首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melatonin exhibits antitumour activities in the treatment of many human cancers. In the present study, we aimed to improve the therapeutic potential of melatonin in gastric cancer. Our results confirmed that melatonin dose-dependently suppressed the proliferation and necrosis, and increased G0/G1 phase arrest, apoptosis, autophagy and endoplasmic reticulum (ER) stress. The Ras-Raf-MAPK signalling pathway was activated in cells after melatonin treatment. RNA-seq was performed and GSEA analysis further confirmed that many down-regulated genes in melatonin-treated cells were associated with proliferation. However, GSEA analysis also indicated that many pathways related to metastasis were increased after melatonin treatment. Subsequently, combinatorial treatment was conducted to further investigate the therapeutic outcomes of melatonin. A combination of melatonin and thapsigargin increased the apoptotic rate and G0/G1 cell cycle arrest when compared to treatment with melatonin alone. Melatonin in combination with thapsigargin triggered the increased expression of Bip, LC3-II, phospho-Erk1/2 and phospho-p38 MAPK. In addition, STF-083010, an IRE1a inhibitor, further exacerbated the decrease in survival rate induced by combinatorial treatment with melatonin and thapsigargin. Collectively, melatonin was effective in gastric cancer treatment by modifying ER stress.  相似文献   

2.
The outer mitochondrial membrane GTPase mitofusin 2 (Mfn2) is known to regulate endoplasmic reticulum (ER) shape in addition to its mitochondrial fusion effects. However, its role in ER stress is unknown. We report here that induction of ER stress with either thapsigargin or tunicamycin in mouse embryonic fibroblasts leads to up-regulation of Mfn2 mRNA and protein levels with no change in the expression of the mitochondrial shaping factors Mfn1, Opa1, Drp1, and Fis1. Genetic deletion of Mfn2 but not Mfn1 in mouse embryonic fibroblasts or cardiac myocytes in mice led to an increase in the expression of the ER chaperone proteins. Genetic ablation of Mfn2 in mouse embryonic fibroblasts amplified ER stress and exacerbated ER stress-induced apoptosis. Deletion of Mfn2 delayed translational recovery through prolonged eIF2α phosphorylation associated with decreased GADD34 and p58(IPK) expression and elevated C/EBP homologous protein induction at late time points. These changes in the unfolded protein response were coupled to increased cell death reflected by augmented caspase 3/7 activity, lactate dehydrogenase release from cells, and an increase in propidium iodide-positive nuclei in response to thapsigargin or tunicamycin treatment. In contrast, genetic deletion of Mfn1 did not affect ER stress-mediated increase in ER chaperone synthesis or eIF2α phosphorylation. Additionally, ER stress-induced C/EBP homologous protein, GADD34, and p58(IPK) induction and cell death were not affected by loss of Mfn1. We conclude that Mfn2 but not Mfn1 is an ER stress-inducible protein that is required for the proper temporal sequence of the ER stress response.  相似文献   

3.
We investigated the effect of parkin on mitochondrial function and apoptosis in SH-SY5Y, L6, RD, and COS-1 cells. Wild-type parkin attenuated reactive oxygen species (ROS) production in SH-SY5Y cells and mutant parkin enhanced ROS production in SH-SY5Y and L6 cells. Reactive oxygen intermediates, that were detected in mitochondria, were decreased in cells with overexpression of parkin. Parkin prevented apoptosis and enhanced mitochondrial membrane potentials in SH-SY5Y and L6 cells not in COS-1 cells. Expressions and enzymatic activities of mitochondrial respiratory chain complexes were not uniformly enhanced but those of complex 1 were selectively enhanced. The present results suggest the cell-selective function of parkin, i.e., parkin possesses anti-apoptotic and anti-oxidant function in neuronal or myogenic cells but not in kidney cells.  相似文献   

4.
5.
6.
7.
研究丙戊酸钠(sodiumvalproate,VPA)对抗鱼藤酮(Rotenone)诱导的SH-SY5Y细胞损伤的作用及线粒体机制。以l,10μmol/LVPA预处理SH-SY5Y细胞3h,再加入400nmol/LRotenone作用24h。MTT法检测与相差显微镜观察相结合,分析VPA对抗Rotenone损伤的作用;JC-1染色法与Mito-Tracker染色法分析线粒体膜电位及线粒体数量的变化;Clark氧电极法检测细胞呼吸功能;DCFH-DA探针法检测细胞中Ros的含量;并在离体线粒体上观察VPA对Ca^2+诱导的线粒体肿胀的影响。结果发现,1,10p.mol/LVPA预处理SH.SY5Y细胞3h可对抗400nmol/LRotenoneI起的细胞损伤,并且可以提高损伤细胞中线粒体的膜电位,增加线粒体的数量,此外,还可以增强损伤细胞的呼吸功能,降低细胞中ROS的含量,但VPA并不能直接作用于离体的线粒体发挥神经保护作用。由此,VPA具有良好的神经保护作用,其机制与增强线粒体功能和数量、从而改善细胞功能有关,这为其应用于帕金森病的预防与治疗提供了实验依据。  相似文献   

8.
9.
The accumulation of unfolded proteins in the ER triggers a signaling response known as unfolded protein response (UPR). In yeast the UPR affects several hundred genes that encode ER chaperones and proteins operating at later stages of secretion. In mammalian cells the UPR appears to be more limited to chaperones of the ER and genes assumed to be important after cell recovery from ER stress that are not important for secretion. Here, we report that the mRNA of lectin ERGIC-53, a cargo receptor for the transport of glycoproteins from ER to ERGIC, and of its related protein VIP36 is induced by the known inducers of ER stress, tunicamycin and thapsigargin. In parallel, the rate of synthesis of the ERGIC-53 protein was induced by these agents. The response was due to the UPR since it was also triggered by castanospermine, a specific inducer of UPR, and inhibited by genistein. Thapsigargin-induced upregulation of ERGIC-53 could be fully accounted for by the ATF6 pathway of UPR. The results suggest that in mammalian cells the UPR also affects traffic from and beyond the ER.  相似文献   

10.

Background

Anabolic resistance is the inability to increase protein synthesis in response to an increase in amino acids following a meal. One potential mediator of anabolic resistance is endoplasmic reticulum (ER) stress. The purpose of the present study was to test whether ER stress impairs the response to growth factors and leucine in muscle cells.

Methods

Muscle cells were incubated overnight with tunicamycin or thapsigargin to induce ER stress and the activation of the unfolded protein response, mTORC1 activity at baseline and following insulin and amino acids, as well as amino acid transport were determined.

Results

ER stress decreased basal phosphorylation of PKB and S6K1 in a dose-dependent manner. In spite of the decrease in basal PKB phosphorylation, insulin (10–50 nM) could still activate both PKB and S6K1. The leucine (2.5–5 mM)-induced phosphorylation of S6K1 on the other hand was repressed by low concentrations of both tunicamycin and thapsigargin. To determine the mechanism underlying this anabolic resistance, several inhibitors of mTORC1 activation were measured. Tunicamycin and thapsigargin did not change the phosphorylation or content of either AMPK or JNK, both increased TRB3 mRNA expression and thapsigargin increased REDD1 mRNA. Tunicamycin and thapsigargin both decreased the basal phosphorylation state of PRAS40. Neither tunicamycin nor thapsigargin prevented phosphorylation of PRAS40 by insulin. However, since PKB is not activated by amino acids, PRAS40 phosphorylation remained low following the addition of leucine. Blocking PKB using a specific inhibitor had the same effect on both PRAS40 and leucine-induced phosphorylation of S6K1.

Conclusion

ER stress induces anabolic resistance in muscle cells through a PKB/PRAS40-induced blockade of mTORC1.  相似文献   

11.
Cytotoxic reactive oxygen species are constantly formed as a by-product of aerobic respiration and are thought to contribute to aging and disease. Cells respond to oxidative stress by activating various pathways, whose balance is important for adaptation or induction of cell death. Our lab recently reported that BiP (GRP78), a proposed negative regulator of the unfolded protein response (UPR), declines during hyperoxia, a model of chronic oxidative stress. Here, we investigate whether exposure to hyperoxia, and consequent loss of BiP, activates the UPR or sensitizes cells to ER stress. Evidence is provided that hyperoxia does not activate the three ER stress receptors IRE1, PERK, and ATF6. Although hyperoxia alone did not activate the UPR, it sensitized cells to tunicamycin-induced cell death. Conversely, overexpression of BiP did not block hyperoxia-induced ROS production or increased sensitivity to tunicamycin. These findings demonstrate that hyperoxia and loss of BiP alone are insufficient to activate the UPR. However, hyperoxia can sensitize cells to toxicity from unfolded proteins, implying that chronic ROS, such as that seen throughout aging, could augment the UPR and, moreover, suggesting that the therapeutic use of hyperoxia may be detrimental for lung diseases associated with ER stress.  相似文献   

12.
The unfolded protein response (UPR) is a complex network of sensors and target genes that ensure efficient folding of secretory proteins in the endoplasmic reticulum (ER). UPR activation is mediated by three main sensors, which regulate the expression of hundreds of targets. UPR activation can result in outcomes ranging from enhanced cellular function to cell dysfunction and cell death. How this pathway causes such different outcomes is unknown. Fatty liver disease (steatosis) is associated with markers of UPR activation and robust UPR induction can cause steatosis; however, in other cases, UPR activation can protect against this disease. By assessing the magnitude of activation of UPR sensors and target genes in the liver of zebrafish larvae exposed to three commonly used ER stressors (tunicamycin, thapsigargin and Brefeldin A), we have identified distinct combinations of UPR sensors and targets (i.e. subclasses) activated by each stressor. We found that only the UPR subclass characterized by maximal induction of UPR target genes, which we term a stressed-UPR, induced steatosis. Principal component analysis demonstrated a significant positive association between UPR target gene induction and steatosis. The same principal component analysis showed significant correlation with steatosis in samples from patients with fatty liver disease. We demonstrate that an adaptive UPR induced by a short exposure to thapsigargin prior to challenging with tunicamycin reduced both the induction of a stressed UPR and steatosis incidence. We conclude that a stressed UPR causes steatosis and an adaptive UPR prevents it, demonstrating that this pathway plays dichotomous roles in fatty liver disease.KEY WORDS: Unfolded protein response, Steatosis, Zebrafish, Tunicamycin, Thapsigargin, ER stress, Fatty liver disease  相似文献   

13.
14.
Mitochondrial alterations have been associated with the cytotoxic effect of 6-hydroxydopamine (6-OHDA), a widely used neurotoxin to study Parkinson's disease. Herein we studied the potential effects of 6-OHDA on mitochondrial morphology in SH-SY5Y neuroblastoma cells. By immunofluorescence and time-lapse fluorescence microscopy we demonstrated that 6-OHDA induced profound mitochondrial fragmentation in SH-SY5Y cells, an event that was similar to mitochondrial fission induced by overexpression of Fis1p, a membrane adaptor for the dynamin-related protein 1 (DLP1/Drp1). 6-OHDA failed to induce any changes in peroxisome morphology. Biochemical experiments revealed that 6-OHDA-induced mitochondrial fragmentation is an early event preceding the collapse of the mitochondrial membrane potential and cytochrome c release in SH-SY5Y cells. Silencing of DLP1/Drp1, which is involved in mitochondrial and peroxisomal fission, prevented 6-OHDA-induced fragmentation of mitochondria. Furthermore, in cells silenced for Drp1, 6-OHDA-induced cell death was reduced, indicating that a block in mitochondrial fission protects SH-SY5Y cells against 6-OHDA toxicity. Experiments in mouse embryonic fibroblasts deficient in Bax or p53 revealed that both proteins are not essential for 6-OHDA-induced mitochondrial fragmentation. Our data demonstrate for the first time an involvement of mitochondrial fragmentation and Drp1 function in 6-OHDA-induced apoptosis.  相似文献   

15.
The ubiquitously expressed molecular chaperone GRP78 (78 kDa glucose-regulated protein) generally localizes to the ER (endoplasmic reticulum). GRP78 is specifically induced in cells under the UPR (unfolded protein response), which can be elicited by treatments with calcium ionophore A23187 and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase inhibitor TG (thapsigargin). By using confocal microscopy, we have demonstrated that GRP78 was concentrated in the perinuclear region and co-localized with the ER marker proteins, calnexin and PDI (protein disulphide-isomerase), in cells under normal growth conditions. However, treatments with A23187 and TG led to diminish its ER targeting, resulting in redirection into a cytoplasmic vesicular pattern, and overlapping with the mitochondrial marker MitoTracker. Cellular fractionation and protease digestion of isolated mitochondria from ER-stressed cells suggested that a significant portion of GRP78 is localized to the mitochondria and is protease-resistant. Localizations of GRP78 in ER and mitochondria were confirmed by using immunoelectron microscopy. In ER-stressed cells, GRP78 mainly localized within the mitochondria and decorated the mitochondrial membrane compartment. Submitochondrial fractionation studies indicated further that the mitochondria-resided GRP78 is mainly located in the intermembrane space, inner membrane and matrix, but is not associated with the outer membrane. Furthermore, radioactive labelling followed by subcellular fractionation showed that a significant portion of the newly synthesized GRP78 is localized to the mitochondria in cells under UPR. Taken together, our results indicate that, at least under certain circumstances, the ER-resided chaperone GRP78 can be retargeted to mitochondria and thereby may be involved in correlating UPR signalling between these two organelles.  相似文献   

16.
Endoplasmic reticulum (ER) stress activated by perturbations in ER homeostasis induces the unfolded protein response (UPR) with chaperon Grp78 as the key activator of UPR signalling. The aim of UPR is to restore normal ER function; however prolonged or severe ER stress triggers apoptosis of damaged cells to ensure protection of the whole organism. Recent findings support an association of ER stress-induced apoptosis of vascular cells with cardiovascular pathologies. T-cadherin (T-cad), an atypical glycosylphosphatidylinositol-anchored member of the cadherin superfamily is upregulated in atherosclerotic lesions. Here we investigate the ability of T-cad to influence UPR signalling and endothelial cell (EC) survival during ER stress. EC were treated with a variety of ER stress-inducing compounds (thapsigargin, dithiothereitol, brefeldin A, tunicamycin, A23187 or homocysteine) and induction of ER stress validated by increases in levels of UPR signalling molecules Grp78 (glucose-regulated protein of 78 kDa), phospho-eIF2α (phosphorylated eukaryotic initiation factor 2α) and CHOP (C/EBP homologous protein). All compounds also increased T-cad mRNA and protein levels. Overexpression or silencing of T-cad in EC respectively attenuated or amplified the ER stress-induced increase in phospho-eIF2α, Grp78, CHOP and active caspases. Effects of T-cad-overexpression or T-cad-silencing on ER stress responses in EC were not affected by inclusion of either N-acetylcysteine (reactive oxygen species scavenger), LY294002 (phosphatidylinositol-3-kinase inhibitor) or SP6000125 (Jun N-terminal kinase inhibitor). The data suggest that upregulation of T-cad on EC during ER stress attenuates the activation of the proapoptotic PERK (PKR (double-stranded RNA-activated protein kinase)-like ER kinase) branch of the UPR cascade and thereby protects EC from ER stress-induced apoptosis.  相似文献   

17.
18.
Accumulation of misfolded proteins in the endoplasmic reticulum (ER) induces a highly conserved homeostatic response in all eukaryotic cells, termed the unfolded-protein response (UPR). Here we describe the characterization of stanniocalcin 2 (STC2), a mammalian homologue of a calcium- and phosphate-regulating hormone first identified in fish, as a novel target of the UPR. Expression of STC2 gene is rapidly upregulated in cultured cells after exposure to tunicamycin and thapsigargin, by ATF4 after activation of the ER-resident kinase PERK. In addition, STC2 expression is also activated in neuronal cells by oxidative stress and hypoxia but not by several cellular stresses unrelated to the UPR. In contrast, expression of another homologue, STC1, is only upregulated by hypoxia independent of PERK or ATF4 expression. In vivo studies revealed that rat cortical neurons rapidly upregulate STC2 after transient middle cerebral artery occlusion. Finally, siRNA-mediated inhibition of STC2 expression renders N2a neuroblastoma cells and HeLa cells significantly more vulnerable to apoptotic cell death after treatment with thapsigargin, and overexpression of STC2 attenuated thapsigargin-induced cell death. Consequently, induced STC2 expression is an essential feature of survival component of the UPR.  相似文献   

19.
Epithelial-to-mesenchymal transition (EMT) contributes to renal fibrosis in chronic kidney disease. Endoplasmic reticulum (ER) stress, a feature of many forms of kidney disease, results from the accumulation of misfolded proteins in the ER and leads to the unfolded protein response (UPR). We hypothesized that ER stress mediates EMT in human renal proximal tubules. ER stress is induced by a variety of stressors differing in their mechanism of action, including tunicamycin, thapsigargin, and the calcineurin inhibitor cyclosporine A. These ER stressors increased the UPR markers GRP78, GRP94, and phospho-eIF2α in human proximal tubular cells. Thapsigargin and cyclosporine A also increased cytosolic Ca(2+) concentration and T cell death-associated gene 51 (TDAG51) expression, whereas tunicamycin did not. Thapsigargin was also shown to increase levels of active transforming growth factor (TGF)-β1 in the media of cultured human proximal tubular cells. Thapsigargin induced cytoskeletal rearrangement, β-catenin nuclear translocation, and α-smooth muscle actin and vinculin expression in proximal tubular cells, indicating an EMT response. Subconfluent primary human proximal tubular cells were induced to undergo EMT by TGF-β1 treatment. In contrast, tunicamycin treatment did not produce an EMT response. Plasmid-mediated overexpression of TDAG51 resulted in cell shape change and β-catenin nuclear translocation. These results allowed us to develop a two-hit model of ER stress-induced EMT, where Ca(2+) dysregulation-mediated TDAG51 upregulation primes the cell for mesenchymal transformation via Wnt signaling and then TGF-β1 activation leads to a complete EMT response. Thus the release of Ca(2+) from ER stores mediates EMT in human proximal tubular epithelium via the induction of TDAG51.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号