首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 225 毫秒
1.
Wyka IM  Dhar K  Binz SK  Wold MS 《Biochemistry》2003,42(44):12909-12918
Human replication protein A (RPA) is a heterotrimeric (70, 32, and 14 kDa subunits), eukaryotic single-stranded DNA (ssDNA) binding protein required for DNA recombination, repair, and replication. The three subunits of human RPA are composed of six conserved DNA binding domains (DBDs). Deletion and mutational studies have identified a high-affinity DNA binding core in the central region of the 70 kDa subunit, composed of DBDs A and B. To define the roles of each DBD in DNA binding, monomeric and tandem DBD A and B domain chimeras were created and characterized. Individually, DBDs A and B have a very low intrinsic affinity for ssDNA. In contrast, tandem DBDs (AA, AB, BA, and BB) bind ssDNA with moderate to high affinity. The AA chimera had a much higher affinity for ssDNA than did the other tandem DBDs, demonstrating that DBD A has a higher intrinsic affinity for ssDNA than DBD B. The RPA-DNA interface is similar in both DBD A and DBD B. Mutational analysis was carried out to probe the relative contributions of the two domains to DNA binding. Mutation of polar residues in either core DBD resulted in a significant decrease in the affinity of the RPA complex for ssDNA. RPA complexes with pairs of mutated polar residues had lower affinities than those with single mutations. The decrease in affinity observed when polar mutations were combined suggests that multiple polar interactions contribute to the affinity of the RPA core for DNA. These results indicate that RPA-ssDNA interactions are the result of binding of multiple nonequivalent domains. Our data are consistent with a sequential binding model for RPA, in which DBD A is responsible for positioning and initial binding of the RPA complex while DBD A together with DBD B direct stable, high-affinity binding to ssDNA.  相似文献   

2.
The eukaryotic replication protein A (RPA) has several pivotal functions in the cell metabolism, such as chromosomal replication, prevention of hairpin formation, DNA repair and recombination, and signaling after DNA damage. Moreover, RPA seems to have a crucial role in organizing the sequential assembly of DNA processing proteins along single stranded DNA (ssDNA). The strong RPA affinity for ssDNA, K(A) between 10(-9)-10(-10) M, is characterized by a low cooperativity with minor variation for changes on the nucleotide sequence. Recently, new data on RPA interactions was reported, including the binding free energy of the complex RPA70AB with dC(8) and dC(5), which has been estimated to be -10 ± 0.4 kcal mol(-1) and -7 ± 1 kcal mol(-1), respectively. In view of these results we performed a study based on molecular dynamics aimed to reproduce the absolute binding free energy of RPA70AB with the dC(5) and dC(8) oligonucleotides. We used several tools to analyze the binding free energy, rigidity, and time evolution of the complex. The results obtained by MM-PBSA method, with the use of ligand free geometry as a reference for the receptor in the separate trajectory approach, are in excellent agreement with the experimental data, with ±4 kcal mol(-1) error. This result shows that the MM-PB(GB)SA methods can provide accurate quantitative estimates of the binding free energy for interacting complexes when appropriate geometries are used for the receptor, ligand and complex. The decomposition of the MM-GBSA energy for each residue in the receptor allowed us to correlate the change of the affinity of the mutated protein with the ΔG(gas+sol) contribution of the residue considered in the mutation. The agreement with experiment is optimal and a strong change in the binding free energy can be considered as the dominant factor in the loss for the binding affinity resulting from mutation.  相似文献   

3.
The initial high affinity binding of single-stranded DNA (ssDNA) by replication protein A (RPA) is involved in the tandem domains in the central region of the RPA70 subunit (RPA70AB). However, it was not clear whether the two domains, RPA70A and RPA70B, bind DNA simultaneously or sequentially. Here, using primarily heteronuclear NMR complemented by fluorescence spectroscopy, we have analyzed the binding characteristics of the individual RPA70A and RPA70B domains and compared them with the intact RPA70AB. NMR chemical shift comparisons confirmed that RPA70A and RPA70B tumble independently in solution in the absence of ssDNA. NMR chemical shift perturbations showed that all ssDNA oligomers bind to the same sites as observed in the x-ray crystal structure of RPA70AB complexed to d(C)8. Titrations using a variety of 5'-mer ssDNA oligomers showed that RPA70A has a 5-10-fold higher affinity for ssDNA than RPA70B. Detailed analysis of ssDNA binding to RPA70A revealed that all DNA sequences interact in a similar mode. Fluorescence binding measurements with a variety of 8-10'-mer DNA sequences showed that RPA70AB interacts with DNA with approximately 100-fold higher affinity than the isolated domains. Calculation of the theoretical "linkage effect" from the structure of RPA70AB suggests that the high overall affinity for ssDNA is a byproduct of the covalent attachment of the two domains via a short flexible tether, which increases the effective local concentration. Taken together, our data are consistent with a sequential model of DNA binding by RPA according to which RPA70A binds the majority of DNA first and subsequent loading of RPA70B domain is facilitated by the linkage effect.  相似文献   

4.
In eukaryotes, the single strand DNA (ssDNA)-binding protein, replication protein A (RPA), is essential for DNA replication, repair, and recombination. RPA is composed of the following three subunits: RPA1, RPA2, and RPA3. The RPA1 subunit contains four structurally related domains and is responsible for high affinity ssDNA binding. This study uses a depletion/replacement strategy in human cells to reveal the contributions of each domain to RPA cellular functions. Mutations that substantially decrease ssDNA binding activity do not necessarily disrupt cellular RPA function. Conversely, mutations that only slightly affect ssDNA binding can dramatically affect cellular function. The N terminus of RPA1 is not necessary for DNA replication in the cell; however, this region is important for the cellular response to DNA damage. Highly conserved aromatic residues in the high affinity ssDNA-binding domains are essential for DNA repair and cell cycle progression. Our findings suggest that as long as a threshold of RPA-ssDNA binding activity is met, DNA replication can occur and that an RPA activity separate from ssDNA binding is essential for function in DNA repair.  相似文献   

5.
Replication protein A (RPA), the major eukaryotic single-strand DNA (ssDNA)-binding protein, is essential for replication, repair, recombination, and checkpoint activation. Defects in RPA-associated cellular activities lead to genomic instability, a major factor in the pathogenesis of cancer and other diseases. ssDNA binding activity is primarily mediated by two domains in the 70-kDa subunit of the RPA complex. These ssDNA interactions are mediated by a combination of polar residues and four conserved aromatic residues. Mutation of the aromatic residues causes a modest decrease in binding to long (30-nucleotide) ssDNA fragments but results in checkpoint activation and cell cycle arrest in cells. We have used a combination of biochemical analysis and knockdown replacement studies in cells to determine the contribution of these aromatic residues to RPA function. Cells containing the aromatic residue mutants were able to progress normally through S-phase but were defective in DNA repair. Biochemical characterization revealed that mutation of the aromatic residues severely decreased binding to short ssDNA fragments less than 20 nucleotides long. These data indicate that altered binding of RPA to short ssDNA intermediates causes a defect in DNA repair but not in DNA replication. These studies show that cells require different RPA functions in DNA replication and DNA repair.  相似文献   

6.
H. S. Maniar  R. Wilson    S. J. Brill 《Genetics》1997,145(4):891-902
Replication Protein-A, the eukaryotic SSB, consists of a large subunit (RPA1) with strong ssDNA binding activity and two smaller subunits (RPA2 and 3) that may cooperate with RPA1 to bind ssDNA in a higher-order mode. To determine the in vivo function of the two smaller subunits and the potential role of higher-order ssDNA binding, we isolated an assortment of heat-lethal mutations in the genes encoding RPA2 and RPA3. At the permissive temperature, the mutants show a range of effects on DNA replication fidelity and sensitivities to UV and MMS. At the nonpermissive temperature, four out of five RPA2 mutants show a fast-stop DNA synthesis phenotype typical of a replication fork block. In contrast, the fifth RPA2 mutant and all RPA3 mutants are able to complete at least one round of DNA replication at the nonpermissive temperature. The effect of these mutations on the stability of the RPA complex was tested using a coprecipitation assay. At the nonpermissive temperature, we find that RPA1 and RPA2 are dissociated in the fast-stop mutants, but not in the slow-stop mutants. Thus, replication fork movement in vivo requires the association of at least two subunits of RPA. This result is consistent with the hypothesis that RPA functions in vivo by binding ssDNA in a higher-order mode.  相似文献   

7.
Kim A  Park JS 《Molecules and cells》2002,13(3):493-497
The eukaryotic replication protein A (RPA) is a heterotrimeric protein complex. It consists of 70, 32, and 14 kDa subunits that are involved in DNA replication, repair, and genetic recombination. RPA is a 4-cysteine type zinc-finger protein. RPA's zinc-finger domain is not essential for DNA binding activity, but it is involved in the regulation of RPA's DNA binding activity through reduction-oxidation (redox). In this study, we show that yeast RPA's ssDNA binding activity is regulated by redox potential through its subcomplexes of 32 and 14 kDa subunits. In contrast, the subunits' complex, RPA70, formed a stable complex with ssDNA, even under non-reducing conditions. The addition of DTT and H202 had no effect on its DNA binding activity. In RPA70, since the addition of the subcomplexes of the 32 and 14 kDa subunits, it restored the modulating ssDNA binding activity to native RPA's DNA binding activity. These results suggest that the subcomplexes of the 32 and 14 kDa subunits may be involved in the modulating RPA's DNA binding activity through redox change. These studies, therefore, show the novel structure and function relationship of a multiprotein complex in that the role of a specific domain (or one subunit) is regulated by the other subunits.  相似文献   

8.
Patrick SM  Oakley GG  Dixon K  Turchi JJ 《Biochemistry》2005,44(23):8438-8448
Replication protein A (RPA) is a heterotrimeric protein consisting of 70-, 34-, and 14- kDa subunits that is required for many DNA metabolic processes including DNA replication and DNA repair. Using a purified hyperphosphorylated form of RPA protein prepared in vitro, we have addressed the effects of hyperphosphorylation on steady-state and pre-steady-state DNA binding activity, the ability to support DNA repair and replication reactions, and the effect on the interaction with partner proteins. Equilibrium DNA binding activity measured by fluorescence polarization reveals no difference in ssDNA binding to pyrimidine-rich DNA sequences. However, RPA hyperphosphorylation results in a decreased affinity for purine-rich ssDNA and duplex DNA substrates. Pre-steady-state kinetic analysis is consistent with the equilibrium DNA binding and demonstrates a contribution from both the k(on) and k(off) to achieve these differences. The hyperphosphorylated form of RPA retains damage-specific DNA binding, and, importantly, the affinity of hyperphosphorylated RPA for damaged duplex DNA is 3-fold greater than the affinity of unmodified RPA for undamaged duplex DNA. The ability of hyperphosphorylated RPA to support DNA repair showed minor differences in the ability to support nucleotide excision repair (NER). Interestingly, under reaction conditions in which RPA is maintained in a hyperphosphorylated form, we also observed inhibition of in vitro DNA replication. Analyses of protein-protein interactions bear out the effects of hyperphosphorylated RPA on DNA metabolic pathways. Specifically, phosphorylation of RPA disrupts the interaction with DNA polymerase alpha but has no significant effect on the interaction with XPA. These results demonstrate that the effects of DNA damage induced hyperphosphorylation of RPA on DNA replication and DNA repair are mediated through alterations in DNA binding activity and protein-protein interactions.  相似文献   

9.
Lao Y  Lee CG  Wold MS 《Biochemistry》1999,38(13):3974-3984
Human replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein that is composed of subunits of 70, 32, and 14 kDa. RPA is required for multiple processes in cellular DNA metabolism. RPA has been reported to (1) bind with high affinity to single-stranded DNA (ssDNA), (2) bind specifically to certain double-stranded DNA (dsDNA) sequences, and (3) have DNA helix-destabilizing ("unwinding") activity. We have characterized both dsDNA binding and helix destabilization. The affinity of RPA for dsDNA was lower than that of ssDNA and precisely correlated with the melting temperature of the DNA fragment. The rates of helix destabilization and dsDNA binding were similar, and both were slow relative to the rate of binding ssDNA. We have previously mapped the regions required for ssDNA binding [Walther et al. (1999) Biochemistry 38, 3963-3973]. Here, we show that both helix-destabilization and dsDNA-binding activities map to the central DNA-binding domain of the 70-kDa subunit and that other domains of RPA are needed for optimal activity. We conclude that all types of RPA binding are manifestations of RPA ssDNA-binding activity and that dsDNA binding occurs when RPA destabilizes a region of dsDNA and binds to the resulting ssDNA. The 70-kDa subunit of all RPA homologues contains a highly conserved putative (C-X2-C-X13-C-X2-C) zinc finger. This motif directly interacts with DNA and contributes to dsDNA-binding/unwinding activity. Evidence is presented that a metal ion is required for the function of the zinc-finger motif.  相似文献   

10.
Liu JS  Kuo SR  Melendy T 《DNA Repair》2006,5(3):369-380
The major eukaryotic single-stranded DNA (ssDNA) binding protein, replication protein A (RPA), is a heterotrimer with subunits of 70, 32 and 14 kDa (RPA70, RPA32 and RPA14). RPA-coated ssDNA has been implicated as one of the triggers for intra-S-phase checkpoint activation. Phosphorylation of RPA occurs in cells with damaged DNA or stalled replication forks. Here we show that human RPA70 and RPA32 can be phosphorylated by purified S-phase checkpoint kinases, ATR and Chk1. While ATR phosphorylates the N-terminus of RPA70, Chk1 preferentially phosphorylates RPA's major ssDNA binding domain. Chk1 phosphorylated RPA70 shows reduced ssDNA binding activity, and binding of RPA to ssDNA blocks Chk1 phosphorylation, suggesting that Chk1 and ssDNA compete for RPA's major ssDNA binding domain. ssDNA stimulates RPA32 phosphorylation by ATR in a length dependent manner. Furthermore, 3'-, but not 5'-, recessed single strand/double strand DNA junctions produce an even stronger stimulatory effect on RPA32 phosphorylation by ATR. This stimulation occurs for both RNA and DNA recessed ends. RPA's DNA binding polarity and its interaction to 3'-primer-template junctions contribute to efficient RPA32 phosphorylation. Progression of DNA polymerase is able to block the accessibility of the 3'-recessed ends and prevent the stimulatory effects of primer-template junctions on RPA phosphorylation by ATR. We propose models for the role of RPA phosphorylation by Chk1 in S-phase checkpoint pathways, and the possible regulation of ATR activity by different nucleic acid structures.  相似文献   

11.
Walther AP  Gomes XV  Lao Y  Lee CG  Wold MS 《Biochemistry》1999,38(13):3963-3973
Human replication protein A (RPA) is a multiple subunit single-stranded DNA-binding protein that is required for multiple processes in cellular DNA metabolism. This complex, composed of subunits of 70, 32, and 14 kDa, binds to single-stranded DNA (ssDNA) with high affinity and participates in multiple protein-protein interactions. The 70-kDa subunit of RPA is known to be composed of multiple domains: an N-terminal domain that participates in protein interactions, a central DNA-binding domain (composed of two copies of a ssDNA-binding motif), a putative (C-X2-C-X13-C-X2-C) zinc finger, and a C-terminal intersubunit interaction domain. A series of mutant forms of RPA were used to elucidate the roles of these domains in RPA function. The central DNA-binding domain was necessary and sufficient for interactions with ssDNA; however, adjacent sequences, including the zinc-finger domain and part of the N-terminal domain, were needed for optimal ssDNA-binding activity. The role of aromatic residues in RPA-DNA interactions was examined. Mutation of any one of the four aromatic residues shown to interact with ssDNA had minimal effects on RPA activity, indicating that individually these residues are not critical for RPA activity. Mutation of the zinc-finger domain altered the structure of the RPA complex, reduced ssDNA-binding activity, and eliminated activity in DNA replication.  相似文献   

12.
Lao Y  Gomes XV  Ren Y  Taylor JS  Wold MS 《Biochemistry》2000,39(5):850-859
Human replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein (subunits of 70, 32, and 14 kDa) that is required for cellular DNA metabolism. RPA has been reported to interact specifically with damaged double-stranded DNA and to participate in multiple steps of nucleotide excision repair (NER) including the damage recognition step. We have examined the mechanism of RPA binding to both single-stranded and double-stranded DNA (ssDNA and dsDNA, respectively) containing damage. We show that the affinity of RPA for damaged dsDNA correlated with disruption of the double helix by the damaged bases and required RPAs ssDNA-binding activity. We conclude that RPA is recognizing single-stranded character caused by the damaged nucleotides. We also show that RPA binds specifically to damaged ssDNA. The specificity of binding varies with the type of damage with RPA having up to a 60-fold preference for a pyrimidine(6-4)pyrimidone photoproduct. We show that this specific binding was absolutely dependent on the zinc-finger domain in the C-terminus of the 70-kDa subunit. The affinity of RPA for damaged ssDNA was 5 orders of magnitude higher than that of the damage recognition protein XPA (xeroderma pigmentosum group A protein). These findings suggest that RPA probably binds to both damaged and undamaged strands in the NER excision complex. RPA binding may be important for efficient excision of damaged DNA in NER.  相似文献   

13.
The eukaryotic single-stranded DNA-binding protein, replication protein A (RPA), is essential for DNA replication, and plays important roles in DNA repair and DNA recombination. Rad52 and RPA, along with other members of the Rad52 epistasis group of genes, repair double-stranded DNA breaks (DSBs). Two repair pathways involve RPA and Rad52, homologous recombination and single-strand annealing. Two binding sites for Rad52 have been identified on RPA. They include the previously identified C-terminal domain (CTD) of RPA32 (residues 224-271) and the newly identified domain containing residues 169-326 of RPA70. A region on Rad52, which includes residues 218-303, binds RPA70 as well as RPA32. The N-terminal region of RPA32 does not appear to play a role in the formation of the RPA:Rad52 complex. It appears that the RPA32CTD can substitute for RPA70 in binding Rad52. Sequence homology between RPA32 and RPA70 was used to identify a putative Rad52-binding site on RPA70 that is located near DNA-binding domains A and B. Rad52 binding to RPA increases ssDNA affinity significantly. Mutations in DBD-D on RPA32 show that this domain is primarily responsible for the ssDNA binding enhancement. RPA binding to Rad52 inhibits the higher-order self-association of Rad52 rings. Implications for these results for the "hand-off" mechanism between protein-protein partners, including Rad51, in homologous recombination and single-strand annealing are discussed.  相似文献   

14.
Although the mechanical aspects of the single-stranded DNA (ssDNA) binding activity of human replication protein A (RPA) have been extensively studied, only limited information is available about its interaction with other physiologically relevant DNA structures. RPA interacts with partial DNA duplexes that resemble DNA intermediates found in the processes of DNA replication and DNA repair. Limited proteolysis of RPA showed that RPA associated with ssDNA is less protected against proteases than RPA bound to a partial duplex DNA containing a 5'-protruding tail that had the same length as the ssDNA. Modification of both the 70- and 32-kDa subunits, RPA70 and RPA32, respectively, by photoaffinity labeling indicates that RPA can bind the primer-template junction of partial duplex DNAs by interacting with the 3'-end of the primer. The identification of the protein domains modified by the photoreactive 3'-end of the primer showed that domains located in the central part of the RPA32 subunit (amino acids 39-180) and the C-terminal part of the RPA70 subunit (amino acids 432-616) are involved in these interactions.  相似文献   

15.
Human replication protein A (hRPA), a heterotrimeric single-stranded DNA (ssDNA) binding protein, is required for many cellular pathways including DNA damage repair, recombination, and replication as well as the ATR-mediated DNA damage response. While extensive effort has been devoted to understanding the structural relationships between RPA and ssDNA, information is currently limited to the RPA domains, the trimerization core, and a partial cocrystal structure. In this work, we employed a mass spectrometric protein footprinting method of single amino acid resolution to investigate the interactions of the entire heterotrimeric hRPA with ssDNA. In particular, we monitored surface accessibility of RPA lysines with NHS-biotin modification in the contexts of the free protein and the nucleoprotein complex. Our results not only indicated excellent agreement with the available crystal structure data for RPA70 DBD-AB-ssDNA complex but also revealed new protein contacts in the nucleoprotein complex. In addition to two residues, K263 and K343 of p70, previously identified by cocrystallography as direct DNA contacts, we observed protection of five additional lysines (K183, K259, K489, K577, and K588 of p70) upon ssDNA binding to RPA. Three residues, K489, K577, and K588, are located in ssDNA binding domain C and are likely to establish the direct contacts with cognate DNA. In contrast, no ssDNA-contacting lysines were identified in DBD-D. In addition, two lysines, K183 and K259, are positioned outside the putative ssDNA binding cleft. We propose that the protection of these lysines could result from the RPA interdomain structural reorganization induced by ssDNA binding.  相似文献   

16.
Replication Protein A (RPA), the heterotrimeric single-stranded DNA (ssDNA)-binding protein of eukaryotes, contains four ssDNA binding domains (DBDs) within its two largest subunits, RPA1 and RPA2. We analyzed the contribution of the four DBDs to ssDNA binding affinity by assaying recombinant yeast RPA in which a single DBD (A, B, C, or D) was inactive. Inactivation was accomplished by mutating the two conserved aromatic stacking residues present in each DBD. Mutation of domain A had the most severe effect and eliminated binding to a short substrate such as (dT)12. RPA containing mutations in DBDs B and C bound to substrates (dT)12, 17, and 23 but with reduced affinity compared with wild type RPA. Mutation of DBD-D had little or no effect on the binding of RPA to these substrates. However, mutations in domain D did affect the binding to oligonucleotides larger than 23 nucleotides (nt). Protein-DNA cross-linking indicated that DBD-A (in RPA1) is essential for RPA1 to interact efficiently with substrates of 12 nt or less and that DBD-D (RPA2) interacts efficiently with oligonucleotides of 27 nt or larger. The data support a sequential model of binding in which DBD-A is responsible for the initial interaction with ssDNA, that domains A, B, and C (RPA1) contact 12-23 nt of ssDNA, and that DBD-D (RPA2) is needed for RPA to interact with substrates that are 23-27 nt in length.  相似文献   

17.
The role for zinc in replication protein A   总被引:6,自引:0,他引:6  
Heterotrimeric human single-stranded DNA (ssDNA)-binding protein, replication protein A (RPA), is a central player in DNA replication, recombination, and repair. The C terminus of the largest subunit, RPA70, contains a putative zinc-binding motif and is implicated in complex formation with two smaller subunits, RPA14 and RPA32. The C-terminal domain of RPA70 (RPA70-CTD) was characterized using proteolysis and x-ray fluorescence emission spectroscopy. The proteolytic core of this domain comprised amino acids 432-616. X-ray fluorescence spectra revealed that RPA70-CTD possesses a coordinated Zn(II). The trimeric complex of RPA70-CTD, the ssDNA-binding domain of RPA32 (amino acids 43-171), and RPA14 had strong DNA binding activity. When properly coordinated with zinc, the trimer's affinity to ssDNA was only 3-10-fold less than that of the ssDNA-binding domain in the middle of RPA70. However, the DNA-binding activity of the trimer was dramatically reduced in the presence of chelating agents. Our data indicate that (i) Zn(II) is essential to stabilize the tertiary structure of RPA70-CTD; (ii) RPA70-CTD possesses DNA-binding activity, which is modulated by Zn(II); and (iii) ssDNA binding by the trimer is a synergistic effect generated by the RPA70-CTD and RPA32.  相似文献   

18.
Replication protein A (RPA) is a key regulator of eukaryotic DNA metabolism. RPA is a highly conserved heterotrimeric protein and contains multiple oligonucleotide/oligosaccharide-binding folds. The major RPA function is binding to single-stranded DNA (ssDNA) intermediates forming in DNA replication, repair, and recombination. Although binding ssDNA with high affinity, RPA can rapidly diffuse along ssDNA and destabilizes the DNA secondary structure. A highly dynamic RPA binding to ssDNA allows other proteins to access ssDNA and to displace RPA from the RPA–ssDNA complex. As has been shown recently, RPA in complex with ssDNA is posttranslationally modified in response to DNA damage. These modifications modulate the RPA interactions with its protein partners and control the DNA damage signaling pathways. The review considers up-to-date data on the RPA function as an active coordinator of ssDNA intermediate processing within DNA metabolic pathways, DNA repair in particular.  相似文献   

19.
Replication protein A (RPA) is a heterotrimeric (70, 32 and 14 kDa subunits), single-stranded DNA-binding protein required for cellular DNA metabolism. All subunits of RPA are essential for life, but the specific functions of the 32 and 14 kDa subunits remains unknown. The 32 kDa subunit (RPA2) has multiple domains, but only the central DNA-binding domain (called DBD D) is essential for life in Saccharomyces cerevisiae. To define the essential function(s) of RPA2 in S. cerevisiae, a series of site-directed mutant forms of DBD D were generated. These mutant constructs were then characterized in vitro and in vivo. The mutations had minimal effects on the overall structure and activity of the RPA complex. However, several mutants were shown to disrupt crosslinking of RPA2 to DNA and to dramatically lower the DNA-binding affinity of a RPA2-containing subcomplex. When introduced into S. cerevisiae, all DBD D mutants were viable and supported normal growth rates and DNA replication. These findings indicate that RPA2–DNA interactions are not essential for viability and growth in S. cerevisiae. We conclude that DNA-binding activity of RPA2 is dispensable in yeast and that the essential function of DBD D is intra- and/or inter-protein interactions.  相似文献   

20.
Abstract

The heterotrimeric eukaryotic Replication protein A (RPA) is a master regulator of numerous DNA metabolic processes. For a long time, it has been viewed as an inert protector of ssDNA and a platform for assembly of various genome maintenance and signaling machines. Later, the modular organization of the RPA DNA binding domains suggested a possibility for dynamic interaction with ssDNA. This modular organization has inspired several models for the RPA-ssDNA interaction that aimed to explain how RPA, the high-affinity ssDNA binding protein, is replaced by the downstream players in DNA replication, recombination, and repair that bind ssDNA with much lower affinity. Recent studies, and in particular single-molecule observations of RPA-ssDNA interactions, led to the development of a new model for the ssDNA handoff from RPA to a specific downstream factor where not only stability and structural rearrangements but also RPA conformational dynamics guide the ssDNA handoff. Here we will review the current knowledge of the RPA structure, its dynamic interaction with ssDNA, and how RPA conformational dynamics may be influenced by posttranslational modification and proteins that interact with RPA, as well as how RPA dynamics may be harnessed in cellular decision making.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号