首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we demonstrated that intact female rats fed a standard rodent diet containing soybean products exhibit essentially no adverse left ventricular (LV) remodeling in response to aortocaval fistula-induced chronic volume overload. We hypothesized that phytoestrogenic compounds in the diet contributed to the female cardioprotection. To test this hypothesis, four groups of female rats were studied: sham-operated (Sham) and fistula (Fist) rats fed a diet with [P(+)] or without [P(-)] phytoestrogens. Eight weeks postfistula, systolic and diastolic cardiac function was assessed by using a blood-perfused, isolated heart preparation. High-phytoestrogen diet had no effect on body, heart, and lung weights, or cardiac function in Sham rats. Fistula groups developed LV hypertrophy, which was not reduced by dietary phytoestrogens [1,184 +/- 229 mg Fist-P(-) and 1,079 +/- 199 mg Fist-P(+) vs. 620 +/- 47 mg for combined Sham groups, P < 0.05]. Unstressed LV volume increased in Fist-P(-) rats (428 +/- 16 vs. 300 +/- 14 microl Sham, P < 0.0001), but it was not different from Sham for Fist-P(+) animals (286 +/- 17 microl). Fist-P(-) rats developed increased ventricular compliance (5.3 +/- 0.8 vs. 2.3 +/- 0.3 microl/mmHg Sham, P < 0.01), whereas Fist-P(+) rats had no change in compliance (2.8 +/- 0.4 mul/mmHg). Intrinsic ventricular contractility was maintained in the Fist-P(+) rats, but it was reduced (P < 0.001) in the Fist-P(-) rats [systolic pressure-volume slope: 1.04 +/- 0.03, 0.60 +/- 0.06, and 0.99 +/- 0.08 mmHg/microl, for Fist-P(+), Fist-P(-), and Sham, respectively]. These data indicate that dietary phytoestrogens contribute significantly to female cardioprotection against volume overload-induced adverse ventricular remodeling and that studies evaluating gender differences in cardiovascular remodeling must consider the influence of dietary phytoestrogens.  相似文献   

2.
In the current study, interstitial fluid (ISF), bradykinin (BK), and angiotensin II (ANG II) levels were measured using cardiac microdialysis in conscious, nonsedated rats at baseline and at 48 h and 5 days after each of the following: sham surgery (sham, n = 6), sham + administration of ANG-converting enzyme inhibitor ramipril (R, n = 6), creation of aortocaval fistula (ACF, n = 6), ACF + R (n = 6), and ACF + R + BK2 receptor antagonist (HOE-140) administration (n = 6). At 5 days, both ISF ANG II and BK increased in ACF rats (P < 0.05); however, in ACF + R rats, ISF ANG II did not differ from basal levels and ISF BK increased greater than threefold above baseline at 2 and 5 days (P < 0.05). Five days after ACF, the left ventricular (LV) weight-to-body weight ratio increased 30% (P < 0.05) in ACF but did not differ from sham in ACF + R and ACF + R + HOE-140 rats despite similar systemic arterial pressures across all ACF groups. However, ACF + R + HOE-140 rats had greater postmortem wall thickness-to-diameter ratio and smaller cross-sectional diameter compared with ACF + R rats. There was a significant increase in mast cell density in ACF and ACF + R rats that decreased below sham in ACF + R + HOE-140 rats. These results suggest a potentially important interaction of mast cells and BK in the cardiac interstitium that modulates the pattern of LV remodeling in the acute phase of volume overload.  相似文献   

3.
Hyperhomocysteinemia (Hhe), linked to cardiovascular disease by epidemiological studies, may be an important factor in adverse cardiac remodeling in hypertension. Specifically, convergence of myocardial and vascular alterations promoted by Hhe and hypertension may exacerbate cardiac remodeling and myocardial dysfunction. We studied male spontaneously hypertensive rats fed one of three diets: control, intermediate Hhe inducing, or severe Hhe inducing. After 10 wk of dietary intervention, cardiac function was assessed in vitro, and cardiac and coronary arteriolar remodeling were monitored by histomorphometric, immunohistochemical, and biochemical techniques. Results showed that Hhe induced diastolic dysfunction, as characterized by the diastolic pressure-volume curve, without significant changes in baseline systolic function. Perivascular collagen levels were increased by Hhe, and there was an increase in left ventricular hydroxyproline levels. Myocyte size was not affected. Coronary arteriolar wall thickness increased with Hhe due to smooth muscle hyperplasia. Mast cells increased in parallel with Hhe and collagen accumulation. In summary, 10 wk of Hhe caused coronary arteriolar remodeling, myocardial collagen deposition, and diastolic dysfunction in hypertensive rats.  相似文献   

4.
5.
6.
Atrial (ANP) and brain (BNP) natriuretic peptides are hormones of myocardial cell origin. These hormones bind to the natriuretic peptide A receptor (NPRA) throughout the body, stimulating cGMP production and playing a key role in blood pressure control. Because NPRA receptors are present on cardiomyocytes, we hypothesized that natriuretic peptides may have direct autocrine or paracrine effects on cardiomyocytes or adjacent cardiac cells. Because both natriuretic peptides and NPRA gene expression are upregulated in states of pressure overload, we speculated that the effects of the natriuretic peptides on cardiac structure and function would be most apparent after pressure overload. To attenuate cardiomyocyte NPRA activity, transgenic mice with cardiac specific expression of a dominant-negative (DN-NPRA) mutation (HCAT D 893A) in the NPRA receptor were created. Cardiac structure and function were assessed (avertin anesthesia) in the absence and presence of pressure overload produced by suprarenal aortic banding. In the absence of pressure overload, basal and BNP-stimulated guanylyl cyclase activity assessed in cardiac membrane fractions was reduced. However, systolic blood pressure, myocardial cGMP, log plasma ANP levels, and ventricular structure and function were similar in wild-type (WT-NPRA) and DN-NPRA mice. In the presence of pressure overload, myocardial cGMP levels were reduced, and ventricular hypertrophy, fibrosis, filling pressures, and mortality were increased in DN-NPRA compared with WT-NPRA mice. In addition to their hormonal effects, endogenous natriuretic peptides exert physiologically relevant autocrine and paracrine effects via cardiomyocyte NPRA receptors to modulate cardiac hypertrophy and fibrosis in response to pressure overload.  相似文献   

7.
The objective of this study was to determine whether elevated circulating levels of endothelin (ET)-1 are capable of mediating left ventricular (LV) mast cell degranulation and thereby induce matrix metalloproteinase (MMP) activation. After the administration of 20 pg/ml ET-1 to blood-perfused isolated rat hearts, LV tissue was analyzed for signs of mast cell degranulation and MMP activation. Relative to control, ET-1 produced extensive mast cell degranulation as well as a significant increase in myocardial water content (78.8 +/- 1.5% vs. 74.2 +/- 2.2%, P <0.01), a marked 107% increase in MMP-2 activity (P <0.05), and a substantial decrease in collagen volume fraction (0.69 +/- 0.09% vs. 0.99 +/- 0.04%, P <0.001). Although the myocardial edema would be expected to increase ventricular stiffness, compliance was not altered, and moderate ventricular dilatation was observed (end-diastolic volume at end-diastolic pressure of 0 mmHg of 330.2 +/- 22.1 vs. 298.9 +/- 17.4 microl in ET-1 treated vs. control, respectively, P=0.07). Additionally, pretreatment with the mast cell stabilizer nedocromil prevented ET-1-induced changes in MMP-2 activity, myocardial water content, collagen volume fraction, and end-diastolic volume. These findings demonstrate that ET-1 is a potent cardiac mast cell secretogogue and further indicate that ET-1-mediated mast cell degranulation is a potential mechanism responsible for myocardial remodeling.  相似文献   

8.
Postnatal heart remodeling was studied in rats submitted to prenatal protein--calorie restriction (R). Offspring were divided in four groups: control male (CM) and female (CF) vs. restricted male (RM) and female (RF) and lived 120 days. The offspring blood pressure (BP) and biometry were periodically analyzed. In the euthanasia day, the left ventricular (LV) mass index, the cardiomyocyte nuclei profile number (N[cmn]) (disector method), the cross-sectional cardiomyocyte area (A[cm]) and the stereology for intramyocardial arteries (ima) were estimated. Interactions between gender and prenatal nutritional conditions were tested with the two-way ANOVA. RM animals showed higher BP and greater body mass and smaller LV mass index than the other groups. N[cmn] and stereology parameters of ima were smaller, and A[cm] was greater in the R groups rats than in the C groups rats; these structural changes were only dependent of the prenatal nutritional condition but not gender-dependent. In conclusion: hypertension and body and cardiac growth were influenced by the interaction between gender and prenatal nutritional conditions, while cardiac remodeling seems to be only programmed by the adverse intrauterine environment.  相似文献   

9.
Intact female rats fed a high-phytoestrogen diet are protected against adverse left ventricular (LV) remodeling induced by chronic volume overload. We hypothesized that both phytoestrogens and ovarian hormones, particularly estrogen, are necessary for this dietary-induced cardioprotection. To test this hypothesis, eight groups of female rats were studied; rats were fed either a high-phytoestrogen (+phyto) or phytoestrogen-free diet. Groups included sham-operated rats, intact rats with fistula (Fist), ovariectomized rats with fistula (Fist-OX), and Fist-OX rats treated with estrogen (EST). Myocardial function and remodeling were assessed after 8 wk of volume overload using a blood-perfused isolated heart apparatus. Fist-OX rats developed significant ventricular dilatation and increased compliance vs. intact Fist rats, which were associated with a significant decrease in contractility. Estrogen treatment prevented pulmonary edema and attenuated LV hypertrophy and dilatation but did not maintain contractility. However, dietary phytoestrogens completely prevented LV dilatation in both the Fist+phyto and Fist-OX+EST+phyto groups but had no effect on LV remodeling in the Fist-OX+phyto group. Contractility was significantly greater in the estrogen-treated rats fed the phytoestrogen diet than in those treated with estrogen alone. Dietary phytoestrogens did not affect LV or uterine mass, serum estrogen, LV estrogen receptor expression, or cardiac function in sham animals. These data indicate that estrogen is not solely responsible for the cardioprotection exhibited by intact females and that phytoestrogens can work synergistically with ovarian hormones to attenuate ventricular remodeling induced by chronic volume overload in female rats.  相似文献   

10.
Recent reports including those from our laboratories indicate that hyperhomocysteinemia (Hhe) is an independent risk factor for cardiac dysfunction and clinical heart failure. Mast cell accumulation is a prominent feature in our model of Hhe-induced cardiac dysfunction. Because mast cell-derived mediators can potentially attenuate cardiac remodeling, we investigated the possible protective role of mast cells in Hhe-induced cardiac remodeling using a mast cell-deficient rat model that in our recent report did not demonstrate any adverse cardiac function at younger age (6 mo) than mast cell-competent control animals. Mast cell-deficient (Ws/Ws) rats and mast cell-competent (+/+) littermate control animals (3 mo of age) were treated with a Hhe-inducing diet for 10 wk. Cardiac remodeling was assessed structurally utilizing histomorphometric methods and functionally using an isolated Langendorff-perfused heart preparation. The Hhe-inducing diet caused similar elevations of homocysteine levels in the two groups. Compared with Hhe +/+ rats, the Hhe Ws/Ws rats demonstrated strikingly exacerbated adverse cardiac remodeling and myocardial fibrosis. Cardiac function measurement showed worsened diastolic function in Hhe Ws/Ws rats compared with Hhe +/+ rats. The absence of mast cells strikingly exacerbates Hhe-induced adverse cardiac remodeling and diastolic dysfunction. These findings indicate a potential dual rather than sole deleterious role for mast cells in cardiac injury.  相似文献   

11.
The objective of this study was to investigate the effect a nonselective endothelin-1 (ET-1) receptor antagonist (bosentan) had on the acute myocardial remodeling process including left ventricular (LV) mast cells and matrix metalloproteinase (MMP) activity secondary to volume overload. Additionally, we investigated the overall functional outcome of preventative endothelin receptor antagonism during 14 days of chronic volume overload. LV tissue from sham-operated (Sham), untreated-fistula (Fist), and bosentan (100 mg.kg(-1).day(-1))-treated animals (Fist + Bos) was analyzed for mast cell density, MMP activity, and myocardial collagen volume fraction at 1 and 5 days after the creation of an aortocaval fistula. When compared with untreated fistulas, bosentan treatment prevented the marked increase in LV mast cell density at 1 day postfistula (3.1 +/- 0.3 vs. 1.3 +/- 0.3 LV mast cells/mm2, Fist vs. Fist + Bos, P 相似文献   

12.
The adaptation to chronic hypoxia confers long-lasting cardiac protection against acute ischemia–reperfusion injury. Protein kinase C (PKC) appears to play a role in the cardioprotective mechanism but the involvement of individual PKC isoforms remains unclear. The aim of this study was to examine the effects of chronic intermittent hypoxia (CIH; 7,000 m, 8 h/day) and acute administration of PKC-δ inhibitor (rottlerin, 0.3 mg/kg) on the expression and subcellular distribution of PKC-δ and PKC-ε in the left ventricular myocardium of adult male Wistar rats by Western blot and quantitative immunofluorescence microscopy. CIH decreased the total level of PKC-ε in homogenate without affecting the level of phosphorylated PKC-ε (Ser729). In contrast, CIH up-regulated the total level of PKC-δ as well as the level of phosphorylated PKC-δ (Ser643) in homogenate. Rottlerin partially reversed the hypoxia-induced increase in PKC-δ in the mitochondrial fraction. Immunofluorescent staining of ventricular cryo-sections revealed increased co-localization of PKC-δ with mitochondrial and sarcolemmal membranes in CIH hearts that was suppressed by rottlerin. The formation of nitrotyrosine as a marker of oxidative stress was enhanced in CIH myocardium, particularly in mitochondria. The expression of total oxidative phosphorylation complexes was slightly decreased by CIH mainly due to complex II decline. In conclusion, up-regulated PKC-δ in CIH hearts is mainly localized to mitochondrial and sarcolemmal membranes. The inhibitory effects of rottlerin on PKC-δ subcellular redistribution and cardioprotection (as shown previously) support the view that this isoform plays a role in the mechanism of CIH-induced ischemic tolerance.  相似文献   

13.
The constrictor response of the rabbit conduit coronary artery from hypertrophied heart (volume-overload stabilized hypertrophy) was studied to vasoactive substances. The heart/body weight ratio was 2.67 +/- 0.95 in the experimental group and 1.90 +/- 0.09 in the controls. The responses to acetylcholine, serotonin and potassium chloride was dose-dependent in the controls: the maximum amounted to 9.07 +/- 2.03 mN, 6.00 +/- 1.79 and 10.94 +/- 1.64 mN, respectively. Remarkably lower responses were detected in coronary arteries from hypertrophied hearts in the whole range of concentrations applied; the maximum was only 22.34 +/- 8.32% of the control response to acetylcholine, 17.83 +/- 11.37% to serotonin, and 21.74 +/- 5.50% to potassium chloride. A disbalance between stabilized cardiac hypertrophy and the remarkably low constrictor ability of the conduit coronary artery has been described.  相似文献   

14.
Alterations in general characteristics and morphology of the heart, as well as changes in hemodynamics, myosin heavy chain isoforms, and beta-adrenoceptor responsiveness, were determined in Sprague-Dawley rats at 1, 2, 4, 8, and 16 wk after aortocaval fistula (shunt) was induced by the needle technique. Three stages of cardiac hypertrophy due to volume overload were recognized during the 16-wk period. Developing hypertrophy occurred within the first 2 wk after aortocaval shunt was induced and was characterized by a rapid increase of cardiac mass in both left and right ventricles. Compensated hypertrophy occurred between 2 and 8 wk after aortocaval shunt where normal or mild depression in hemodynamic function was observed. Decompensated hypertrophy or heart failure occurred between 8 and 16 wk after aortocaval shunt and was characterized by circulatory congestion, decreased in vivo and in vitro cardiac function, and a shift in myosin heavy chain isozyme expression. However, the positive inotropic effect of isoproterenol was augmented at all times during the 16-wk period. Characterization of beta-adrenoceptor binding in failing hearts at 16 wk revealed a significant increase in beta(1)-receptor density, whereas beta(2)-receptor density was unchanged. Consistent with this, basal adenylyl cyclase activity was significantly increased, and both isoproterenol- and forskolin-stimulated adenylyl cyclase activities were also increased. These results indicate that upregulation of beta-adrenoceptor signal transduction is a unique feature of cardiac hypertrophy and failure induced by volume overload.  相似文献   

15.
Habitual exercise results in a rightward shift in left ventricular end diastolic (LVED) pressure-volume or internal dimension (P-D) relationships [left ventricular (LV) remodeling]. However, exercise-mediated LV hypertrophy (LVH) produces an increased LV relative wall thickness [ratio (h/r) of wall thickness (h) to internal radius (r)] and hence a decrement in diastolic wall stress despite LV remodeling. In this study, the effect of chronic administration of an androgenic steroid on exercise-induced LV remodeling and h/r was examined in rats. Habitual exercise on voluntary running wheels resulted in LVH and a rightward shift in the LVED P-D relationships. However, LVH was sufficient to increase LVED h/r. Androgenic steroid administration to exercised rats, without influencing the development of exercise-induced LVH, produced a further rightward shift in the LVED P-D relationship associated with an increased diameter intercept. As a consequence, LVED h/r was reduced to control values. The steroid-mediated effects were not associated with alterations in either the quantity or quality of LV collagen. In conclusion, high-dose androgenic steroid administration alters exercise-induced LV remodeling and subsequently reduces the beneficial effect of physiological LVH on LV h/r.  相似文献   

16.
17.
18.
19.
To identify early adaptive processes of cardiac remodeling (CR) in response to volume overload, we investigated the molecular events that may link intracellular Ca(2+) homeostasis alterations and cardiomyocyte apoptosis. In swine heart subjected to aorto-cava shunt for 6, 12, 24, 48 and 96 h sarcoplasmic reticulum (SR) Ca(2+) pump activity was reduced until 48 h (-30%), but a recovery of control values was found at 96 h. The decrease in SR Ca(2+)-ATPase (SERCA2a) expression at 48 h, was more marked (-60%) and not relieved by a subsequent recovery, while phospholamban (PLB) concentration and phosphorylation were unchanged at all the considered times. Conversely, acylphosphatase activity and expression significantly increased from 48 to 96 h (+40%). Bcl-2 expression increased significantly from 6 to 24 h, but at 48 h, returned to control values. At 48 h, microscopic observations showed that overloaded myocardium underwent substantial damage and apoptotic cell death in concomitance with an enhanced Fas/Fas-L expression. At 96 h, apoptosis appeared attenuated, while Fas/Fas-L expression was still higher than control values and cardiomyocyte hypertrophy became to develop. These data suggest that in our experimental model, acylphosphatase could be involved in the recovery of SERCA2a activity, while cardiomyocyte apoptosis might be triggered by a decline in Bcl-2 expression and a concomitant activation of Fas.  相似文献   

20.
Elevated oxidative stress has been characterized in numerous disorders including systemic hypertension, arterial stiffness, left ventricular hypertrophy (LVH) and heart failure. The peroxisome proliferator activated receptor gamma (PPARgamma) ameliorates oxidative stress and LVH. To test the hypothesis that PPARgamma decreased LVH and cardiac fibrosis in chronic pressure overload, in part, by increasing SOD, eNOS and elastin and decreasing NOX4, MMP and collagen synthesis and degradation, chronic pressure overload analogous to systemic hypertension was created in C57BL/6J mice by occluding the abdominal aorta above the kidneys (aortic stenosis-AS). The sham surgery was used as controls. Ciglitazone (CZ, a PPARgamma agonist, 4 microg/ml) was administered in drinking water. LV function was measured by M-Mode Echocardiography. We found that PPARgamma protein levels were increased by CZ. NOX-4 expression was increased by pressure-overload and such an increase was attenuated by CZ. SOD expression was not affected by CZ. Expression of iNOS was induced by pressure-overload, and such an increase was inhibited by CZ. Protein levels for MMP2, MMP-9, MMP-13 were induced and TIMP levels were decreased by pressure-overload. The CZ mitigated these levels. Collagen synthesis was increased and elastin levels were decreased by pressure-overload and CZ ameliorated these changes. Histochemistry showed that CZ inhibited interstitial and perivascular fibrosis. Echocardiography showed that CZ attenuated the systolic and diastolic LV dysfunction induced by pressure-overload. These observations suggested that CZ inhibited pressure-overlaod-induced cardiac remodeling, and inhibition of an induction of NOX4, iNOS, MMP-2/MMP-13 expression and collagen synthesis/degradation may play a role in pressure-overload induced cardiac remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号