).  相似文献   

3.
Abstract— The effect of stimulating the electric organ of Torpedo marmorata , anaesthetized with 0.01% Tricaine methane sulphonate, by means of electrical stimulation (5/s) administered via an electrode placed on the electric lobe has been studied electrophysiologically, biochemically and morphologically. The response of the organ declined to about 50 per cent of its initial value after about 500 stimuli, by a further 10 per cent after another 500 stimuli and then to about 12 per cent of the initial value after a further 1000 stimuli. Thereafter the response fell off progressively. However, even when the response was less than 1 per cent of its initial value, the organ had considerable powers of recuperation during a 30-s rest period, to 30–50 per cent of its initial value.
The fall in response was accompanied by a reduction in vesicle size and number, an increase in the area of the presynaptic membrane and a fall in the protein, total nucleotide, ATP and acetylcholine content of the vesicle fraction isolated from the stimulated tissue. However, whereas vesicle numbers and the protein and total nucleotide content of the vesicle fraction fell by only about 50 per cent, vesicular ATP and acetylcholine levels were reduced to about 10 per cent. An analysis of the covariance of vesicular ATP and acetylcholine showed an initial loss of an acetylcholine-rich (relative to ATP) population of vesicles. The early loss of vesicular protein and nucleotide and vesicle numbers as well as the morphological changes seen would be consistent with a loss of vesicles due to fusion with the external membrane. The preferential loss of acetylcholine and ATP from the vesicle fraction indicates that the vesicles surviving the stimulation procedure have been utilized in a number of cycles causing the progressive fall in vesicle volume, and acetylcholine and ATP content.  相似文献   

4.
Three-week-old male rats of the Wistar strain were given tritiated thymidine, 1 µc/gm body weight, intraperitoneally and were killed at intervals from 0.25 to 72 hours later. Autoradiographs were made from 5 µ sections, stained by the Feulgen method. The replication time and its component intervals were determined from the scoring of the labeling of interphase nuclei as well as of prophase, metaphase, anaphase, and telophase nuclei. Absorption of the intraperitoneally injected label is rapid and is attended by "flash" labeling during interphase. The results show that at any one time about 4 per cent of the liver cells are synthesizing DNA preliminary to cell division. These cells alternate with waves of other cells and it is estimated that about 10 per cent of the liver cell population is engaged in cell duplication. The replication time is about 21.5 hours, and its component intervals occupy the following times: DNA synthesis, 9 hours; post-DNA synthesis gap, 0.50 hour; prophase, 1.3 hours; metaphase, 1.0 hour; anaphase, 0.4 hour; telophase, 0.3 hour; postmitosis gap, 9.0 hours. A group of liver cells has been recorded in at least 3 successive replication cycles.  相似文献   

5.
Autophagy is a process to degrade and recycle cytoplasmic contents. Autophagy is required for survival in response to starvation, but has also been associated with cell death. How autophagy functions during cell survival in some contexts and cell death in others is unknown. Drosophila larval salivary glands undergo programmed cell death requiring autophagy genes, and are cleared in the absence of known phagocytosis. Recently, we demonstrated that Draper (Drpr), the Drosophila homolog of C. elegans engulfment receptor CED-1, is required for autophagy induction during cell death, but not during cell survival. drpr mutants fail to clear salivary glands. drpr knockdown in salivary glands prevents the induction of autophagy, and Atg1 misexpression in drpr null mutants suppresses salivary gland persistence. Surprisingly, drpr knockdown cell-autonomously prevents autophagy induction in dying salivary gland cells, but not in larval fat body cells following starvation. This is the first engulfment factor shown to function in cellular self-clearance, and the first report of a cell-death-specific autophagy regulator.Key words: autophagy, Draper, programmed cell death, engulfment, developmentProgrammed cell death is required for animal development and tissue homeostasis. Improper cell death leads to pathologies including autoimmunity and cancer. Several morphological forms of cell death occur during animal development, including apoptosis and autophagic cell death. Autophagic cell death is characterized by the presence of autophagosomes in dying cells that are not known to be engulfed by phagocytes. Autophagic cell death is observed during several types of mammalian developmental cell death, including regression of the corpus luteum and involution of mammary and prostate glands.During macroautophagy (autophagy), cytoplasmic components are sequestered by autophagosomes and delivered to the lysosome for degradation. Autophagy is a cellular response to stress required for survival in response to starvation. Whereas autophagy has been associated with cell death, it is unknown how autophagy is distinguished during cell death and cell survival. Autophagy is induced in Drosophila in response to starvation in the fat body where it promotes cell survival, while autophagy is induced by the steroid hormone ecdysone in salivary glands where it promotes cell death. This allows studies of autophagy in different cell types and in response to different stimuli.Drosophila larval salivary glands die with autophagic cell death morphology and autophagy is required for their degradation. Expression of the caspase inhibitor p35 enhances salivary gland persistence in Atg mutants, suggesting that caspases and autophagy function in parallel during salivary gland degradation. Either activation of caspases or Atg1 misexpression is sufficient to induce ectopic salivary gland clearance. We queried genome-wide microarray data from purified dying salivary glands and noted the induction of engulfment genes, those required for a phagocyte to consume and degrade a dying cell. We also noted few detectable changes in engulfment genes in Drosophila larvae during starvation.We found that Drpr, the Drosophila orthologue of C. elegans engulfment receptor CED-1, is enriched in dying salivary glands, and drpr null mutants have persistent salivary glands. Interestingly, whereas knockdown of drpr in phagocytic blood cells fails to influence salivary gland clearance, expression of drpr-RNAi in salivary glands prevents gland clearance. Drosophila drpr is alternatively spliced to produce three isoforms. We found that drpr-I-specific knockdown prevents salivary gland degradation and Drpr-I expression in salivary glands of drpr null mutants rescues salivary gland persistence. Therefore, drpr is autonomously required for salivary gland clearance. However, how Drpr is induced or activated during hormone-regulated cell death remains to be determined.drpr knockdown fails to influence caspase activation, and caspase inhibitor p35 expression in drpr null mutants enhances salivary gland persistence, suggesting that Drpr functions downstream or parallel to caspases in dying salivary glands. Interestingly, we found that drpr knockdown in salivary glands prevents the formation of GFP-LC3 puncta. Further, Atg1 misexpression in salivary glands of drpr null mutants suppresses salivary gland persistence. drpr is therefore required for autophagy induction in salivary glands, and Atg1 functions downstream of Drpr in this tissue. We found that several other engulfment genes are required for salivary gland degradation. However, the Drpr signaling mechanism leading to autophagy induction in salivary glands remains to be elucidated.We tested whether drpr is a general regulator of autophagy. The Drosophila fat body is a nutrient storage and mobilization organ akin to the mammalian liver, and is a well-established model to study starvation-induced autophagy. We found that drpr-RNAi expression in fat body clone cells fails to prevent GFP-Atg8 puncta formation in response to starvation. Similarly, drpr null fat body clone cells form Cherry-Atg8 puncta after starvation. Strikingly, drpr-RNAi expression in salivary gland clone cells inhibits the formation of GFP-Atg8 puncta. Therefore, drpr is cell-autonomously required for autophagy induction in dying salivary gland cells, but not for autophagy induction in fat body cells after starvation. These findings suggest that distinct signaling mechanisms regulate autophagy in response to nutrient deprivation compared to steroid hormone induction. Little is known about what distinguishes autophagy function in cell survival versus death. It is possible that varying levels of autophagy are induced during specific cell contexts and that high levels of autophagy could overwhelm a cell—leading to cell death. Autophagic degradation of specific cargo, such as cell death inhibitors, could also contribute to cell death.Given recent interest in manipulation of autophagy for therapies, it is possible that factors such as Drpr could be used as biomarkers to distinguish autophagy leading to cell death versus cell survival. While it is generally accepted that augmentation of protein clearance by autophagy during neurodegeneration would be beneficial, the role of autophagy in tumor progression is less clear. For example, monoallelic loss of the human Atg6 homolog beclin 1 is prevalent in human cancers, suggesting that autophagy is a tumorsuppressive mechanism. Thus, autophagy enhancers have been proposed for cancer prevention. However, autophagy occurs in tumor cells as a survival mechanism, and autophagy inhibitors have been proposed for anti-cancer therapies. Understanding how autophagy is regulated in different contexts is critical for appropriate therapeutic strategies.  相似文献   

6.
In insects, trophocytes (adipocytes) are major cells of a storage organ, the fat body, from which stored glycogen and lipids are mobilized under starvation. However, cockroaches have 2 additional types of cell in the fat body: mycetocytes harboring an endosymbiont, Blattabacterium cuenoti, and urocytes depositing uric acid in urate vacuoles. These cells have not been investigated in terms of their roles under starvation conditions. To gain insight into the roles of trophocytes, mycetocytes and urocytes in cockroaches, structural changes were first investigated in the cells associated with starvation in the American cockroach, Periplaneta americana, by light and electron microscopy. The area of lipid droplets in trophocytes, the endosymbiont population and mitotic activity in mycetocytes, and the area of urate vacuoles in urocytes were analyzed in association with survival rates of the starved cockroaches. After 2 weeks of starvation, trophocytes lost glycogen rosettes and their area of lipid droplets decreased, but almost all cockroaches survived this period. However, further starvation did not reduce the area, but the survival rates dropped rapidly and all cockroaches died in 7 weeks. Endosymbionts were not affected in terms of population size and mitotic activity, even if the cockroaches were dying. The area of urate vacuoles rapidly decreased in a week of starvation and did not recover upon further starvation. These results indicate that starved cockroaches mobilize glycogen and lipids stored in trophocytes to survive for 2 weeks and then die after the exhaustion of nutrients in these cells. Endosymbionts are not digested for the recycling of nutrients, but uric acid is reused under starvation.  相似文献   

7.
In the lifecycle of microorganisms, prolonged starvation is prevalent and sustaining life during starvation periods is a vital task. In the literature, it is commonly assumed that survival kinetics of starving microbes follows exponential decay. This assumption, however, has not been rigorously tested. Currently, it is not clear under what circumstances this assumption is true. Also, it is not known when such survival kinetics deviates from exponential decay and if it deviates, what underlying mechanisms for the deviation are. Here, to address these issues, we quantitatively characterized dynamics of survival and death of starving E. coli cells. The results show that the assumption – starving cells die exponentially – is true only at high cell density. At low density, starving cells persevere for extended periods of time, before dying rapidly exponentially. Detailed analyses show intriguing quantitative characteristics of the density-dependent and biphasic survival kinetics, including that the period of the perseverance is inversely proportional to cell density. These characteristics further lead us to identification of key underlying processes relevant for the perseverance of starving cells. Then, using mathematical modeling, we show how these processes contribute to the density-dependent and biphasic survival kinetics observed. Importantly, our model reveals a thrifty strategy employed by bacteria, by which upon sensing impending depletion of a substrate, the limiting substrate is conserved and utilized later during starvation to delay cell death. These findings advance quantitative understanding of survival of microbes in oligotrophic environments and facilitate quantitative analysis and prediction of microbial dynamics in nature. Furthermore, they prompt revision of previous models used to analyze and predict population dynamics of microbes.  相似文献   

8.
Habitat destruction and predation by invasive alien species has led to the disappearance of several island populations of Darwin''s finches but to date none of the 13 recognized species have gone extinct. However, driven by rapid economic growth in the Galápagos, the effects of introduced species have accelerated and severely threatened these iconic birds. The critically endangered mangrove finch (Camarhynchus heliobates) is now confined to three small mangroves on Isabela Island. During 2006–2009, we assessed its population status and monitored nesting success, both before and after rat poisoning. Population size was estimated at around only 100 birds for the two main breeding sites, with possibly 5–10 birds surviving at a third mangrove. Before rat control, 54 per cent of nests during incubation phase were predated with only 18 per cent of nests producing fledglings. Post-rat control, nest predation during the incubation phase fell to 30 per cent with 37 per cent of nests producing fledglings. During the nestling phase, infestation by larvae of the introduced parasitic fly (Philornis downsi) caused 14 per cent additional mortality. Using population viability analysis, we simulated the probability of population persistence under various scenarios of control and showed that with effective management of these invasive species, mangrove finch populations should start to recover.  相似文献   

9.
MICROSOMAL NUCLEOPROTEIN PARTICLES FROM PEA SEEDLINGS   总被引:13,自引:2,他引:11       下载免费PDF全文
Ultracentrifugal analysis of an extract of pea epicotyls, previously freed of debris and larger particles by centrifugation at 40,000 g for 10 minutes, has revealed the presence of a major component which possesses a sedimentation coefficient of 74 S. This component constitutes about 25 per cent of the TCA-precipitable material in the clarified epicotyl extract and is estimated to make up 1 to 2 per cent of the dry weight of the original tissue. In size, chemical composition, and morphology, the 74 S component resembles the nucleoproteins of the microsomes from animal tissues. The 74 S component of pea epicotyl extracts has been purified by repeated cycles of differential centrifugation to yield a preparation which is 80 per cent homogeneous in the analytical ultracentrifuge. It has been found to contain 30 to 37 per cent RNA as judged by a variety of analytical techniques. Approximately 55 per cent of the weight of the material is protein and a further 4.5 per cent phospholipide. Electron micrographs of air-dried specimens of the purified preparation show the 74 S constituent to be flattened spheres with an average height of 180 A and an average diameter of approximately 280 A. The molecular weight of the 74 S particles is computed from sedimentation, viscosity, and partial specific volume data to be 4.5 million ± 10 per cent in agreement with the value estimated from electron micrographs. The 74 S or microsomal component of pea epicotyls is rapidly aggregated in the presence of low concentrations of Mg ions or by somewhat higher concentrations of Ca or K salts. ATP on the contrary causes resolution of electrolyte-induced microsomal aggregates with simultaneous degradation of the particles to an ultracentrifugally inhomogeneous mixture of lower molecular weight materials.  相似文献   

10.
Starvation-Survival Processes of a Marine Vibrio   总被引:23,自引:21,他引:2       下载免费PDF全文
Levels of DNA, RNA, protein, ATP, glutathione, and radioactivity associated with [35S]methionine-labeled cellular protein were estimated at various times during the starvation-survival process of a marine psychrophilic heterotrophic Vibrio sp., Ant-300. Values for the macromolecules were analyzed in terms of total, viable, and respiring cells. Electron micrographs (thin sections) were made on log-phase and 5.5-week-starved cells. On a per-cell basis, the levels of protein and DNA rapidly decreased until a constant level was attained. A second method in which radioactive sulfur was used for monitoring protein demonstrated that the cellular protein level decreased for approximately 2.5 weeks and then remained constant. An initial decrease in the RNA level with starvation was noted, but with time the RNA (orcinol-positive material) level increased to 2.5 times the minimum level. After 6 weeks of starvation, 45 to 60% of the cells remained capable of respiration, as determined by iodonitrotetrazolium violet-formazan granule production. Potential respiration and endogenous respiration levels fell, with an intervening 1-week peak, until at 2 weeks no endogenous respiration could be measured; respiratory potential remained high. The cell glutathione level fell during starvation, but when the cells were starved in the presence of the appropriate amino acids, glutathione was resynthesized to its original level, beginning after 1 week of starvation. The cells used much of their stored products and became ultramicrocells during the 6-week starvation-survival process. Ant-300 underwent many physiological changes in the first week of starvation that relate to the utilization or production of ATP. After that period, a stable pattern for long-term starvation was demonstrated.  相似文献   

11.
The starvation-survival response of Staphylococcus aureus as a result of glucose, amino acid, phosphate, or multiple-nutrient limitation was investigated. Glucose and multiple-nutrient limitation resulted in the loss of viability of about 99 to 99.9% of the population within 2 days. The remaining surviving cells developed increased survival potential, remaining viable for months. Amino acid or phosphate limitation did not lead to the development of a stable starvation-survival state, and cells became nonculturable within 7 days. For multiple-nutrient limitation, the development of the starvation-survival state was cell density dependent. Starvation survival was associated with a decrease in cell size and increase in resistance to acid shock and oxidative stress. There was no evidence for the formation of a viable but nonculturable state during starvation as demonstrated by flow cytometry. Long-term survival of cells was dependent on cell wall and protein biosynthesis. Analysis of [35S]methionine incorporation and labelled proteins demonstrated that differential protein synthesis occurred deep into starvation.  相似文献   

12.
Sunflower root meristems are composed of two populations ofcells which respond differently to stress. One population becomesarrested in G1 and G2, while the second ‘leaky’population (0.25–1.0 per cent) is able to pass throughS even during carbohydrate starvation. Leaky cells enter S ata rate of 0.06 per cent cells h–1 after 48 h of starvation.The character of leakiness is retained by roots starved fortwo successive 48 h starvation periods separated by an 8 h sucrosepulse. Single and double layer autoradiograph experiments demonstratedthat leaky cell progeny maintain their leaky character throughat least two cell generations. Leaky cells are located at randomin the root cap, promeristem, ground meristem, protoderm, cortex,and pericycle. The presence of leaky cells may indicate a stressresponse mechanism to repopulate the root meristem.  相似文献   

13.
The carbon that rhizobia in root nodules receive from their host powers both N2 fixation, which mainly benefits the host, and rhizobium reproduction. Rhizobia also store energy in the lipid poly-3-hydroxybutyrate (PHB), which may enhance rhizobium survival when they are carbon limited, either in nodules or in the soil between hosts. There can be a conflict of interest between rhizobia and legumes over the rate of PHB accumulation, due to a metabolic tradeoff between N2 fixation and PHB accumulation. To quantify the benefits of PHB to carbon-limited rhizobia, populations of genetically uniform rhizobia with high vs. low PHB (confirmed by flow cytometry) were generated by fractionating Sinorhizobium meliloti via density gradient centrifugation, and also by harvesting cells at early vs. late stationary phase. These rhizobia were starved for 165 days. PHB use during starvation was highly predictive of both initial reproduction and long-term population maintenance. Cultured S. meliloti accumulated enough PHB to triple their initial population size when starved, and to persist for c . 150 days before the population fell below its initial value. During the first 21 days of nodule growth, undifferentiated S. meliloti within alfalfa nodules accumulated enough PHB to support significant increases in reproduction and survival during starvation.  相似文献   

14.
Three marine bacteria were examined for physiological and morphological changes in the initial phase of starvation. It was found that the starvation process was induced in a similar way irrespective of whether the cells were suspended in nutrient and energy free artificial seawater (NSS) or NSS supplemented with nitrogen and phosphorus. An initial phase of increased activity was consistent with a decreased response to added nutrients. Recovery from starvation exhibited the same response in both these starvation regimes, measured throughout the starvation period. Cells in nitrogen or phosphorus deprived starvation regimes, showed a high and rapid increased activity, followed by a delayed and more pronounced decline in respiratory activity. The initial phase of starvation also included a loss of poly--hydroybutyrate as observed by transmission electron microscopy (TEM). Two bacterial strains showed formation of small vesicles on the outer cell layer when examined by TEM. This formation and release of vesicles was related to the continuous size reduction during starvation survival. The results are discussed in terms of defining the mechanisms of initial cellular responses to nutrient deprivation.Abbreviation NSS nine salt solution  相似文献   

15.
The deoxyribonucleic acid (DNA) from Escherichia coli has been isolated as an extract containing about 50 per cent by weight protein. The protein component differs both in composition and chemical behaviour from histone which occurs in combination with the DNA in most cells of higher organisms. Although this result suggests the absence of histone-like protein, it is not clear whether the bacterial protein found is naturally bound to the bacterial DNA in the cell or becomes attached to the DNA during the course of isolation.  相似文献   

16.
Abstract— Adult rats were denied food for 7 days. As compared with a control group, this severe starvation reduced the mean total body weight by 44 per cent, the weight of the diaphragm by 33 per cent and liver by 67 per cent, the total lipid content of the diaphragm by 57 per cent and liver by 69 per cent, and the total lipid phosphorus content of the diaphragm by 19 per cent and liver by 68 per cent. The decrease in lipid phosphorus contents indicates that the diaphragm and liver catabolized membrane phospholipids as well as triglycerides. In contrast, the fresh weight of the brain and the total lipid content of the brain were not significantly altered by starvation. The fatty acid patterns of the total lipid of the diaphragm and liver (determined by GLC) were grossly altered by starvation. In the brain, however, 17 of the 21 fatty acids measured did not change significantly (P > 0.05) and the remaining four changed, with borderline statistical significance, by only 2 to 13 per cent. There was no significant effect of starvation of the pattern of the brain polyunsaturated fatty acids when measured by alkali isomerization. In contrast to the liver and diaphragm, the brain is apparently unable to utilize its lipids appreciably as an energy source. Presumably the lipids of the brain are preserved to permit this organ to function properly, even in the last stages of starvation.  相似文献   

17.
1. The synthesis of ribonucleic acid, desoxyribomicleic acid, and protein in S. muscae has been studied: (a) during the lag phase, (b) during the early log phase, and (c) while the cells are forming an adaptive enzyme for lactose utilization. 2. During the lag phase there may be a 60 per cent increase in ribonucleic acid and protein and a 50 per cent increase in dry weight without a change in cell count, as determined microscopically, or an increase in turbidity. 3. During this period, the increase in protein closely parallels the increase in ribonucleic acid, in contrast to desoxyribonucleic acid, which begins to be synthesized about 45 minutes after the protein and ribonucleic acid have begun to increase. 4. The RNA N/protein N ratio is proportional to the growth rate of all S. muscae strains studied. 5. While the RNA content per cell during the early log phase depends upon the growth rate, the DNA content per cell is fairly constant irrespective of the growth rate of the cell. 6. Resting cells of S. muscae have approximately the same RNA content per cell irrespective of their prospective growth rate. 7. While the cells are adapting to lactose, during which time there is little or no cellular division, there is never an increase of protein without a simultaneous increase in ribonucleic acid, the RNA N/protein N ratio during these intervals being approximately 0.15. 8. Lactose-adapting cells show a loss of ribonucleic acid. The purines-pyrimidines of the ribonucleic acid can be recovered in the cold 5 per cent trichloroacetic acid fraction, but the ribose component is completely lost from the system. 9. The significance of these results is discussed in relation to the importance of ribonucleic acid for protein synthesis.  相似文献   

18.
Biochemical Alterations of Dermatophytes during Growth   总被引:1,自引:0,他引:1       下载免费PDF全文
Alterations in the biochemical constituents of mycelia were studied during the growth, development, and starvation of Microsporum quinckeanum. On the basis of dry weight, growth of this dermatophyte could be divided into four phases: lag, log, stationary, and death. The percentage of total nitrogen, inorganic phosphorus, ribonucleic acid (RNA), and protein increased rapidly during the lag phase. The percentage of protein remained constant after the initial increase; however, inorganic phosphate and RNA decreased in older mycelia. Acid-soluble materials in the cells increased in concentration as the organism aged. Chitin was present in the spores at a much higher concentration than in the mycelia. The percentage of this compound decreased rapidly until the end of the lag phase. An increase and subsequent decrease in per cent chitin occurred during the log phase. Inorganic phosphorus in the mycelia increased from the value in the spore stage to a maximum in the early log phase, and then decreased rapidly during the remainder of the growth cycle. Compounds involved in protein synthesis increased rapidly during the lag phase of growth. Changes in chemical composition of the mold during starvation indicate that carbohydrate does not form the principal endogenous reserve of M. quinckeanum, whereas lipids may represent the primary reserve material.  相似文献   

19.
Nitrogen fertilizer applied to sugar-beet increased plant androot dry weight and leaf area, and decreased the sugar contentof the roots per cent of both fresh and dry weight. Change inleaf area accounted wholly for the increase in plant dry weightproduced by nitrogen, because net assimilation rate was unaffected.Nitrogen did not alter the partition of the total assimilatebetween roots and shoots, but increased the fraction of totalassimilate entering the roots that was used in growth, at theexpense of that stored as sugar. Thus, plants with more nitrogenhad a smaller proportion of their root dry weight as sugar becausemore was metabolized in growth of the roots, and not becauseless entered the roots. The heavier roots of plants given more nitrogen were largerin cross-sectional area because the areas of both parenchymaand vascular zones of each peripheral ring within the root werelarger; the number of rings was not increased. Nitrogen increasedthe areas of the tissues in these zones by enlarging cell volumes,not by increasing the number of cells within the tissues. Increasein cell volume was accompanied by proportional increases inthe weights of non-sugar dry matter per cell and water per cell,but the amount of sugar per cell was proportional to cell volumeonly during the initial stage of cell expansion up to cell volumesof about 15x10–8 cm2; thereafter it was less than proportional,so that sugar per cent of both fresh and dry weight decreasedas cell size increased beyond 15x10–8 cm2. The relationof sugar per cell to cell volume was the same with both amountsof nitrogen given. This implies that increase in nitrogen supplymade the sugar concentration of the root less by increasingthe size of the root cells and not by a specific effect on sugarstorage.  相似文献   

20.
The survival rate of an E. coli polyauxotrophous strain AB1157 and the behaviour of its DNA were studied when the strain was incubated for a long time at 43 degrees C in a medium deficient in glucose, phosphates and amino acids. Under these conditions, the survival rate fell down to 10%, but no cell lysis occurred. DNA synthesis stopped within the first two hours of starvation. Neither DNA degradation, despiralization nor decrease of its molecular weight could be detected during the entire starvation. Therefore, the death of E. coli cells under these conditions was not associated with DNA damages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号