首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA damaging agents are widely used in treatment of hematogical malignancies and solid tumors. While effects on hematopoietic stem cells have been characterized, less is known about the DNA damage response in human mesenchymal stem cells (hMSCs) in the bone marrow stroma, progenitors of osteoblasts, chondrocytes and adipocytes. To elucidate the response of undifferentiated hMSCs to γ-irradiation and cisplatin, key DNA damage responses have been characterised in hMSCs from normal adult donors. Cisplatin and γ-irradiation activated the DNA damage response in hMSCs, including induction of p53 and p21, and activation of PI3 kinase-related protein kinase (PIKK)-dependent phosphorylation of histone H2AX on serine 139, and replication protein A2 on serine4/serine8. Chemical inhibition of ATM or DNA-PK reduced DNA damage-induced phosphorylation of H2AX, indicating a role for both PIKKs in the response of hMSCs to DNA damage. Consistent with repair of DNA strand breaks, γ-H2AX staining decreased by 24 hours following gamma-irradiation. γ-irradiation arrested hMSCs in the G1 phase of the cell cycle, while cisplatin induced S-phase arrest, mediated in part by the ATR/Chk1 checkpoint pathway. In hMSCs isolated from a chronic lymphocytic leukemia (CLL) patient, p53 and p21 were induced by cisplatin and γ-irradiation, while RPA2 was phosphorylated on serine4/8 in particular following cisplatin. Compared to peripheral blood lymphocytes or the leukemia cell line K562, both normal hMSCs and CLL-derived hMSCs were more resistant to cisplatin and γ-irradiation. These results provide insights into key pathways mediating the response of bone marrow-derived hMSCs to DNA damaging agents used in cancer treatment.  相似文献   

2.
Radiation-induced cellular injury is attributed primarily to the harmful effects of free radicals, which play a key role in irradiation-induced apoptosis. In this study, we investigated the radioprotective efficacy of edaravone, a licensed clinical drug and a powerful free radical scavenger that has been tested against γ-irradiation-induced cellular damage in cultured human peripheral blood lymphocytes in studies of various diseases. Edaravone was pre-incubated with lymphocytes for 2 h prior to γ-irradiation. It was found that pretreatment with edaravone increased cell viability and inhibited generation of γ-radiation-induced reactive oxygen species (ROS) in lymphocytes exposed to 3 Gy γ-radiation. In addition, γ-radiation decreased antioxidant enzymatic activity, such as superoxide dismutase and glutathione peroxidase, as well as the level of reduced glutathione. Conversely, treatment with 100 μM edaravone prior to irradiation improved antioxidant enzyme activity and increased reduced glutathione levels in irradiated lymphocytes. Importantly, we also report that edaravone reduced γ-irradiation-induced apoptosis through downregulation of Bax, upregulation of Bcl-2, and consequent reduction of the Bax:Bcl-2 ratio. The current study shows edaravone to be an effective radioprotector against γ-irradiation-induced cellular damage in lymphocytes in vitro. Finally, edaravone pretreatment significantly reduced DNA damage in γ-irradiated lymphocytes, as measured by comet assay (% tail DNA, tail length, tail moment, and olive tail moment) (p < 0.05). Thus, the current study indicates that edaravone offers protection from radiation-induced cytogenetic alterations.  相似文献   

3.
DNA repair mechanisms are essential for the maintenance of genomic stability, proper cellular function and survival for all organisms. Plants, with their intrinsic immobility, are vastly exposed to a wide range of environmental agents and also endogenous processes which frequently cause damage to DNA and impose genotoxic stress. Therefore, in order to survive under frequent and extreme environmental stress conditions, plants have developed a vast array of efficient and powerful DNA damage repair mechanisms to ensure rapid and precise repair of genetic material for maintaining genome stability and faithful transfer of genetic information over generations.1 Recently, we have defined the role of DNA polymerase λ in repair of UV-B-induced photoproducts in Arabidopsis thaliana via nucleotide excision repair pathway.2 Here, we have further discussed potential function of DNA polymerase λ in various DNA repair pathways in higher plant genome in response to environmental and genotoxic stress factors.  相似文献   

4.
Cytotoxicity against two human bladder carcinoma cell lines (BT-A and BT-B) was investigated using human peripheral blood mononuclear cells (PBMC) stimulated with viable bacillus Calmette-Guérin (BCG) or sonicated BCG (s-BCG). We applied a cytotoxicity assay based on radioactive labelling of tumour cells by incorporation ofl[3H]methionine. The results were compared with the cytotoxicity exerted by lymphokine-activated killer (LAK) cells generated by interleukin-2 (IL-2) and interferon (IFN). BCG-stimulated PBMC showed a cytotoxic potential against BT-A and BT-B comparable to that of IFN-generated LAK cells, but this did not reach the level of IL-2-generated LAK cells. We termed these cytotoxic effectors BCG-activated killer (BAK) cells. In contrast to their cytotoxicity against bladder tumour cells. BAK cells did not differ from unstimulated PBMC in the killing of K562 cells. Only viable but not sonicated BCG was able to induce cytotoxicity against BT-A and BT-B. We could demonstrate the presence of the cytokines IFN, IL-2, tumour necrosis factor (TNF) and TNFß in the supernatants harvested during the generation of BAK cells. Monoclonal antibodies neutralizing IFN were able to inhibit BCG-mediated cytotoxicity, giving evidence of the involvement of IFN in the induction of BAK cells. Furthermore, we performed experiments to investigate the cytotoxic potential of distinct cell populations. The cells effective in BCG-activated killing of bladder tumour cells could be localized within the CD8+/CD56+ lymphocyte subset. CD4+ cells and macrophages did not exhibit cytolytic activity. Our findings imply that the activation by BCG of CD8+/CD56+ killer cells might be an important antitumoral mechanism during BCG therapy against superficial urothelial bladder cancer.  相似文献   

5.
Malakhova  L. V.  Lomaeva  M. G.  Zakharova  M. L.  Kirillova  E. N.  Sokolova  S. N.  Antipova  V. N.  Bezlepkin  V. G. 《Biophysics》2016,61(6):1026-1032

The levels of large deletions in the mitochondrial DNA of workers at the Mayak Production Association (Mayak PA) who were exposed to external and combined occupational (external γ- and internal α-rays) radiation during the course of their duties were investigated. Peripheral blood-derived DNA samples were provided by the Radiobiological Human Tissue Repository of the Southern Urals Biophysics Institute (Russia). The samples were analyzed using long-extension PCR. The number of large-scale deletions in the mitochondrial DNA of workers who, in addition to external γ-radiation, were exposed to extra doses of irradiation due to incorporated 239Pu with a Pu body burden of 0.77–4.32 kBq, was 2.5-times lower compared to that of individuals who received only external γ-radiation. No significant gender-associated effects on the number of mitochondrial DNA deletions were detected among age-matched individuals.

  相似文献   

6.
In this study, we evaluated whether human serum and lipoproteins, especially high-density lipoprotein (HDL), affected serum amyloid A (SAA)-induced cytokine release. We verified the effects of SAA on THP-1 cells in serum-free medium compared to medium containing human serum or lipoprotein-deficient serum. SAA-induced tumour necrosis factor-alpha (TNF-α) production was higher in the medium containing lipoprotein-deficient serum than in the medium containing normal human serum. The addition of HDL inhibited the SAA-induced TNF-α release in a dose-dependent manner. This inhibitory effect was specific for HDL and was not affected by low-density lipoprotein or very low-density lipoprotein. In human peripheral blood mononuclear cells, the inhibitory effect of HDL on TNF-α production induced by SAA was less pronounced. However, this effect was significant when HDL was added to lipoprotein-deficient medium. In addition, a similar inhibitory effect was observed for interleukin-1 beta release. These findings confirm the important role of HDL and support our previous hypothesis that HDL inhibits the effects of SAA during SAA transport in the bloodstream. Moreover, the HDL-induced reduction in the proinflammatory activity of SAA emphasizes the involvement of SAA in diseases, such as atherosclerosis, that are characterized by low levels of HDL.  相似文献   

7.
Oxidative stress seems to play a major role in the pathogenesis of neurodegeneration. In Parkinson’s disease (PD) patients, the dopaminergic neurons are subjected to oxidative stress resulting from reduced levels of antioxidant defenses such as glutathione and high amount of intracellular iron. Levodopa (LD) is widely used for the symptomatic treatment of PD, but its role in oxidative damage control is still unclear. The aim of this study was to analyze the presence of DNA damage in peripheral blood lymphocytes (PBL) of PD patients, during a washout and a controlled LD dosage and to evaluate the oxidative damage fluctuation after LD intake. The standard and the Fpg-modified version of Comet assay were applied in analyzing DNA damage in PBL from blood samples of nine PD patients and nine matched controls. Due to the limited number of patients we cannot reach definite conclusions even if our data confirm the accumulation of DNA lesions in PD patients; these lesions decrease after LD intake.  相似文献   

8.

Introduction  

Several studies have reported that TNFα is substantially increased within skin lesions of patients with discoid lupus erythematosus (DLE), subacute cutaneous lupus erythematosus (SCLE) and dermatomyositis (DM) compared to controls. Elevated TNFα has been reported in the sera of some patients with systemic lupus erythematosus, DLE and SCLE, but not in the sera of patients with DM. Because of the key pathogenic role of autoimmunity in these diseases, in this study we sought to evaluate TNFα production by a readily available source of immune cells (namely, peripheral blood mononuclear cells (PBMCs)) taken from controls and from patients with cutaneous lupus or DM.  相似文献   

9.
10.
In utero environmental perturbations have been associated with epigenetic changes in the offspring and a lifelong susceptibility to cardiovascular diseases (CVD). DNA methylation at the ATP-binding cassette transporter A1 (ABCA1) gene was previously associated with CVD, but whether these epigenetic marks respond to changes in the maternal environment is unknown. This study was undertaken to assess the associations between the maternal metabolic profile and ABCA1 DNA methylation levels in placenta and cord blood. Placenta and cord blood samples were obtained at delivery from 100 women including 26 with impaired glucose tolerance (IGT) diagnosed following a 75 g-oral glucose tolerance test (OGTT) between week 24 and 28 of gestation. ABCA1 DNA methylation and mRNA levels were measured using bisulfite pyrosequencing and quantitative real-time PCR, respectively. We report that ABCA1 DNA methylation levels on the maternal side of the placenta are correlated with maternal high density lipoprotein cholesterol (HDL-C) levels (r < –0.21; P < 0.04) and glucose levels 2 h post-OGTT (r = 0.25; P = 0.02). On the fetal side of the placenta, ABCA1 DNA methylation levels are associated with cord blood triglyceride levels (r = –0.28; P = 0.01). ABCA1 DNA methylation variability on both sides of the placenta are also associated with ABCA1 mRNA levels (r < –0.35; P = 0.05). As opposed to placenta, cord blood DNA methylation levels are negatively correlated with maternal glucose 2 h post-OGTT (r = –0.26; P = 0.02). In conclusion, the epivariations observed in placenta and cord blood likely contribute to an optimal materno–fetal cholesterol transfer. These in utero epigenetics adaptations may also potentially trigger the long-term susceptibility of the newborn to dyslipidemia and CVD.  相似文献   

11.
12.
The extent of DNA methylation within the embryonic human ϵ-globin gene domain was studied in erythroid and non-erythroid cell lines. The results obtained show that the human ϵ-globin gene is totally methylated at all sites tested in tissues where it is not expressed, i.e. blood leucocytes. In the erythroid cell lines, K562 and PUTKO, both forced to embryonic differentiation by induction with haemin, the level of methylation is reduced compared with that observed in blood leucocytes. In the nonerythroid cell lines HeLa and Raji, where the human ϵ-globin gene is not expressed, the overall level of methylation in all sites tested is lower compared with that in erythroid cell lines.  相似文献   

13.
14.
15.
16.
The detection of γ-H2AX focus is one of the most sensitive ways to monitor DNA double-strand breaks (DSBs). Although changes in γ-H2AX activity have been studied in tumor cells in colorectal cancer (CRC), changes in peripheral blood lymphocytes (PBLs) have not been examined previously. We hypothesize that higher levels of irradiation-induced γ-H2AX in PBLs may be associated with an elevated risk of colorectal cancer (CRC). In a case-control study, the baseline and ionizing radiation (IR)-induced γ-H2AX levels in PBLs from frequency-matched 320 untreated CRC patients and 320 controls were detected by a laser scanning cytometer-based immunocytochemical method. We used unconditional multivariable logistic regression to evaluate CRC risk by using the ratio of IR-induced γ-H2AX to the baseline levels with adjustment of age, sex and smoking status. We found CRC cases had significantly higher γ-H2AX ratio (1.5 vs. 1.41, P < 0.0001) compared with controls. When using the median γ-H2AX ratio of controls as a cutoff point, we found higher γ-H2AX ratio was significantly associated with an increased risk of CRC (OR = 6.72, 95% CI = 4.54–9.94). Quartile analyses also showed significant dose–response relationship between higher γ-H2AX ratio and increased risk of CRC (P for trend < 0.0001). Age, sex, BMI and smoking status also influenced the association of γ-H2AX ratio with CRC risk; however, no interactions with γ-H2AX ratio were observed. These results support the premise that DSBs in peripheral blood as measured by γ-H2AX level might represent an intermediate phenotype to assess the risk of CRC. Future prospective studies are necessary to confirm our findings in independent populations.  相似文献   

17.
Polyphenols, coumarin (1,2-benzopyrone) and chromone (1,4-benzopyrone), are naturally occurring constituent of variety of plant species. They have attracted immense interest because of their diverse pharmacological activities. Not much was known about biological activities of acetyl derivative (polyphenolic acetates) of parent polyphenols. In previous investigations, we have conclusively established calreticulin transacetylase catalyzed activation of endothelial nitric oxide synthase (eNOS) by polyphenolic acetates. In the present work, calreticulin transacetylase of human peripheral blood mononuclear cells was characterized with respect to specificity for various polyphenolic acetates and its role in the activation of TNF-α induced nitric oxide synthase (iNOS). Peripheral blood mononuclear cells incubated with a model polyphenolic acetate, 7,8-diacetoxy-4-methylcoumarin (DAMC), along with l-arginine caused activation of NOS. The incubation of peripheral blood mononuclear cells with TNF-α and DAMC resulted in increased production of NO as compared to TNF-α alone. This increased NO production was attenuated by l-Nω-nitro-l-arginine methyl ester (l-NAME), a well known non-specific inhibitor of NOS, and 1400W (N-[3-(aminomethyl) benzyl] acetamidine), a specific inhibitor of human iNOS. These results substantiate the CRTAase catalyzed activation of iNOS. Further, expression of NOS isoforms by semi-quantitative PCR and real-time RT-PCR confirms the preponderance of iNOS in TNF-α treated peripheral blood mononuclear cells over the untreated one. It was also observed that polyphenolic acetates inhibit TNF-α mediated release of IL-6 from peripheral blood mononuclear cells.  相似文献   

18.
19.
20.
Interleukin 6 (IL-6) and nitric oxide (NO) are important mediators of the inflammatory response. We report that in human peripheral blood mononuclear cells (PBMCs), NO exerts a biphasic effect on the expression of IL-6. Using sodium nitroprusside (SNP) and S-nitrosoglutathione (GSNO) as NO-donating compounds, we observed that both mRNA and protein levels of IL-6 increased at lower (≤10μM) and decreased at higher (>100μM) concentrations of NO donors. Changes in the expression of IL-6 correlated with changes in the activity of NF-κB, which increased at lower and decreased at higher concentrations of both NO donors as shown by the electrophoretic mobility shift assay (EMSA). The effects of NO on NF-κB activity were cGMP-dependent because they were reversed in the presence of ODQ, the inhibitor of soluble guanylyl cyclase (sGC), and KT5823, the inhibitor of cGMP-dependent protein kinase (PKG). Moreover, the membrane permeable analog of cGMP (8-Br-cGMP) mimicked the effect of the NO donors. These observations show that NO, depending on its concentration, may act in human PBMCs as a stimulator of IL-6 expression involving the sGC/cGMP/PKG pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号