共查询到20条相似文献,搜索用时 15 毫秒
1.
Packing and hydrophobicity effects on protein folding and stability: effects of beta-branched amino acids, valine and isoleucine, on the formation and stability of two-stranded alpha-helical coiled coils/leucine zippers. 总被引:2,自引:7,他引:2 下载免费PDF全文
B. Y. Zhu N. E. Zhou C. M. Kay R. S. Hodges 《Protein science : a publication of the Protein Society》1993,2(3):383-394
The aim of this study was to examine the differences between hydrophobicity and packing effects in specifying the three-dimensional structure and stability of proteins when mutating hydrophobes in the hydrophobic core. In DNA-binding proteins (leucine zippers), Leu residues are conserved at positions "d," and beta-branched amino acids, Ile and Val, often occur at positions "a" in the hydrophobic core. In order to discern what effect this selective distribution of hydrophobes has on the formation and stability of two-stranded alpha-helical coiled coils/leucine zippers, three Val or three Ile residues were simultaneously substituted for Leu at either positions "a" (9, 16, and 23) or "d" (12, 19, and 26) in both chains of a model coiled coil. The stability of the resulting coiled coils was monitored by CD in the presence of Gdn.HCl. The results of the mutations of Ile to Val at either positions "a" or "d" in the reduced or oxidized coiled coils showed a significant hydrophobic effect with the additional methylene group in Ile stabilizing the coiled coil (delta delta G values range from 0.45 to 0.88 kcal/mol/mutation). The results of mutations of Leu to Ile or Val at positions "a" in the reduced or oxidized coiled coils showed a significant packing effect in stabilizing the coiled coil (delta delta G values range from 0.59 to 1.03 kcal/mol/mutation). Our results also indicate the subtle control hydrophobic packing can have not only on protein stability but on the conformation adopted by the amphipathic alpha-helices. These structural findings correlate with the observation that in DNA-binding proteins, the conserved Leu residues at positions "d" are generally less tolerant of amino acid substitutions than the hydrophobic residues at positions "a." 相似文献
2.
J. W. Bryson J. R. Desjarlais T. M. Handel W. F. DeGrado 《Protein science : a publication of the Protein Society》1998,7(6):1404-1414
A monomolecular native-like three-helix bundle has been designed in an iterative process, beginning with a peptide that noncooperatively assembled into an antiparallel three-helix bundle. Three versions of the protein were designed in which specific interactions were incrementally added. The hydrodynamic and spectroscopic properties of the proteins were examined by size exclusion chromatography, sedimentation equilibrium, fluorescence spectroscopy, and NMR. The thermodynamics of folding were evaluated by monitoring the thermal and guanidine-induced unfolding transitions using far UV circular dichroism spectroscopy. The attainment of a unique, native-like state was achieved through the introduction of: (1) helix capping interactions; (2) electrostatic interactions between partially exposed charged residues; (3) a diverse collection of apolar side chains within the hydrophobic core. 相似文献
3.
Vu C Robblee J Werner KM Fairman R 《Protein science : a publication of the Protein Society》2001,10(3):631-637
An understanding of the balance of chemical forces responsible for protein stability and specificity of structure is essential for the success of efforts in protein design. Specifically, electrostatic interactions between charged amino acids have been explored extensively to understand the contribution of this force to protein stability. Much research on the importance of electrostatic interactions as specificity and stability determinants in two-stranded coiled coils has been done, but there remains significant controversy about the magnitude of the attractive forces using such systems. We have developed a four-stranded coiled-coil system with charged residues incorporated at b and c heptad positions to explore the role of charge interactions. Here, we test quantitatively the effects of varying sidechain length on the magnitude of such electrostatic interactions. We synthesized peptides containing either aspartate or ornithine at both b and c heptad positions and tested their ability to self-associate and to hetero-associate with one another and with peptides containing glutamate or lysine at the same positions. We find that interactions between glutamate and either lysine or ornithine are more favorable than the corresponding interactions involving aspartate. In each case, charged interactions provide additional stability to coiled coils, although helix propensity effects may play a significant role in determining the overall stability of these structures. 相似文献
4.
Design of a leucine zipper coiled coil stabilized 1.4 kcal mol-1 by phosphorylation of a serine in the e position. 下载免费PDF全文
L. Szilk J. Moitra C. Vinson 《Protein science : a publication of the Protein Society》1997,6(6):1273-1283
Using a dimeric bZIP protein, we have designed a leucine zipper that becomes more stable after a serine in the e position is phosphorylated by protein kinase A (delta delta GP = -1.4 kcal mol-1 dimer-1 or -0.7 kcal mol-1 residue-1). Mutagenesis studies indicate that three arginines form a network of inter-helical (i,i' + 5; i, i' + 2) and intra-helical (i, i + 4) attractive interactions with the phosphorylated serine. When the arginines are replaced with lysines, the stabilizing effect of serine phosphorylation is reduced (delta delta GP = -0.5 kcal mol-1 dimer-1). The hydrophobic interface of the leucine zipper needs a glycine in the d position to obtain an increase in stability after phosphorylation. The phosphorylated protein binds DNA with a 15-fold higher affinity. Using a transient transfection assay, we document a PKA dependent four-fold activation of a reporter gene. Phosphorylation of a threonine in the same e position decreases the stability by delta delta GP = +1.2 kcal mol-1 dimer-1. We present circular dichroism (CD) thermal denaturations of 15 bZIP proteins before and after phosphorylation. These data provide insights into the structural determinants that result in stabilization of a coiled coil by phosphorylation. 相似文献
5.
Change in oligomerization specificity of the p53 tetramerization domain by hydrophobic amino acid substitutions. 下载免费PDF全文
E. S. Stavridi N. H. Chehab L. C. Caruso T. D. Halazonetis 《Protein science : a publication of the Protein Society》1999,8(9):1773-1779
The tumor suppressor function of the wild-type p53 protein is transdominantly inhibited by tumor-derived mutant p53 proteins. Such transdominant inhibition limits the prospects for gene therapy approaches that aim to introduce wild-type p53 into cancer cells. The molecular mechanism for transdominant inhibition involves sequestration of wild-type p53 subunits into inactive wild-type/mutant hetero-tetramers. Thus, p53 proteins, whose oligomerization specificity is altered so they cannot interact with tumor-derived mutant p53, would escape transdominant inhibition. Aided by the known three-dimensional structure of the p53 tetramerization domain and by trial and error we designed a novel domain with seven amino acid substitutions in the hydrophobic core. A full-length p53 protein bearing this novel domain formed homo-tetramers and had tumor suppressor function, but did not hetero-oligomerize with tumor-derived mutant p53 and resisted transdominant inhibition. Thus, hydrophobic core residues influence the oligomerization specificity of the p53 tetramerization domain. 相似文献
6.
The alpha-helical coiled-coil motif is characterized by a heptad repeat pattern (abcdefg)(n) in which residues a and d form the hydrophobic core. Long coiled-coils (e.g., tropomyosin, 284 residues per polypeptide chain) typically do not have a continuous hydrophobic core of stabilizing residues, but rather one that consists of alternating clusters of stabilizing and destabilizing residues. We have arbitrarily defined a cluster as a minimum of three consecutive stabilizing or destabilizing residues in the hydrophobic core. We report here on a series of two-stranded, disulfide-bridged parallel alpha-helical coiled-coils that contain a central cassette of three consecutive hydrophobic core positions (d, a, and d) with a destabilizing cluster of three consecutive Ala residues in the hydrophobic core on each side of the cassette. The effect of adding one to three stabilizing hydrophobes in these positions (Leu or Ile; denoted as [see text]) was investigated. Alanine residues (denoted as [see text]) are used to represent destabilizing residues. The peptide with three Ala residues in the d a d cassette positions ([see text]) was among the least stable coiled-coil (T(m) = 39.3 degrees C and Urea(1/2) = 1.9 M). Surprisingly, the addition of one stabilizing hydrophobe (Leu) to the cassette or two stabilizing hydrophobes (Leu), still interspersed by an Ala in the cassette ([see text]), also did not lead to any gain in stability. However, peptides with two adjacent hydrophobes in the cassette ([see text])([see text]) did show a gain in stability of 0.9 kcal/mole over the peptide with two interspersed hydrophobes ([see text]). Because the latter three peptides have the same inherent hydrophobicity, the juxtaposition of stabilizing hydrophobes leads to a synergistic effect, and thus a clustering effect. The addition of a third stabilizing hydrophobe to the cassette ([see text]) resulted in a further synergistic gain in stability of 1.7 kcal/mole (T(m) = 54.1 degrees C and Urea(1/2) = 3.3M). Therefore, the role of hydrophobicity in the hydrophobic core of coiled-coils is extremely context dependent and clustering is an important aspect of protein folding and stability. 相似文献
7.
To investigate the relationships between sequence conservation, protein stability, and protein function, we have measured the thermodynamic stability, folding kinetics, and in vitro peptide-binding activity of a large number of single-site substitutions in the hydrophobic core of the Fyn SH3 domain. Comparison of these data to that derived from an analysis of a large alignment of SH3 domain sequences revealed a very good correlation between the distinct pattern of conservation observed at each core position and the thermodynamic stability of mutants. Conservation was also found to correlate well with the unfolding rates of mutants, but not to the folding rates, suggesting that evolution selects more strongly for optimal native state packing interactions than for maximal folding rates. Structural analysis suggests that residue-residue core packing interactions are very similar in all SH3 domains, which provides an explanation for the correlation between conservation and mutant stability effects studied in a single SH3 domain. We also demonstrate a correlation between stability and the in vivo activity of mutants, and between conservation and activity. However, the relationship between conservation and activity was very strong only for the three most conserved hydrophobic core positions. The weaker correlation between activity and conservation seen at the other seven core positions indicates that maintenance of protein stability is the dominant selective pressure at these positions. In general, the pattern of conservation at hydrophobic core positions appears to arise from conserved packing constraints, and can be effectively utilized to predict the destabilizing effects of amino acid substitutions. 相似文献
8.
N- and C-capping preferences for all 20 amino acids in alpha-helical peptides. 总被引:1,自引:9,他引:1 下载免费PDF全文
A. J. Doig R. L. Baldwin 《Protein science : a publication of the Protein Society》1995,4(7):1325-1336
We have determined the N- and C-capping preferences of all 20 amino acids by substituting residue X in the peptides NH2-XAKAAAAKAAAAKAAGY-CONH2 and in Ac-YGAAKAAAAKAAAAKAX-CO2H. Helix contents were measured by CD spectroscopy to obtain rank orders of capping preferences. The data were further analyzed by our modified Lifson-Roig helix-coil theory, which includes capping parameters (n and c), to find free energies of capping (-RT ln n and -RT ln c), relative to Ala. Results were obtained for charged and uncharged termini and for different charged states of titratable side chains. N-cap preferences varied from Asn (best) to Gln (worst). We find, as expected, that amino acids that can accept hydrogen bonds from otherwise free backbone NH groups, such as Asn, Asp, Ser, Thr, and Cys generally have the highest N-cap preference. Gly and acetyl group are favored, as are negative charges in side chains and at the N-terminus. Our N-cap preference scale agrees well with preferences in proteins. In contrast, we find little variation when changing the identity of the C-cap residue. We find no preference for Gly at the C-cap in contrast to the situation in proteins. Both N-cap and C-cap results for Tyr and Trp are inaccurate because their aromatic groups affect the CD spectrum. The data presented here are of value in rationalizing mutations at capping sites in proteins and in predicting the helix contents of peptides. 相似文献
9.
Heteronuclear NMR assignments and secondary structure of the coiled coil trimerization domain from cartilage matrix protein in oxidized and reduced forms. 总被引:3,自引:0,他引:3 下载免费PDF全文
R. Wiltscheck R. A. Kammerer S. A. Dames T. Schulthess M. J. Blommers J. Engel A. T. Alexandrescu 《Protein science : a publication of the Protein Society》1997,6(8):1734-1745
The C-terminal oligomerization domain of chicken cartilage matrix protein is a trimeric coiled coil comprised of three identical 43-residue chains. NMR spectra of the protein show equivalent magnetic environments for each monomer, indicating a parallel coiled coil structure with complete threefold symmetry. Sequence-specific assignments for 1H-, 15N-, and 13C-NMR resonances have been obtained from 2D 1H NOESY and TOCSY spectra, and from 3D HNCA, 15N NOESY-HSQC, and HCCH-TOCSY spectra. A stretch of alpha-helix encompassing five heptad repeats (35 residues) has been identified from intra-chain HN-HN and HN-H alpha NOE connectivities. 3JHNH alpha coupling constants, and chemical shift indices. The alpha-helix begins immediately downstream of inter-chain disulfide bonds between residues Cys 5 and Cys 7, and extends to near the C-terminus of the molecule. The threefold symmetry of the molecule is maintained when the inter-chain disulfide bonds that flank the N-terminus of the coiled coil are reduced. Residues Ile 21 through Glu 36 show conserved chemical shifts and NOE connectivities, as well as strong protection from solvent exchange in the oxidized and reduced forms of the protein. By contrast, residues Ile 10 through Val 17 show pronounced chemical shift differences between the oxidized and reduced protein. Strong chemical exchange NOEs between HN resonances and water indicate solvent exchange on time scales faster than 10 s, and suggests a dynamic fraying of the N-terminus of the coiled coil upon reduction of the disulfide bonds. Possible roles for the disulfide crosslinks of the oligomerization domain in the function of cartilage matrix protein are proposed. 相似文献
10.
Cobos ES Filimonov VV Vega MC Mateo PL Serrano L Martínez JC 《Journal of molecular biology》2003,328(1):221-233
The folding thermodynamics and kinetics of the alpha-spectrin SH3 domain with a redesigned hydrophobic core have been studied. The introduction of five replacements, A11V, V23L, M25V, V44I and V58L, resulted in an increase of 16% in the overall volume of the side-chains forming the hydrophobic core but caused no remarkable changes to the positions of the backbone atoms. Judging by the scanning calorimetry data, the increased stability of the folded structure of the new SH3-variant is caused by entropic factors, since the changes in heat capacity and enthalpy upon the unfolding of the wild-type and mutant proteins were identical at 298 K. It appears that the design process resulted in an increase in burying both the hydrophobic and hydrophilic surfaces, which resulted in a compensatory effect upon the changes in heat capacity and enthalpy. Kinetic analysis shows that both the folding and unfolding rate constants are higher for the new variant, suggesting that its transition state becomes more stable compared to the folded and unfolded states. The phi(double dagger-U) values found for a number of side-chains are slightly lower than those of the wild-type protein, indicating that although the transition state ensemble (TSE) did not change overall, it has moved towards a more denatured conformation, in accordance with Hammond's postulate. Thus, the acceleration of the folding-unfolding reactions is caused mainly by an improvement in the specific and/or non-specific hydrophobic interactions within the TSE rather than by changes in the contact order. Experimental evidence showing that the TSE changes globally according to its hydrophobic content suggests that hydrophobicity may modulate the kinetic behaviour and also the folding pathway of a protein. 相似文献
11.
Role of interchain alpha-helical hydrophobic interactions in Ca2+ affinity, formation, and stability of a two-site domain in troponin C. 下载免费PDF全文
O. D. Monera G. S. Shaw B. Y. Zhu B. D. Sykes C. M. Kay R. S. Hodges 《Protein science : a publication of the Protein Society》1992,1(7):945-955
We have previously shown that a 34-residue synthetic peptide representing the calcium-binding site III of troponin C formed a symmetric two-site dimer consisting of two helix-loop-helix motifs arranged in a head-to-tail fashion (Shaw, G.S., Hodges, R.S., & Sykes, B.D., 1990, Science 249, 280-283). In this study the hydrophobicities of the alpha-helices were altered by replacing L-98 and F-102 in the N-terminal region and/or I-121 and L-122 in the C-terminal region with alanine residues. Our results showed that substitution of hydrophobic residues either in the N- or C-terminal region have little effect on alpha-helix formation but resulted in a 100- and 300-fold decrease in Ca2+ affinity, respectively. Simultaneous substitution of both hydrophobes in the N- and C-terminal region resulted in a 1,000-fold decrease in Ca2+ affinity. Data from guanidine hydrochloride denaturation studies suggested that intermolecular interactions occur and that the less hydrophobic analogs had a lower overall conformational stability. These data support the contention that the hydrophobic residues are important in the formation of the two-site domain in troponin C, and this hydrophobic association stabilizes Ca2+ affinity. 相似文献
12.
Many proteins are capable of populating partially folded states known as molten globule states. Alpha-lactalbumin forms a molten globule under a range of conditions including low pH (the A-state) and at neutral pH in the absence of Ca(2+) with modest amounts of denaturant. The A-state is the most thoroughly characterized and thought to mimic a kinetic intermediate populated during refolding at neutral pH. We demonstrate that the properties and interactions that stabilize the A-state and the pH 7 molten globule of human alpha-lactalbumin differ. The unfolding of the wild-type protein is compared to the unfolding of a variant that lacks the 6 - 120 disulfide bond and to an autonomously folded peptide construct that we have previously shown represents the minimum core structure of the A-state of human alpha-lactalbumin. Studies conducted at pH 2 and 7 show that the disulfide makes little contribution to the stability of the molten globule at pH 7 but is important at pH 2. In contrast, the beta-subdomain of the protein is less important at pH 2 than at pH 7. The role of helix propensity in stabilizing the different forms of the molten globule state is examined and it is shown that it cannot account for the differences. The strikingly different behavior observed at pH 2 and 7 indicates that the A-state may not be a rigorous mimic of the folding intermediate populated at pH 7. 相似文献
13.
Saderholm Matthew J. Erickson Bruce W. 《International journal of peptide research and therapeutics》1999,6(1):23-32
Summary Hepatitis delta antigen (HDAg) must form oligomers to be biologically active. Quandrin (HDAg-(12–60)-Tyr) is a 50-residue
protein segment from the oligomerization domain of HDAg. The crystal structure of quadrin shows an octamer consisting of four
identical copies of a dimer containing an antiparallel α-helical coiled coil. Each end of the dimer contains an oligomerization
site that interacts isologously with the oligomerization site of another dimer to form a right-angled corner. The resulting
quadrin octamer is a 400-residue square protein surrounding a large aqueous hole. We have designed, chemically synthesized,
and characterized deltoid and reduced deltoid, two 51-residue chimeric proteins that structurally and functionally mimic one
of the two oligomerization sites of the quadrin dimer. Dimerization of deltoid or reduced deltoid should emulate the dimerization
of two quadrin dimers to form one right-angled corner of the square. Deltoid and reduced deltoid were designed by molecular
modeling, mechanics, and dynamics and synthesized by the solid-phase method. The amino acid sequence of deltoid (GREDILEQWVSCRKKL+PKAPPEE+LRKLKKKCKKLEEDNPWLGNIKGIIGKY) is a chimera of three protein segments: HDAg-(12–28),Thermus thermophilus serine tRNA synthase-(59–65), and HDAg-(34–60)-Tyr. Cysteine (C) was introduced at two positions to explore the effects of the presence (deltoid) or absence (reduced deltoid) of an interhelical
disulfide bond. Circular dichroic spectropolarimetry revealed that both synthetic proteins from an α-helical structure that
is stable over a wide range of pH and KCl concentrations. Size-exclusion chromatography indicated that deltoid and reduced
deltoid each form a dimer. Interconversion of these monomers and dimers should be useful model systems for studying the structural
features of the right-angled corners of the quandrin octamer that contribute to HDAg oligomerization. If, like quadrin, deltoid
or reduced deltoid interferes with HDAg oligomerization, it might serve as a lead compound for the design of potent HDV inhibitors. 相似文献
14.
Hepatitis delta antigen (HDAg) must form oligomers to be biologically active. Quadrin (HDAg-(12–60)-Tyr) is a 50-residue protein segment from the oligomerization domain of HDAg. The crystal structure of quadrin shows an octamer consisting of four identical copies of a dimer containing an antiparallel -helical coiled coil. Each end of the dimer contains an oligomerization site that interacts isologously with the oligomerization site of another dimer to form a right-angled corner. The resulting quadrin octamer is a 400-residue square protein surrounding a large aqueous hole. We have designed, chemically synthesized, and characterized deltoid and reduced deltoid, two 51-residue chimeric proteins that structurally and functionally mimic one of the two oligomerization sites of the quadrin dimer. Dimerization of deltoid or reduced deltoid should emulate the dimerization of two quadrin dimers to form one right-angled corner of the square. Deltoid and reduced deltoid were designed by molecular modeling, mechanics, and dynamics and synthesized by the solid-phase method. The amino acid sequence of deltoid (GREDILEQWVSCRKKL + PKAPPEE + LRKLKKKCKKLEEDNPWLGNIKGIIGKY) is a chimera of three protein segments: HDAg-(12–28), Thermus thermophilus serine tRNA synthase-(59–65), and HDAg-(34–60)-Tyr. Cysteine (C) was introduced at two positions to explore the effects of the presence (deltoid) or absence (reduced deltoid) of an interhelical disulfide bond. Circular dichroic spectropolarimetry revealed that both synthetic proteins form an -helical structure that is stable over a wide range of pH and KCl concentrations. Size-exclusion chromatography indicated that deltoid and reduced deltoid each form a dimer. Interconversion of these monomers and dimers should be useful model systems for studying the structural features of the right-angled corners of the quadrin octamer that contribute to HDAg oligomerization. If, like quadrin, deltoid or reduced deltoid interferes with HDAg oligomerization, it might serve as a lead compound for the design of potent HDV inhibitors. 相似文献
15.
The protein folding problem represents one of the most challenging problems in computational biology. Distance constraints and topology predictions can be highly useful for the folding problem in reducing the conformational space that must be searched by deterministic algorithms to find a protein structure of minimum conformational energy. We present a novel optimization framework for predicting topological contacts and generating interhelical distance restraints between hydrophobic residues in alpha-helical globular proteins. It should be emphasized that since the model does not make assumptions about the form of the helices, it is applicable to all alpha-helical proteins, including helices with kinks and irregular helices. This model aims at enhancing the ASTRO-FOLD protein folding approach of Klepeis and Floudas (Journal of Computational Chemistry 2003;24:191-208), which finds the structure of global minimum conformational energy via a constrained nonlinear optimization problem. The proposed topology prediction model was evaluated on 26 alpha-helical proteins ranging from 2 to 8 helices and 35 to 159 residues, and the best identified average interhelical distances corresponding to the predicted contacts fell below 11 A in all 26 of these systems. Given the positive results of applying the model to several protein systems, the importance of interhelical hydrophobic-to-hydrophobic contacts in determining the folding of alpha-helical globular proteins is highlighted. 相似文献
16.
Most secreted bacterial proteases, including alpha-lytic protease (alphaLP), are synthesized with covalently attached pro regions necessary for their folding. The alphaLP folding landscape revealed that its pro region, a potent folding catalyst, is required to circumvent an extremely large folding free energy of activation that appears to be a consequence of its unique unfolding transition. Remarkably, the alphaLP native state is thermodynamically unstable; a large unfolding free energy barrier is solely responsible for the persistence of its native state. Although alphaLP folding is well characterized, the structural origins of its remarkable folding mechanism remain unclear. A conserved beta-hairpin in the C-terminal domain was identified as a structural element whose formation and positioning may contribute to the large folding free energy barrier. In this article, we characterize the folding of an alphaLP variant with a more favorable beta-hairpin turn conformation (alphaLP(beta-turn)). Indeed, alphaLP(beta-turn) pro region-catalyzed folding is faster than that for alphaLP. However, instead of accelerating spontaneous folding, alphaLP(beta-turn) actually unfolds more slowly than alphaLP. Our data support a model where the beta-hairpin is formed early, but its packing with a loop in the N-terminal domain happens late in the folding reaction. This tight packing at the domain interface enhances the kinetic stability of alphaLP(beta-turn), to nearly the same degree as the change between alphaLP and a faster folding homolog. However, alphaLP(beta-turn) has impaired proteolytic activity that negates the beneficial folding properties of this variant. This study demonstrates the evolutionary limitations imposed by the simultaneous optimization of folding and functional properties. 相似文献
17.
The role of aromatic residues in the hydrophobic core of the villin headpiece subdomain 总被引:1,自引:0,他引:1 下载免费PDF全文
Frank BS Vardar D Buckley DA McKnight CJ 《Protein science : a publication of the Protein Society》2002,11(3):680-687
Small autonomously folding proteins are of interest as model systems to study protein folding, as the same molecule can be used for both experimental and computational approaches. The question remains as to how well these minimized peptide model systems represent larger native proteins. For example, is the core of a minimized protein tolerant to mutation like larger proteins are? Also, do minimized proteins use special strategies for specifying and stabilizing their folded structure? Here we examine these questions in the 35‐residue autonomously folding villin headpiece subdomain (VHP subdomain). Specifically, we focus on a cluster of three conserved phenylalanine (F) residues F47, F51, and F58, that form most of the hydrophobic core. These three residues are oriented such that they may provide stabilizing aromatic–aromatic interactions that could be critical for specifying the fold. Circular dichroism and 1D‐NMR spectroscopy show that point mutations that individually replace any of these three residues with leucine were destabilized, but retained the native VHP subdomain fold. In pair‐wise replacements, the double mutant that retains F58 can adopt the native fold, while the two double mutants that lack F58 cannot. The folding of the double mutant that retains F58 demonstrates that aromatic–aromatic interactions within the aromatic cluster are not essential for specifying the VHP subdomain fold. The ability of the VHP subdomain to tolerate mutations within its hydrophobic core indicates that the information specifying the three dimensional structure is distributed throughout the sequence, as observed in larger proteins. Thus, the VHP subdomain is a legitimate model for larger, native proteins. 相似文献
18.
Estimation of the number of alpha-helical and beta-strand segments in proteins using circular dichroism spectroscopy 下载免费PDF全文
Sreerama N Venyaminov SY Woody RW 《Protein science : a publication of the Protein Society》1999,8(2):370-380
A simple approach to estimate the number of alpha-helical and beta-strand segments from protein circular dichroism spectra is described. The alpha-helix and beta-sheet conformations in globular protein structures, assigned by DSSP and STRIDE algorithms, were divided into regular and distorted fractions by considering a certain number of terminal residues in a given alpha-helix or beta-strand segment to be distorted. The resulting secondary structure fractions for 29 reference proteins were used in the analyses of circular dichroism spectra by the SELCON method. From the performance indices of the analyses, we determined that, on an average, four residues per alpha-helix and two residues per beta-strand may be considered distorted in proteins. The number of alpha-helical and beta-strand segments and their average length in a given protein were estimated from the fraction of distorted alpha-helix and beta-strand conformations determined from the analysis of circular dichroism spectra. The statistical test for the reference protein set shows the high reliability of such a classification of protein secondary structure. The method was used to analyze the circular dichroism spectra of four additional proteins and the predicted structural characteristics agree with the crystal structure data. 相似文献
19.
The protein moiety of the Braun's E. coli outer membrane lipoprotein (Lpp-56) is an attractive object of biophysical investigation in several aspects. It is a homotrimeric, parallel coiled coil, a class of coiled coils whose stability and folding have been studied only occasionally. Lpp-56 possesses unique structural properties and exhibits extremely low rates of folding and unfolding. It is natural to ask how the specificity of the structure determines the extraordinary physical chemical properties of this protein. Recently, a seemingly controversial data on the stability and unfolding rate of Lpp-56 have been published (Dragan et al., Biochemistry 2004;43: 14891-14900; Bjelic et al., Biochemistry 2006;45:8931-8939). The unfolding rate constant measured using GdmCl as the denaturing agent, though extremely low, was substantially higher than that obtained on the basis of thermal unfolding. If this large difference arises from the effect of screening of electrostatic interactions induced by GdmCl, electrostatic interactions would appear to be an important factor determining the unusual properties of Lpp-56. We present here a computational analysis of the electrostatic properties of Lpp-56 combining molecular dynamics simulations and continuum pK calculations. The pH-dependence of the unfolding free energy is predicted in good agreement with the experimental data: the change in DeltaG between pH 3 and pH 7 is approximately 60 kJ mol(-1). The results suggest that the difference in the stability of the protein observed using different experimental methods is mainly because of the effect of the reduction of electrostatic interactions when the salt (GdmCl) concentration increases. We also find that the occupancy of the interhelical salt bridges is unusually high. We hypothesize that electrostatic interactions, and the interhelical salt bridges in particular, are an important factor determining the low unfolding rate of Lpp-56. 相似文献
20.
Design and synthesis of the pseudo-EF hand in calbindin D9K: effect of amino acid substitutions in the alpha-helical regions 总被引:4,自引:0,他引:4
A series of 37-residue analogues of the pseudo-EF hand in bovine calbindin D9K has been synthesized by the solid phase method. In the presence of calcium an alpha-helical induction of up to 44% was observed for the peptide with the native sequence with a Kd for calcium binding of 0.35 mM. A number of amino acid substitutions have been carried out to study the packing of the two alpha-helices based on the crystal structure of the entire protein. Three strategies were employed: (1) replacement of the Leu residues, which in the crystal structure do not contribute to the hydrophobic interaction between the two helices, by Gln or Ala in order to control the orientation of the helix packing, (2) stabilization of the individual helix by introducing a Glu-...Lys+ salt bridge or by changing the N-terminal charge to compensate for the helix dipole moment, and (3) introduction of a disulfide bond between the two helices to help the packing of the helices. The mutants with the substitution of (Leu-30, Leu-32) to (Gln-30, Gln-32), (Gln-30, Ala-32), and (Ala-30,Ala-32) designed based on the strategy 1 do not show any affinity for calcium and have low alpha-helicity. The Leu-30 to Lys-30 mutant designed to form a salt bridge between the side chains of Glu-26 and Lys-30 has an apparent Kd for calcium of 6.8 mM. Kd of the N-terminal acetylated and succinylated mutants are 0.41 and 0.45 mM, respectively, and no increase in the alpha-helix content relative to that of the natural sequence peptide is observed. The disulfide containing mutants, namely Tyr-13, Leu-31 to Cys-13, Cys-31 and Tyr-13, Leu-31 to Cys-13, hCys-31, show apparent Kd values of 0.93 and 2.1 mM, respectively. The former mutant shows the highest alpha-helix content among the peptides studied in the presence and absence of calcium. While it is difficult to construct an isolated and rigid helix-loop-helix motif with peptides of this size, introduction of a disulfide bond proved to be effective for this purpose. 相似文献