共查询到20条相似文献,搜索用时 0 毫秒
1.
《Biologicals》2014,42(3):139-144
Mesenchymal stromal cells (MSC) are fibroblast-like cells present in different types of tissues. Their immunomodulatory potential represents a promising method for post-transplant immunotherapy in the treatment of GVHD (graft-versus-host disease) with suboptimal response to standard immunosuppression. In this study we tested influence of 1–8 month-long cryopreservation on ability of MSC to suppress activation of non-specifically stimulated lymphocytes.We did not observe any changes in proliferation capacity of MSC after thawing. Lymphocytes metabolic activity was inhibited by 30% and number of dividing cells was three times smaller in the presence of MSC. Two activation markers were studied (CD25 and CD69) to confirm preservation of functional cell integrity. Expression of CD25 antigen on CD3+CD4+ and CD3+CD4− cells was decreased in all co-cultivated samples. Level of CD69 expression on CD3+CD4+ cells was lower in samples with added MSC (10–15% on day +2) but without reaching statistical significance. The lower expression (approximately 5%) was observed also on CD4-cells.The study confirms the preservation of immunomodulatory properties of cryopreserved and re-expanded MSC. Aliquots with cryopreserved cells can represent an optimal source for a quick preparation of MSC cell product with the possibility to apply the same cells repeatedly. 相似文献
2.
《Cryobiology》2017
The generation of an off-the-shelf in vitro engineered living tissue graft will likely require cryopreservation. However, the efficient addition and removal of cryoprotective agents (CPA) to cells throughout the volume of a three-dimensional (3D) tissue graft remains a significant challenge. In this work, we assessed whether a perfusion bioreactor-based method could be used to improve the viability of cryopreserved mesenchymal stromal cell- (MSC) based tissue constructs as compared to using conventional diffusion-based methods. The bioreactor was first used to saturate 3D constructs with CPA under perfused flow. Following cryopreservation, the bioreactor was then also used for the efficient removal of the CPA from the 3D tissues. We demonstrate that addition and removal of CPA under perfused flow significantly increased the viability of MSC within cryopreserved 3D tissue constructs as compared to conventional diffusion-based methods. 相似文献
3.
Therapeutic applications of mesenchymal stromal cells 总被引:6,自引:0,他引:6
Brooke G Cook M Blair C Han R Heazlewood C Jones B Kambouris M Kollar K McTaggart S Pelekanos R Rice A Rossetti T Atkinson K 《Seminars in cell & developmental biology》2007,18(6):846-858
Mesenchymal stromal cells (MSC) are multipotent cells that can be derived from many different organs and tissues. They have been demonstrated to play a role in tissue repair and regeneration in both preclinical and clinical studies. They also have remarkable immunosuppressive properties. We describe their application in settings that include the cardiovascular, central nervous, gastrointestinal, renal, orthopaedic and haematopoietic systems. Manufacturing of MSC for clinical trials is also discussed. Since tissue matching between MSC donor and recipient does not appear to be required, MSC may be the first cell type able to be used as an "off-the-shelf" therapeutic product. 相似文献
4.
Natural cryoprotectants combinations of l-proline and trehalose for red blood cells cryopreservation
《Cryobiology》2019
Cryopreservation of red blood cells (RBCs) holds great potential benefits for supplying transfusion timely in emergencies. Currently, glycerol is the main cryoprotectant permitted in clinical therapy for RBCs cryopreservation, but its broad application is limited by the toxicity and complex deglycerolization process. Successful cryopreservation of RBCs using more effective materials should be studied to reduce freezing damage, increase biocompatibility, and save processing time. Herein, a simple protocol using natural cryoprotectants combinations of l-proline and trehalose attains a low degree of hemolysis (11.2 ± 2.73%) after thawing compared to glycerol. Furthermore, the morphology of RBCs and the activities of Na+/K+-ATPase and Ca2+/Mg2+-ATPase maintain well. Further mechanism study shows that l-proline plays an important role in decreasing the freezing points and inhibiting the growth of ice crystal by permeating into cells during the freezing process. While trehalose works as an inhibitor of ice growth in the freezing process and ice recrystallization in the thawing process. This simple l-proline & trehalose combinations protocol is a promising method to replace current time-consuming and labor-intensive cryopreservation methods of RBCs. 相似文献
5.
Alexia Nedel Sant Ana Anelise Bergmann Ara jo Fabiany da Costa Gon alves Ana Helena Paz 《World journal of stem cells》2021,13(9):1160-1176
Mesenchymal stromal cells(MSCs) are multipotent and self-renewing stem cells that have great potential as cell therapy for autoimmune and inflammatory disorders, as well as for other clinical conditions, due to their immunoregulatory and regenerative properties. MSCs modulate the inflammatory milieu by releasing soluble factors and acting through cell-to-cell mechanisms. MSCs switch the classical inflammatory status of monocytes and macrophages towards a nonclassical and anti-inflammatory phenotype. This is characterized by an increased secretion of anti-inflammatory cytokines, a decreased release of pro-inflammatory cytokines, and changes in the expression of cell membrane molecules and in metabolic pathways. The MSC modulation of monocyte and macrophage phenotypes seems to be critical for therapy effectiveness in several disease models, since when these cells are depleted, no immunoregulatory effects are observed. Here, we review the effects of living MSCs(metabolically active cells) and metabolically inactive MSCs(dead cells that lost metabolic activity by induced inactivation) and their derivatives(extracellular vesicles, soluble factors, extracts, and microparticles) on the profile of macrophages and monocytes and the implications for immunoregulatory and reparative processes. This review includes mechanisms of action exhibited in these different therapeutic appro-aches, which induce the antiinflammatory properties of monocytes and macrophages. Finally, we overview several possibilities of therapeutic applications of these cells and their derivatives, with results regarding monocytes and macrophages in animal model studies and some clinical trials. 相似文献
6.
《Cryobiology》2020
The purpose of the present study was to assess the impact of cryoprotective media on cryopreservation of Paesun cells using loading trehalose. 30 mM trehalose was added after confluence of cells, and cultures were further incubated for 18 h at 37 °C. Cryoprotective media was “Cryocool” for the experiment, while MEM containing 10% FBS for the control. After thawing, these cells were examined with assaying the percentage of viable cells and the recovery rate; 89.2 ± 1.4% and 78.8 ± 3.2%, respectively in the experiment group, while 33.1 ± 2.9% and 21.5 ± 2.1%, respectively in the control group. Post-thaw cells of the experiment group were examined by assaying proliferation and susceptibility to virus lines; there were no significant differences between before and after cryopreservation, while cells of control group could not be recultured. In conclusion, the cryoprotective media impacts on the effectiveness of cryopreservation using loading trehalose. 相似文献
7.
Mesenchymal stromal cells (MSCs) have proven useful for cell and immune therapy, but the molecular constituents responsible for their functionalities, in particular, those on the plasma membrane, remain largely unknown. Here we employed both gel and nongel based MS to analyze human MSCs' membrane proteome before and after adipogenesis. 2-DE of cells that were pretreated with membrane impermeable fluorescent dyes revealed that both the whole cell proteome and the cell surface subproteome were independent of donors. LC coupled with tandem MS analysis of the plasma membrane-containing fraction allowed us to identify 707 proteins, approximately half of which could be annotated as membrane-related proteins. Of particular interest was a subset of ectodomain-containing membrane-bound proteins that encompass most known surface markers for MSCs, but also contain a multitude of solute carriers and ATPases. Upon adipogenic differentiation, this proteomic profile was amended to include several proteins involved in lipid metabolism and trafficking, at the expense of, most noticeably, ectoenzymes. Our results here provide not only a basis for future studies of MSC-specific molecular mechanisms, but also a molecular inventory for the development of antibody-based cell isolation and identification procedures. 相似文献
8.
Aida Nasirishargh Priyadarsini Kumar Lalithasri Ramasubramanian Kaitlin Clark Dake Hao Sabrina V Lazar Aijun Wang 《World journal of stem cells》2021,13(7):776-794
Mesenchymal stem/stromal cells (MSCs) are extensively studied as cell-therapy agents for neurological diseases. Recent studies consider exosomes secreted by MSCs as important mediators for MSCs’ neuroprotective functions. Exosomes transfer functional molecules including proteins, lipids, metabolites, DNAs, and coding and non-coding RNAs from MSCs to their target cells. Emerging evidence shows that exosomal microRNAs (miRNAs) play a key role in the neuroprotective properties of these exosomes by targeting several genes and regulating various biological processes. Multiple exosomal miRNAs have been identified to have neuroprotective effects by promoting neurogenesis, neurite remodeling and survival, and neuroplasticity. Thus, exosomal miRNAs have significant therapeu tic potential for neurological disorders such as stroke, traumatic brain injury, and neuroinflammatory or neurodegenerative diseases and disorders. This review discusses the neuroprotective effects of selected miRNAs (miR-21, miR-17-92, miR-133, miR-138, miR-124, miR-30, miR146a, and miR-29b) and explores their mechanisms of action and applications for the treatment of various neurological disease and disorders. It also provides an overview of state-of-the-art bioengineering approaches for isolating exosomes, optimizing their yield and manipulating the miRNA content of their cargo to improve their therapeutic potential. 相似文献
9.
Mariana A Antunes Soraia C Abreu Fernanda F Cruz Ana Clara Teixeira Miquéias Lopes-Pacheco Elga Bandeira Priscilla C Olsen Bruno L Diaz Christina M Takyia Isalira PRG Freitas Nazareth N Rocha Vera L Capelozzi Débora G Xisto Daniel J Weiss Marcelo M Morales Patricia RM Rocco 《Respiratory research》2014,15(1)
We sought to assess whether the effects of mesenchymal stromal cells (MSC) on lung inflammation and remodeling in experimental emphysema would differ according to MSC source and administration route. Emphysema was induced in C57BL/6 mice by intratracheal (IT) administration of porcine pancreatic elastase (0.1 UI) weekly for 1 month. After the last elastase instillation, saline or MSCs (1×105), isolated from either mouse bone marrow (BM), adipose tissue (AD) or lung tissue (L), were administered intravenously (IV) or IT. After 1 week, mice were euthanized. Regardless of administration route, MSCs from each source yielded: 1) decreased mean linear intercept, neutrophil infiltration, and cell apoptosis; 2) increased elastic fiber content; 3) reduced alveolar epithelial and endothelial cell damage; and 4) decreased keratinocyte-derived chemokine (KC, a mouse analog of interleukin-8) and transforming growth factor-β levels in lung tissue. In contrast with IV, IT MSC administration further reduced alveolar hyperinflation (BM-MSC) and collagen fiber content (BM-MSC and L-MSC). Intravenous administration of BM- and AD-MSCs reduced the number of M1 macrophages and pulmonary hypertension on echocardiography, while increasing vascular endothelial growth factor. Only BM-MSCs (IV > IT) increased the number of M2 macrophages. In conclusion, different MSC sources and administration routes variably reduced elastase-induced lung damage, but IV administration of BM-MSCs resulted in better cardiovascular function and change of the macrophage phenotype from M1 to M2. 相似文献
10.
The osteogenic capacity of human umbilical cord blood derived mesenchymal stem cells (UCB-MSCs) has been demonstrated both in vitro and in vivo. Therefore, cell labeling and storage are becoming necessary for researching the potential therapeutic use of UCB-MSCs for bone tissue engineering. The aim of this study was to determine the effect of cryopreservation on the osteogenic differentiation of green fluorescent protein (GFP)-marked UCB-MSCs in vitro. MSCs were isolated from full-term human UCB, expanded, transfected with the GFP gene, and then cryopreserved in liquid nitrogen for 4 weeks. After thawing, cell surface antigen markers and osteogenic potential were analyzed, and the luminescence of these cells was observed by fluorescence microscopy. The results demonstrate that cryopreservation has no effect on the cell phenotype, GFP expression or osteogenic differentiation of UCB-MSCs, showing that cryopreserved GFP-labeled UCB-MSCs might be applied for bone tissue engineering. 相似文献
11.
Dimethylsulfoxide, the most commonly employed cryoprotectant for cells, has well documented cytotoxic effects in patients. Among the compounds available that may provide protection to cells and tissues during preservation with less cytotoxicity is trehalose. Some animals, such as brine shrimp and tardigrades, accumulate trehalose during periods of extreme environmental stress. In this study, experiments were performed to evaluate the effects of culturing a bovine endothelial cell line (ATCC #CCL-209) in the presence of trehalose prior to preservation by freezing. A number of factors were shown to contribute to cell retention of metabolic activity and proliferative potential including cell culture time with trehalose and the solution conditions during cryopreservation. Using an optimized protocol consisting of 24 h of cell culture with 0.2 M trehalose followed by cryopreservation with 0.2-0.4 M trehalose in sodium bicarbonate buffered Eagles minimum essential medium at pH 7.4 resulted in 87±4% post-preservation cell metabolic activity expressed as relative fluorescence based upon reduction of resazurin to resorufin. This new method provides an alternative preservation strategy to the more classical preservation methods employing dimethylsulfoxide available for cells and tissues. 相似文献
12.
Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues
Keon Hee Yoo In Keun Jang Myoung Woo Lee Mal Sook Yang Jong Eun Lee Seong Kyu Yang Ki Woong Sung Hong Hoe Koo 《Cellular immunology》2009,259(2):150-156
Mesenchymal stem cells (MSCs), which evoke only minimal immune reactivity, may have anti-inflammatory and immunomodulatory effects. In this study, we conducted a comparative analysis of the immunomodulatory properties of MSCs derived from adult human tissues including bone marrow (BM), adipose tissues (AT), umbilical cord blood (CB), and cord Wharton’s jelly (WJ). Using a multiple cytokine detection assay, we showed that there were no significant differences in levels of secreted factors from non-stimulated MSCs. We compared the immunosuppressive effect of BM-MSCs, AT-MSCs, CB-MSCs, and WJ-MSCs on phytohemagglutinin-induced T-cell proliferation. AT-MSCs, CB-MSCs, and WJ-MSCs effectively suppressed mitogen-induced T-cell proliferation as effectively as did BM-MSCs. Levels of interferon (IFN)-γ and tumor necrosis factor (TNF)-α secreted from activated T-cells increased over time, but these levels were significantly reduced when cocultured with each type of MSCs. In addition, the expression of hepatocyte growth factor, IL-10, transforming growth factor-β1, cyclooxygenase (COX)-1, and COX-2 were unchanged in MSCs treated with IFN-γ and/or TNF-α, while indoleamine 2,3-dioxygenase (IDO) expression increased. IFN-γ and/or TNF-α produced by activated T-cells were correlated with induction of IDO expression by MSCs, which, in turn, suppressed T-cell proliferation. These findings suggest that MSCs derived from AT, CB, or WJ could be substituted for BM-MSCs for treatment of allogeneic conflicts. 相似文献
13.
《Cryobiology》2019
Cryopreservation of tissue cells is an important method to maintain cell viability and cellular function. However, cell viability and function are less than ideal by conventional cell cryopreservation methods, which may result in apoptosis and necrosis of cells in cryopreservation. Trehalose plays a role in maintaining cell structure and protecting cells from stress. However, owing to the difficulty in transport of trehalose across the cell membrane, its antifreeze effect is limited. A large amount of trehalose (up to 237 ± 8.5 mM) can be delivered to smooth muscle cells incubated in a medium containing trehalose and apatite nanomaterials at 37 °C for 6 h. Our data showed that trehalose was efficiently delivered intracellularly with the aid of nanoparticles (NP), with a loading efficiency up to 137.3 ± 34.5%, thus allowing for cryopreservation of LMC with nontoxic sugar as the sole cryoprotectant. Colloidal bioelastic apatite NP were used as bioactive promoters for the cryopreservation of tissue cells with trehalose. The addition of apatite NP in the medium substantially increased aortic smooth muscle cell cryosurvival, up to 83.6% (30% improvement over control without NP), a level comparable to that associated with the traditional Me2SO cryoprotective regimen. Furthermore, the cytotoxicity of nanocapsules in the intracellular delivery of trehalose was negligible. This method provides a new option to enhance the activity of valvular cells for cryopreservation. 相似文献
14.
目的:研究低温冻存对兔脂肪间充质干细胞部分生物学特性的影响。方法采用组织块法分离培养兔脂肪间充质干细胞。用倒置显微镜观察原代细胞的细胞形态,流式细胞仪检测兔脂肪间充质干细胞的免疫表型。取第3代兔脂肪间充质干细胞置于-196℃液氮保存半年,37℃复苏并传至第7代。实验分为两组,实验组为冻存复苏后传至第7代的兔脂肪间充质干细胞,对照组为未冻存的第7代兔脂肪间充质干细胞,用MTT绘制其生长曲线;添加成脂、成骨诱导液进行诱导,油红O、茜素红染色和碱性磷酸酶活性检测分别进行鉴定。结果体外培养的兔脂肪间充质干细胞呈梭形纤维样细胞形态,生长力旺盛。流式细胞仪检测显示,第3代兔脂肪间充质干细胞强表达CD44、CD90,阴性表达造血细胞相关的表面标志CD45。两组细胞生长曲线呈典型的“S”形,无统计学差异(P>0.05);成脂诱导14 d后,油红O染色呈阳性;成骨诱导2周时茜素红染色阳性,ALP表达活性随成骨诱导时间延长不断增加且无统计学差异( P>0.05)。结论冻存后的兔脂肪间充质干细胞体外生长及多向分化潜能未发生显著变化。 相似文献
15.
16.
Maria Skog Virpi Muhonen Johanna Nystedt Roberto Narcisi Leena-Stiina Kontturi Arto Urtti Matti Korhonen Gerjo J. V. M. van Osch Ilkka Kiviranta 《Cytotechnology》2015,67(5):905-919
Current cell-based cartilage therapies relay on articular cartilage-derived autologous chondrocytes as a cell source, which possesses disadvantages, such as, donor site morbidity and dedifferentiation of chondrocytes during in vitro expansion. Due to these and other limitations, novel cell sources and production strategies are needed. Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are a fascinating alternative, but they are not spontaneously capable of producing hyaline cartilage-like repair tissue in vivo. In vitro pre-differentiation of BM-MSCs could be used to produce chondrocytes for clinical applications. However, clinically compatible defined and xeno-free differentiation protocol is lacking. Hence, this study aimed to develop such chondrogenic differentiation medium for human BM-MSCs. We assessed the feasibility of the medium using three human BM-MSCs donors and validated the method by comparing BM-MSCs to three other cell types holding potential for articular cartilage repair. The effectiveness of the method was compared to conventional serum-free and commercially available chondrogenic differentiation media. The results show that the defined xeno-free differentiation medium is at least as efficient as conventionally used serum-free chondrogenic medium and performed significantly better on all cell types tested compared to the commercially available chondrogenic medium. 相似文献
17.
In orthopedics, tissue engineering approach using stem cells is a valid line of treatment for patients with bone defects. In this context, mesenchymal stromal cells of various origins have been extensively studied and continue to be a matter of debate. Although mesenchymal stromal cells from bone marrow are already clinically applied, recent evidence suggests that one may use mesenchymal stromal cells from extra-embryonic tissues, such as amniotic fluid, as an innovative and advantageous resource for bone regeneration. The use of cells from amniotic fluid does not raise ethical problems and provides a sufficient number of cells without invasive procedures. Furthermore, they do not develop into teratomas when transplanted, a consequence observed with pluripotent stem cells. In addition, their multipotent differentiation ability, low immunogenicity, and anti-inflammatory properties make them ideal candidates for bone regenerative medicine. We here present an overview of the features of amniotic fluid mesenchymal stromal cells and their potential in the osteogenic differentiation process. We have examined the papers actually available on this regard, with particular interest in the strategies applied to improve in vitro osteogenesis. Importantly, a detailed understanding of the behavior of amniotic fluid mesenchymal stromal cells and their osteogenic ability is desirable considering a feasible application in bone regenerative medicine. 相似文献
18.
Bone marrow mesenchymal stromal cells (BM-MSCs) are multipotent cells capable of differentiating toward osteoblatic and adipocytic phenotypes. BM-MSCs play several key roles including bone remodeling, establishment of hematopoietic niche and immune tolerance induction. Here, we investigated the effect of resveratrol (RSV), a therapeutically promising natural polyphenol, on the commitment of human BM-MSCs primary cultures. Cell differentiation was evaluated by means of morphological analysis, specific staining and expression of osteogenic and adipocytic master genes (Runx-2, PPARγ). To maintain BM-MSC multipotency, all experiments were performed on cells at very early passages. At any concentration RSV, added to standard medium, did not affect the phenotype of confluent BM-MSCs, while, when added to osteogenic or adipogenic medium, 1 μM RSV enhances the differentiation toward osteoblasts or adipocytes, respectively. Conversely, the addition of higher RSV concentration (25 μM) to both differentiation media resulted exclusively in BM-MSCs adipogenesis. Surprisingly, the analysis of RSV molecular effects demonstrated that the compound completely substitutes insulin, a key component of adipogenic medium. We also observed that RSV treatment is associated to enhanced phosphorylation of CREB, a critical effector of insulin adipogenic activity. Finally, our observations contribute to the mechanistic elucidation of the well-known RSV positive effect on insulin sensitivity and type 2 diabetes mellitus. 相似文献
19.
Sohyun Bae Jung Hoon Ahn Chae Woon Park Hye Kyung Son Keun-Soo Kim Nam-Kyu Lim Choon-Ju Jeon Hoeon Kim 《Cell and tissue research》2009,335(3):565-573
Human mesenchymal stromal cells (MSCs) offer great hope for the treatment of tissue degenerative and immune diseases, but
their phenotypic similarity to dermal fibroblasts may hinder robust cell identification and isolation from diverse tissue
harvests. To identify genetic elements that can reliably discriminate MSCs from fibroblasts, we performed comparative gene
and microRNA expression profiling analyses with genome-wide oligonucleotide microarrays. When taken globally, both gene and
microRNA expression profiles of MSCs were highly similar to those of fibroblasts, accounting well for their extensive phenotypic
and functional overlaps. Scattered expression differences were pooled to yield an MSC-specific molecular signature, consisting
of 64 genes and 21 microRNAs whose expressions were at least 10-fold and two-fold higher, respectively, in MSCs compared with
fibroblasts. Genes either encoding transmembrane proteins or associated with tumors were relatively abundant in this signature.
These data should provide the molecular basis not only for the discovery of novel diagnostic markers discriminating MSCs from
fibroblasts, but also for further studies on MSC-specific signaling mechanisms.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Sohyun Bae and Jung Hoon Ahn contributed equally to this work.
This research was supported in part by a grant (SC-2140) from Stem Cell Research Center of the 21st Century Frontier Research
Program, and in part by Korea Science and Engineering Foundation grant (M10641000037) funded by the Ministry of Education,
Science and Technology, Republic of Korea. 相似文献
20.
《Cryobiology》2014,68(3):305-311
For stem cell therapy to become a routine reality, one of the major challenges to overcome is their storage and transportation. Currently this is achieved by cryopreserving cells utilising the cryoprotectant dimethyl sulfoxide (Me2SO). Me2SO is toxic to cells, leads to loss of cell functionality, and can produce severe side effects in patients. Potentially, cells could be frozen using the cryoprotectant trehalose if it could be delivered into the cells at a sufficient concentration. The novel amphipathic membrane permeabilising agent PP-50 has previously been shown to enhance trehalose uptake by erythrocytes, resulting in increased cryosurvival. Here, this work was extended to the nucleated human cell line SAOS-2. Using the optimum PP-50 concentration and media osmolarity, cell viability post-thaw was 60 ± 2%. In addition, the number of metabolically active cells 24 h post-thaw, normalised to that before freezing, was found to be between 103 ± 4% and 91 ± 5%. This was found to be comparable to cells frozen using Me2SO. Although reduced (by 22 ± 2%, p = 0.09), the doubling time was found not to be statistically different to the non-frozen control. This was in contrast to cells frozen using Me2SO, where the doubling time was significantly reduced (by 41 ± 4%, p = 0.004). PP-50 mediated trehalose delivery into cells could represent an alternative cryopreservation protocol, suitable for research and therapeutic applications. 相似文献