首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of membrane curvature on the fluorescence decay of 2-p-toluidinyl-naphthalene-6-sulfonic acid (TNS), 2-(9-anthroyloxy) stearic acid (2-AS) and 12-(9-anthroyloxy)-stearic acid (12-AS) was investigated for egg lecithin vesicles of average diameter dm = 22 nm and 250 nm. The biexponential fluorescence decay of TNS at the red edge of the emission spectrum was analysed according to the model of Gonzalo and Montoro [1]. Over the entire temperature range (1-40 degrees C) the small TNS labelled vesicles showed significantly shorter solvent relaxation times tau(r) than their larger counterparts (e.g. 1.3 ns compared with 2.1 ns at 5 degrees C), indicating a higher mobility of the hydrated headgroups in the highly curved, small vesicles. The fluorescence decay of both AS derivatives is also biexponential. While the shorter decay times (1-3 ns) are practically identical for small and large vesicles, the longer decay times (5-14 ns) are identical only for 12-AS but not for 2-AS. This indicates that the microenvironment is similar in small and large vesicles deep in the membrane in spite of the differences in curvature.  相似文献   

2.
Apolipoprotein E (apoE), first described in 1973, is a truly fascinating protein. While studies initially focused on its role in cholesterol and lipid metabolism, one apoE isoform (apoE4) is a major risk factor for development of late onset Alzheimer's disease. Yet the difference between apoE3, the common form, and apoE4 is a single amino acid of the 299 in this 34 kDa protein. Structure determination of the two domain full length apoE3 protein was only accomplished in 2011 and supports the notion that mutations in the N‐terminal domain can be propagated through the structure to the C‐terminal domain. Understanding the structural differences between apoE3 and apoE4 is critical for finding ways to modulate the deleterious effect of apoE4.  相似文献   

3.
4.
Riboswitch RNAs fold into complex tertiary structures upon binding to their cognate ligand. Ligand recognition is accomplished by key residues in the binding pocket. In addition, it often crucially depends on the stability of peripheral structural elements. The ligand-bound complex of the guanine-sensing riboswitch from Bacillus subtilis, for example, is stabilized by extensive interactions between apical loop regions of the aptamer domain. Previously, we have shown that destabilization of this tertiary loop-loop interaction abrogates ligand binding of the G37A/C61U-mutant aptamer domain (Gsw(loop)) in the absence of Mg(2+). However, if Mg(2+) is available, ligand-binding capability is restored by a population shift of the ground-state RNA ensemble toward RNA conformations with pre-formed loop-loop interactions. Here, we characterize the striking influence of long-range tertiary structure on RNA folding kinetics and on ligand-bound complex structure, both by X-ray crystallography and time-resolved NMR. The X-ray structure of the ligand-bound complex reveals that the global architecture is almost identical to the wild-type aptamer domain. The population of ligand-binding competent conformations in the ground-state ensemble of Gsw(loop) is tunable through variation of the Mg(2+) concentration. We quantitatively describe the influence of distinct Mg(2+) concentrations on ligand-induced folding trajectories both by equilibrium and time-resolved NMR spectroscopy at single-residue resolution.  相似文献   

5.
Kinetics of the gel to liquid-crystalline phase transition of dipalmitoylphosphatidylcholine vesicle membrane was studied by the stopped-flow technique with turbidity detection. The observed change in turbidity was well characterized by a single-exponential decay curve with relaxation time in the millisecond range, although the existence of a faster process than the dead-time of the stopped-flow apparatus was inferred from the amplitude analysis. Relaxation times were determined as functions of 1-hexanol concentration and temperature just below phase transition. From the analysis based on the theories of nonequilibrium relaxation, it is concluded that the phase transition induced by 1-hexanol is governed by a nonlocalized fluctuation mechanism. The anesthetic-induced nonequilibrium state is unstable rather than metastable.  相似文献   

6.
The kinetics and mechanism of transfer of 14C-labeled human apolipoproteins A-I, A-II and C-III1 between small unilamellar vesicles (SUV) have been investigated. Ion exchange chromatography was used for rapid separation of negatively charged egg phosphatidylcholine (PC)/dicetyl phosphate donor SUV containing bound 14C-labeled apoprotein from neutral egg PC acceptor SUV present in 10-fold molar excess. The transfer kinetics of these apolipoproteins at 37 degrees C are consistent with the existence of fast, slow and apparently 'nontransferrable' pools of SUV-associated lipoprotein: the transfers from these pools occur on timescales of seconds (or less), minutes/hours and days/weeks, respectively. For donor SUV containing about 15 apoprotein molecules per vesicle and at a donor SUV concentration of 0.15 mg phospholipid/ml incubation mixture, the sizes of the fast kinetic pools for apolipoproteins A-I, A-II and C-III1 associated with donor SUV are 2, 10 and 11%, respectively. The sizes of the slow kinetic pools for these apolipoproteins are 16, 71 and 50%, respectively. The transfer of the various apolipoproteins from the slow kinetic pool follows first order kinetics and the half-time (t1/2) values are in the order: apo C-III1 less than apo A-I. Increasing the number of apoprotein molecules per donor SUV enlarges the size of the fast pool and increases the t1/2 of slow transfer. The differences in the kinetics of apolipoprotein transfer between SUV are consequences of the variations in the primary and secondary structures of the apolipoprotein molecules. The slow transfer of apoprotein molecules is mediated by collisions between donor and acceptor SUV; the rate is dependent on the apoprotein molecular weight with larger molecules transferring more slowly from donor SUV containing the same lipid/protein molar ratio. The hydrophobicity of the apoprotein molecule is also significant with less hydrophobic molecules transferring more rapidly. Further understanding of the differences in the kinetics of transfer of these apolipoproteins will require more knowledge of their secondary and tertiary structures.  相似文献   

7.
The effect of serum on the structural integrity of liposomes consisting of ether and/or carbamyl analogs of 1,2-diester phosphatidylcholine (PC) has been evaluated by measuring both the efflux of the entrapped 6-carboxyfluorescein and the lipid transfer to serum proteins, and the results have been compared with the egg PC liposomes. Replacement of the C-1 ester bond in PC by an ether linkage did not significantly enhance the liposome stability, but it was markedly increased upon introducing further structural changes in the C-2 ester region of the resulting 1-ether-2-ester PC. However, the stability was not influenced by altering the steric configuration of the latter phospholipid. These results strongly suggest that lysis of liposomes in serum can be prevented by structurally modifying the ester bond(s) in the phospholipid component of liposomes.  相似文献   

8.
Action of pig pancreatic phospholipase A2 on vesicles of over 50 synthetic 1,2-diacylglycerol-3-phosphate derivatives and analogs is examined in the absence of any additives. In general, shorter acyl chains and small substituents on the phosphate make a better substrate, while phospholipids with large apolar substituents are not hydrolyzed. The interfacial turnover rate constant for scooting kinetics, ki, for the various phospholipids were from less than 0.1 to 1 per min. Intervesicle exchange of the bound enzyme is faster in vesicles of phospholipids with larger polar substituents, and it is promoted in the presence of anions like chloride, sulfate and thiocyanate. These factors lower the residence time of the enzyme on the bilayer and therefore effectively decrease the rate of hydrolysis. The apparent Km for the enzyme in the interface of anionic phospholipids in the presence of salts is in the 40 to 100 microM range which is 3- to 7-times larger than the dissociation constants for the bound enzyme measured by fluorescence enhancement of Trp-3. The quantum yield of the bound enzyme in vesicles of the various lipids is found to be up to 4-fold different. It is suggested that this difference is due to the E* + S to E*S equilibrium, where E*S has higher fluorescence intensity. The role of calcium in generating the enzyme binding site at the anionic interface, the role of anion anchoring site on the enzyme, and the relationship between the catalytic efficiency and the fluorescence quantum yields are discussed.  相似文献   

9.
The effects of proteins on divalent cation-induced phospholipid vesicle aggregation and phospholipid vesicle-monolayer membrane interactions (fusion) were examined. Glycophorin (from human erythrocytes) suppressed the membrane interactions more than N-2 protein (from human brain myelin) when these proteins were incorporated into acidic phospholipid vesicle membranes. The threshold concentrations of divalent cations which induced vesicle aggregation were increased by protein incorporation, and the rate of vesicle aggregation was reduced. A similar inhibitory effect by the proteins, incorporated into lipid vesicle membranes, was observed for Ca2+-induced lipid vesicle-monolayer interactions. However, when these proteins were incorporated only in the acidic phospholipid monolayers, the interaction (fusion) of the lipid vesicle-monolayer membranes, induced by divalent cations, was not appreciably altered by the presence of the proteins.In contrast to these two proteins, the presence of synexin in the solution did enhance the Ca2+-induced aggregation of phosphatidylserine vesicles, but did not seem to affect the degree of Ca2+-induced fusion between phosphatidylserine/phosphatidylcholine (1:1) and phosphatidylserine vesicles and monolayer membranes.  相似文献   

10.
To understand the molecular basis for the differences in receptor-binding activity of the three common human apolipoprotein E (apoE) isoforms, we characterized the microenvironments of their LDL receptor (LDLR)-binding regions (residues 136;-150). When present in dimyristoyl phosphatidylcholine (DMPC) complexes, the 22-kDa amino-terminal fragments (residues 1;-191) of apoE3 and apoE4 bound to the LDLR with approximately 100-fold greater affinity than the 22-kDa fragment of apoE2. The pK(a) values of lysines (K) at positions 143 and 146 in the LDLR-binding region in DMPC-associated 22-kDa apoE fragments were 9.4 and 9.9 in apoE2, 9.5 and 9.2 in apoE3, and 9.9 and 9.4 in apoE4, respectively. The increased pK(a) of K146 in apoE2 relative to apoE3 arises from a reduction in the positive electrostatic potential in its microenvironment. This effect occurs because C158 in apoE2, unlike R158 in apoE3, rearranges the intrahelical salt bridges along the polar face of the amphipathic alpha-helix spanning the LDLR-binding region, reducing the effect of the R150 positive charge on K146 and concomitantly decreasing LDLR-binding affinity.The C112R mutation in apoE4 that differentiates it from apoE3 did not perturb the pK(a) of K146 significantly, but it increased the pK(a) of K143 in apoE4 by 0.4 pH unit. This change did not alter LDLR-binding affinity. Therefore, maintaining the appropriate positive charge at the C-terminal end of the receptor-binding region is particularly critical for effective interaction with acidic residues on the LDLR.  相似文献   

11.
The effects of phospholipid vesicles and divalent cations in the subphase solution on the surface tension of phospholipid monolayer membranes were studied in order to elucidate the nature of the divalent cation-induced vesicle-membrane interaction. The monolayers were formed at the air/water interface. Various concentrations of unilamellar phospholipid (phosphatidylserine, phosphatidylcholine and their mixtures) vesicles and divalent cations (Mg2+, Ca2+, Mn2+, etc.) were introduced into the subphase solution of the monolayers. The changes of surface tension of monolayers were measured by the Wilhelmy plate (Teflon) method with respect to divalent ion concentrations and time.When a monolayer of phosphatidylserine and vesicles of phosphatidylserine/phosphatidylcholine (1 : 1) were used, there were critical concentrations of divalent cations to produce a large reduction in surface tension of the monolayer. These concentrations were 16 mM for Mg2+, 7 mM for Sr2+, 6 mM for Ca2+, 3.5 mM for Ba2+ and 1.8 mM for Mn2+. On the other hand, for a phosphatidylcholine monolayer and phosphatidylcholine vesicles, there was no change in surface tension of the monolayer up to 25 mM of any divalent ion used. When a phosphatidylserine monolayer and phosphatidylcholine vesicles were used, the order of divalent ions to effect the large reduction of surface tension was Mn2+ > Ca2+ > Mg2+ and their critical concentrations were in between the former two cases. The threshold concentrations also depended upon vesicle concentrations as well as the area/molecule of monolayers. For phosphatidylserine monolayers and phosphatidylserine/phosphatidylcholine (1 : 1) vesicles, above the critical concentrations of Mn2+ and Ca2+, the surface tension decreased to a value close to the equilibrium pressure of the monolayers within 0.5 h.This decrease in surface tension of the monolayers is interpreted partly as the consequence of fusion of the vesicles with the monolayer membranes. The  相似文献   

12.
Anionic vesicles containing acidic phospholipids are known complement activators. To clarify which negative physicochemical electrostatic charges on vesicles and structural specificities of acidic lipids are critical to complement activation, the electrostatic properties and activity to complement of two anionic vesicles modified with a carboxylic acid derivative or a conventional acidic phospholipid were compared. Electrophoretic mobility measurements indicated that the negative zeta potential and the electrostatic interactivity of these two anionic vesicles were equal at pH 7.4. However, the infusion of vesicles containing acidic phospholipid induced significant complement activation, while vesicles containing the carboxylic acid derivative failed to activate complement. These results indicate that the negative charge on the surface of vesicles is not critical for the activation complement, suggesting that complement activation is specific to the structure of acidic groups. This finding is likely to be important to the design of anionic biointerfaces and may support the promising medical applications of this anionic vesicle modified with a carboxylic acid derivative.  相似文献   

13.
Apolipoprotein (apo) C-III and apoE play a central role in controlling the plasma metabolism of triglyceride-rich lipoproteins (TRL). We have investigated the plasma kinetics of total, very low density lipoprotein (VLDL) and high density lipoprotein (HDL) apoC-III and apoE in normolipidemic (NL) (n = 5), hypertriglyceridemic (HTG, n = 5), and Type III hyperlipoproteinemic (n = 2) individuals. Apolipoprotein kinetics were investigated using a primed constant (12 h) infusion of deuterium-labeled leucine. HTG and Type III patients had reduced rates of VLDL apoB-100 catabolism and no evidence of VLDL apoB-100 overproduction. Elevated (3- to 12-fold) total plasma and VLDL apoC-III levels in HTG and Type III patients, although associated with reduced apoC-III catabolism (i.e., increased residence times (RTs)), were mainly due to increased apoC-III production (plasma apoC-III transport rates (TRs, mean +/- SEM): (NL) 2.05 +/- 0.22 (HTG) 4.90 +/- 0.81 (P < 0.01), and (Type III) 8.78 mg. kg(-)(1). d(-)(1); VLDL apoC-III TRs: (NL) 1.35 +/- 0. 23 (HTG) 5.35 +/- 0.85 (P < 0.01), and (Type III) 7.40 mg. kg(-)(1). d(-)(1)). Elevated total plasma and VLDL apoE levels in HTG (2- and 6-fold, respectively) and in Type III (9- and 43-fold) patients were associated with increased VLDL apoE RTs (0.21 +/- 0.02, 0.46 +/- 0. 05 (P < 0.01), and 1.21 days, NL vs. HTG vs. Type III, respectively), as well as significantly increased apoE TRs (plasma: (NL) 2.94 +/- 0.78 (HTG) 5.80 +/- 0.59 (P < 0.01) and (Type III) 11.80 mg. kg(-)(1). d(-)(1); VLDL: (NL) 1.59 +/- 0.18 (HTG) 4.52 +/- 0.61 (P < 0.01) and (Type III) 11.95 mg. kg(-)(1). d(-)(1)).These results demonstrate that hypertriglyceridemic patients, having reduced VLDL apoB-100 catabolism (including patients with type III hyperlipoproteinemia) are characterized by overproduction of plasma and VLDL apoC-III and apoE.  相似文献   

14.
Quantitative characterization of the lateral structure of curved membranes based on fluorescence microscopy requires knowledge of the fluorophore distribution on the surface. We present an image analysis approach for extraction of the fluorophore distribution on a spherical lipid vesicle from confocal imaging stacks. The technique involves projection of volumetric image data onto a triangulated surface mesh representation of the membrane, correction of photoselection effects and global motion of the vesicle during image acquisition and segmentation of the surface into domains using histograms. The analysis allows for investigation of the morphology and size distribution of domains on the surface.  相似文献   

15.
During autophagy a crescent shaped like membrane is formed, which engulfs the material that is to be degraded. This membrane grows further until its edges fuse to form the double membrane covered autophagosome. Atg8 is a protein, which is required for this initial step of autophagy. Therefore, a multistage conjugation process of newly synthesized Atg8 to phosphatidylethanolamine is of critical importance. Here we present the high resolution structure of unprocessed Atg8 determined by nuclear magnetic resonance spectroscopy. Its C-terminal subdomain shows a well-defined ubiquitin-like fold with slightly elevated mobility in the pico- to nanosecond timescale as determined by heteronuclear NOE data. In comparison to unprocessed Atg8, cleaved Atg8G116 shows a decreased mobility behaviour. The N-terminal domain adopts different conformations within the micro- to millisecond timescale. The possible biological relevance of the differences in dynamic behaviours between both subdomains as well as between the cleaved and uncleaved forms is discussed.  相似文献   

16.
A regular progression of polymorphic phase behavior was observed for mixtures of the anionic phospholipid, cardiolipin, and the cationic phospholipid derivative, 1, 2-dioleoyl-sn-glycero-3-ethylphosphocholine. As revealed by freeze-fracture electron microscopy and small-angle x-ray diffraction, whereas the two lipids separately assume only lamellar phases, their mixtures exhibit a symmetrical (depending on charge ratio and not polarity) sequence of nonlamellar phases. The inverted hexagonal phase, H(II,) formed from equimolar mixtures of the two lipids, i.e., at net charge neutrality (charge ratio (CR((+/-))) = 1:1). When one type of lipid was in significant excess (CR((+/-)) = 2:1 or CR((+/-)) = 1:2), a bicontinuous cubic structure was observed. These cubic phases were very similar to those sometimes present in cellular organelles that contain cardiolipin. Increasing the excess of cationic or anionic charge to CR((+/-)) = 4:1 or CR((+/-)) = 1:4 led to the appearance of membrane bilayers with numerous interlamellar contacts, i.e., sponge structures. It is evident that interactions between cationic and anionic moieties can influence the packing of polar heads and hence control polymorphic phase transitions. The facile isothermal, polymorphic interconversion of these lipids may have important biological and technical implications.  相似文献   

17.
Cytochrome oxidase vesicle crystals with long-range order have been obtained from cholate-solubilized, highly purified reconstitutively active preparations. These crystals, which are suitable for electron-microscopic structure investigation, show pgg symmetry in the 0 degree projection. Using Fourier reconstruction and modified back-projection methods, a three-dimensional reconstruction has been obtained at a resolution of 25 A. Our structural results are in agreement with the model of Henderson et al. [J. Mol. Biol. 112, 631 (1977)] obtained for their Triton-derived crystals.  相似文献   

18.
The tertiary structure of apolipoprotein (apo) A-I and the contributions of structural domains to the properties of the protein molecule are not well defined. We used a series of engineered human and mouse apoA-I molecules in a range of physical-biochemical measurements to address this issue. Circular dichroism measurements of alpha-helix thermal unfolding and fluorescence spectroscopy measurements of 8-anilino-1-napthalenesulfonic acid binding indicate that removal of the C-terminal 54 amino acid residues from human and mouse apoA-I has similar effects; the molecules are only slightly destabilized, and there is a decrease in hydrophobic surface exposure. These results are consistent with both human and mouse apoA-I adopting a two-domain tertiary structure, comprising an N-terminal antiparallel helix bundle domain and a separate less ordered C-terminal domain. Mouse apoA-I is significantly less resistant than human apoA-I to thermal and chemical denaturation; the midpoint of thermal unfolding of mouse apoA-I at 45 degrees C is 15 degrees C lower and the midpoint of guanidine hydrochloride denaturation (D1/2) occurs at 0.5 M as compared to 1.0 M for human apoA-I. These differences reflect the overall greater stability of the helix bundle formed by residues 1-189 in human apoA-I. Measurements of the heats of binding to egg phosphatidylcholine (PC) small unilamellar vesicles and the kinetics of solubilization of dimyristoyl PC multilamellar vesicles indicate that the more stable human helix bundle interacts poorly with lipids as compared to the equivalent mouse N-terminal domain. The C-terminal domain of human apoA-I is much more hydrophobic than that of mouse apoA-I; in the lipid-free state the human C-terminal domain (residues 190-243) is partially alpha-helical and undergoes cooperative unfolding (D1/2 = 0.3 M) whereas the isolated mouse C-terminal domain (residues 187-240) is disordered in dilute solution. The human C-terminal domain binds to lipid surfaces much more avidly than the equivalent mouse domain. Human and mouse apoA-I have very different tertiary structure domain contributions for achieving functionality. It is clear that the stability of the N-terminal helix bundle, and the hydrophobicity and alpha-helix content of the C-terminal domain, are critical factors in determining the overall properties of the apoA-I molecule.  相似文献   

19.
Thermodynamics and kinetics of phospholipid monomer-vesicle interaction   总被引:5,自引:0,他引:5  
J W Nichols 《Biochemistry》1985,24(23):6390-6398
Resonance energy transfer between acyl chain labeled (7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylcholine (NBD-PC) and head group labeled (lissamine rhodamine B sulfonyl)phosphatidylethanolamine (N-Rh-PE) was used to monitor the rate of NBD-PC transfer between two populations of dioleoylphosphatidylcholine (DOPC) vesicles. Equilibration of NBD-PC between DOPC vesicles occurs by the diffusion of soluble monomers through the water phase, which is a first-order process. Conditions were used such that the apparent transfer rate constant is equal to the rate constant for monomer-vesicle dissociation into solution. The partition distribution of NBD-PC between DOPC vesicles and water was determined by measuring the loss of NBD-PC from vesicles into solution following the dilution of small amounts of vesicles in buffer. The acyl chain length and temperature dependence of both the rate and partition measurements were determined, and a free energy diagram for NBD-PC-soluble monomer-vesicle interactions was constructed. The conclusions of this analysis are the following: NBD-PC dissociation from and association with the bilayer require passage through a high-energy transition state resulting predominantly from enthalpic energy. The activation energy for NBD-PC-vesicle dissociation becomes more positive and the standard free energy of NBD-PC transfer from water to vesicles becomes more negative with increasing acyl chain length. The standard free energy of transfer for NBD-PC from water to vesicles results predominantly from differences in enthalpy between the membrane and water phases. The enthalpy of activation for association increases with acyl chain length and is larger than expected for an aqueous diffusion-limited process in bulk water.  相似文献   

20.
Chen C  Wang W  Wang Z  Wei F  Zhao XS 《Nucleic acids research》2007,35(9):2875-2884
Hybridization of nucleic acids with secondary structure is involved in many biological processes and technological applications. To gain more insight into its mechanism, we have investigated the kinetics of DNA hybridization/denaturation via fluorescence resonance energy transfer (FRET) on perfectly matched and single-base-mismatched DNA strands. DNA hybridization shows non-Arrhenius behavior. At high temperature, the apparent activation energies of DNA hybridization are negative and independent of secondary structure. In contrast, when temperature decreases, the apparent activation energies of DNA hybridization change to positive and become structure dependent. The large unfavorable enthalpy of secondary structure melting is compensated for by concomitant duplex formation. Based on our results, we propose a reaction mechanism about how the melting of secondary structure influences the hybridization process. A significant point in the mechanism is that the rate-limiting step switches along with temperature variation in the hybridization process of structured DNA, because the free energy profile of hybridization in structured DNA varies with the variation in temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号